Research seminar week 1

Tamás Biró

Humanities Computing University of Groningen

t.s.biro@rug.nl

Aim of the research seminar

Skills to carry out a research (MA thesis). Emphasis on research using computer simulations.

- Introduction, background by B. T.
- Presentations by students on project
- Presentations by members of department

Website:

http://www.let.rug.nl/birot/courses/2008-research/

t.s.biro [at] rug.nl (always welcome!)

The project: computational models for language phenomena

- A model for *linguistic competence*.
- A model for *linguistic performance*.
- A model for language learning.
- A model for language change.

Prerequisites

- Programing language: your choice and your responsibility.
- Algorithmics.
- Openness to mathematical concepts.
- Openness to linguistic phenomena.

Requirements

- Presence and active participation.
- Minor tasks related to literature.
- (At least) two presentations with slides.
- Final paper.

Presentations

- 1st: Theoretical background, goals of the experiments, hypotheses to be tested + Details of implementation (lang., arch.).
- 2nd: Experiment results and discussion.

Each member of the group has to present something $(3 \times 15 \text{ min})$.

Final paper

Final paper covers:

- Everything presented + more experiments.
- Reaction to presentation feedback.
- Related work: other group, Niyogi, else.

Each student writes it up individually!

Structure of scientific paper

- Intro: general background, importance of research, motivations, past related work.
- Definition of problem.
 Formulating hypothesis.
- How to tackle the problem.
- Methodology, details of the experiment(s).

Structure of scientific paper (2)

- Results of the experiment(s).
- Discussion of results: why surprising? error analysis.
- Conclusion(s) and future directions.
- References: as much as you can, but only what you refer to.

Structure of scientific paper (3)

Abstract, captions of figures, intro and summary:

a concise summary of everything, with much redundancy (most readers will not read the paper).

The project: computational models for language phenomena

- A model for *linguistic competence*: best element of some candidate set, according to some function = grammar.
- A model for *linguistic performance*: an algorithm finding it.

The project: computational models for language phenomena

- A model for *language learning*: an algorithm finding the grammar accounting for observed forms.
- A model for *language change*: iterative learning.

Research methodologies (1)

- Collect literature in library.
- Collect data on the field: observe whatever you can (how?).
- Run *controlled* experiments on animals, subjects or atoms.

Research methodologies (2)

- Collect your data:
- Systematize data, create typologies:

Create a model describing your typology:
 a deeper "understanding" of phenomenon

Research methodologies (3)

- Data have been collected.
- Formulate concepts, theories.
- Formulate mathematical models.
- Verify models: falsification or corroboration.

Computer simulations in science

 Between mathematical-theoretical approaches and experimental ones.

• Test theories:

 More complex than analyzable in an analytical way (maths). Simplification from real life (real life too complex).

Not enough time in real life.

Why run simulations for language evolution?

From hypothesis to hypothesis

- 1. Choose a research question.
- 2. Choose a theory to tackle it.
- 3. State exactly what your hypothesis is.
- 4. What observation would falsify it? What observation would corroborate it?

- 5. Run pilot experiment: debugging + get a general picture.
- 6. Run experiment.
- 7. Run improved experiment.
- 8. Result will always be surprising: discussion (the "why"s), error analysis.
- 9. Reformulate hypothesis, back to 3.

- 10. Alternatively: reformulate theory and go back to 2.
- 11. (Alternatively: give up on the topic, and go back to 1.)

Programming tricks

- Choice of prg language(s).
- Scripting languages: collect data, repeat many times, change parameters.
- Modularity: make changes in future.
- Parameters, std. input and output.

Playing with the simulation

- Behaviour of the model: e.g. run time, precision.
- Role of the parameters: change always one at a time.
- Plot the behaviour of the model as a function of parameters.

 Smooth vs. abrupt change in behaviour, as parameters change.

Don't have too many parameters.

Save every information!

- Recall information months latter!
- Save results: file names, directories
- ...with LOTS of comments!
- Create tables, graphs immediately.
 Write up your motivations and observations immediately.

Moreover:

- Don't be shy to ask questions.
- Search for people working on related topic.
- Take every opportunity to present your topic: collect feedback, both experts and grandma. Understand their perspectives.
- Refresh your mind regularly.

By next week:

- Make groups.
- I finalize schedule.
- Read chapter 1 of Niyogi.
- Send to me in email 5 observations you have on Niyogi chapter 1.