Research seminar week 2

Tamás Biró Humanities Computing University of Groningen t.s.biro@rug.nl

Niyogi, chapter 1

- Questions?
- Remarks?
- Criticism?

What is a *model* for some phenomenon?

A theoretical construction (with or without maths) whose predictions mimic the observable behaviour of the phenomenon.

Linguistic competence

Knowledge of language in brain (Chomsky).

- Its model: a grammar.
- Grammar generates for each input the form that is grammatical in the language being described.
- grammatical form =? correct form by native speaker

Correct form according to native speaker, not to academy.

Linguistic performance

- Utterences actually produced by native speaker (standard approach).
- Computation in brain during language production (approach of T.B.).
- Performance model: predicts the forms actually uttered/observable.

Competence vs. performance

Competence: a function *input* → grammatical form.

 Performance: an algorithm realizing (implementing) this function.
Ideally, it only returns grammatical form.

Behaviour of an algorithm

- Precision and error rate.
- Run time, complexity (time, storage space).

What about precision, run time and complexity of human linguistic performance (computation in one's brain)?

Approaches to linguistic competence

- Harmony Grammar (Smolensky)
- Optimality Theory (Prince and Smolensky)
- Hard constraints (Chomsky, among others)
- Principles and Parameters (Chomsky) (Not in historical order...)

Harmony Grammar (in OT-style)

- Input: I
- Set of candidates C generated by GEN function: C = GEN(I).

• Harmony H(c): a real-valued function on elements c in C.

• Output (grammatical form, prediction for correct form):

$$O = \arg \max_{c \in C} H(c).$$

$$O(I) = \arg \max_{c \in GEN(I)} H(c).$$

Languages differ because they have different grammars, i.e., different H(c) functions.

Example for HG: word stress

Language A: banána, Language B: bánana.

[banana]	H_A	H_B
bánana	3.7	4.4
banána	5.9	-2.3
bananá	-2.1	0.9

Original idea: H(c) defined by sum of weights in a connectionist network representing the candidate.

Harmony Grammar (in OT-style)

H(c): weighted sum of elementary functions (*constraints*) defined on the candidate:

$$H(c) = w_1 \cdot c_1(c) + w_2 \cdot c_2(c) + \dots + w_n \cdot c_n(c)$$

Constraints are universal, weights are language dependent.

Example for HG: word stress

 $c_1(c)$: number of syllables intervening between left edge of c and stess.

 $c_2(c)$: number of syllables intervening between stress and right edge of c.

 $c_3(c)$: number of stress on the last syllable of c (either 0 or 1).

Example for HG: word stress

Language A: $w_1 = -0.5$, $w_2 = -1.2$, $w_3 = -3.1$. Language B: $w_1 = -4.8$, $w_2 = -1.2$, $w_3 = -0.1$.

[banana]	c_1	c_2	c_3	H_A	H_B
bánana	0	2	0	-2.4	-2.4
banána	1	1	0	-1.7	-6.0
bananá	2	0	1	-4.1	-9.7

HG with exponential weights

$$H(c) = w_1 \cdot c_1(c) + w_2 \cdot c_2(c) + \dots + w_n \cdot c_n(c)$$

where
$$w_i = -q^i$$
 for some $q > 1$.

$$H(c) = -c_n(c) \cdot q^n - \dots - c_2(c) \cdot q^2 - c_n(c) \cdot q$$

If q very large: Optimality Theory.

Optimality Theory (OT)

- No weights w_i , but constraint hierarchy.
- Strict domination.
- Only the best candidates survive a constraint (at least one; single best or equally good ones).

Optimality Theory: example 1

 $c_1 \gg c_2 \gg c_3$

[banana]	c_1	c_2	c_3
bánana	0	2	0
banána	1!	1	0
bananá	2!	0	1

Winner: $b \acute{a} n a n a \rightarrow$ Language B.

Optimality Theory: example 2

 $c_3 \gg c_2 \gg c_1$

[banana]	<i>C</i> ₃	c_2	c_1
bánana	0	2!	0
banána	0	1	1
bananá	1!	0	2

Winner: $ban \acute{a} n a \rightarrow Language A$.

Pseudo-code for Optimality Theory

ALGORITHM Evaluation in OT Input: input form I, constraint hierarchy CH

CS <-- candidate set corresponding to input I

FOR constraint con in CH (strongest to weakest) CS <-- subset of CS that is best for con NEXT con

Return CS # the best candidate(s) # corresponding to I w.r.t. CH

OT and HG

- Constraints and candidates: universal.
- Cross-linguistic differences due to weights/hierarchies.
- HG: any weights;
 - OT: large weights = strict domination.
- Grammatical form can violate constraints.

Hard constraints

- Grammatical form *cannot* violate constraints.
- Constraints are language specific.

Hard constraint: example

Language A: banána

- Constraint 3: no stress on last syllable.
- Constraint 2: minimize number of syllables between stress and right edge.

Language B: bánana

• C 1: no syll between left edge and stress.

Principles and Parameters (P&P)

- System in the set of constraints.
- Principles: universal constraints, with a detail left open.
- Parameters: language specific ways of filling that detail; usually *binary*.

Principles and Parameters: example

- Principle 1: minimize the distance number of syllables intervening between stress and [Parameter 1: left/right] edge.
- Principle 2: stress on last syllable is [Parameter 2: yes/not] allowed.

	$Param\ 1 = left$	$Param\ 1 = right$
Param $2 = yes$	bánana	bananá
Param $2 = no$	bánana	banána

Language typology

Languages can be divided into 3 types:

- Type 1: stress on first syllable.
- Type 2: stress on last syllable.
- Type 3: stress on penultimate syllable.
- (And more...) But (almost) no language with stress on second syllable as a rule!

Language typology

Languages predicted possible by a model:

- HG: use all possible weight combinations.
- OT: use all possible hierarchies.
- P&P: use all possible parameter combinations.

Home work (send me as an email)

Show that both the OT model and the P&P model explain why there are three types of languages, and why the fourth type does not exist. Hint: use a four-syllable-word!

If you like math: prove also that even our HG model gives the same prediction.

Next week:

- More examples.
- Performance models.
- Start implementing of OT / HG in groups.

