
Research seminar
week 5

Tamás Biró
Humanities Computing
University of Groningen

t.s.biro@rug.nl

Tamás B́ıró, RUG, Groningen, NL 1



This week: learning algorithms

• Online learning: error driven learning

– TLA for P&P

– EDCD and GLA for OT (and HG)

• Offline learning:

– RCD for OT (and HG)

• Iterated learning

Tamás B́ıró, RUG, Groningen, NL 2



Error driven learning

GENERAL EROR DRIVEN LEARNING ALGORITHM
Input: H_0 starting hypothesis; learning data set
H <-- H_0
Repeat read w from data set

If w not in language generated by H
then change H to some (good/better) hypothesis

Until no more change is needed
Return H

Tamás B́ıró, RUG, Groningen, NL 3



Triggering Learning Algorithm
(TLA) for P&P

• “Hill climbing 2”-type of learning.

Memoryless.

• If w not in H: select one parameter at

random, and flip it. If w in new grammar,

then change H to it.

Tamás B́ıró, RUG, Groningen, NL 4



Triggering Learning Algorithm
(TLA) for P&P

• Local optima.

• Alternatives: change more than one

parameter; always move (no greediness).

Niyogi 4.2: improves TLA.

Tamás B́ıró, RUG, Groningen, NL 5



Learning in OT (and HG)

• Observed form (winner) vs. form

generated by current hypothesis hierarchy

(loser).

• Demote constraints violated by winner

and not by loser below at least one

constraint violated by loser and not by

winner.

Tamás B́ıró, RUG, Groningen, NL 6



Learning in OT (and HG)

• Online: Error Driven Constraint Demotion

(EDCD; by Tesar)

• Online + stochastic OT: Gradual Learning

Algorithm (GLA; by Boersma)

• Offline: Recursive Constraint Demotion (RCD; by

Tesar)

• (and many other, more recent variants...)

Tamás B́ıró, RUG, Groningen, NL 7



Basic idea of learning in OT

Winner form w observed, loser form l

produced by current ranking:

... C1 C2 ... Ck ...

w 2 3 1 ...

l 1 0 3 ...

• Ignore constraints Ci s. t. Ci(w) = C(l).

Tamás B́ıró, RUG, Groningen, NL 8



Basic idea of learning in OT

• l wins for this hierarchy because l has less

violations than w at the highest constraint

Ci such that Ci(w) 6= Ci(l).

• In order to get a hierarchy in which w wins

to l, all constraints for which Ci(w) >

Ci(l) must be lower ranked than at least

one constraint for which Ci(w) < Ci(l).

Tamás B́ıró, RUG, Groningen, NL 9



EDCD: Error Driven Constraint
Demotion (by B. Tesar)

• In each step, if actual hypothesis hierarchy

produces form l different from observed

data w, then

– find highest ranked constraint Ck such

that Ck(w) < Ck(l);

Tamás B́ıró, RUG, Groningen, NL 10



– find all constraints Ci such that Ci(w) >

Ci(l) and Ci is currently ranked higher

than Ck;

– demote all the latter ones below Ck.

• Algorithm gets stuck if errors in data.

• For details (which should not necessarily

be followed), such as the idea of strata,

refer to Tesar and Smolensky 2000.

Tamás B́ıró, RUG, Groningen, NL 11



GLA: Gradual Learning Algorithm
(by P. Boersma)

• Each constraint Ci is assigned a rank, that is, a

real number ri. A higher rank means a higher

position in the hierarchy.

• In each step, if actual hypothesis hierarchy

produces form l different from observed data w,

then

– find all constraints Ck s. t. Ck(w) < Ck(l);

Tamás B́ıró, RUG, Groningen, NL 12



increase their rank ri by a small number p

(“plasticity”);

– find all constraints Ci such that Ci(w) > Ci(l);
and decrease their rank ri by a small number p

(“plasticity”).

• Algorithm is robust to small percentage of errors.

• For details, such as how plasticity can be used and

the use of this learning algorithm for Stochastic
OT, refer to Boersma and Hayes 2001.

Tamás B́ıró, RUG, Groningen, NL 13



RCD: Recursive Constraint
Demotion (by B. Tesar)

• Collect all winner forms. Compare them

to all their losing competitors.

• Create a table: for each (winner w, loser

l) pair: winner marks (constraints such

that C(w) > C(l)) vs. loser marks

(constraints such that C(w) < C(l)).

Tamás B́ıró, RUG, Groningen, NL 14



• Build hierarchy from the top:

1. Add constraint C to hierarchy if C never

appears in the table as winner mark.

2. Remove rows from table where C

appears as loser mark.

3. Go back to step 1 if table is not empty.

• Algorithm detects errors and stops (table

not empty, and yet all constraints appear

somewhere as winner mark).

Tamás B́ıró, RUG, Groningen, NL 15



A note on HG

• You can employ same algorithms as in

OT: work with hierarchies.

• Exponential weights: assign weight −1 to

lowest ranked constraint, −q to second

lowest ranked constraint, −q2 to third

lowest ranked constraint, etc. (q > 1;

test different q values, such as 2, 10, etc.)

Tamás B́ıró, RUG, Groningen, NL 16



By next week:

• Your presentations

Tamás B́ıró, RUG, Groningen, NL 17


