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This week: learning algorithms

• Online learning: error driven learning

– TLA for P&P

– EDCD and GLA for OT (and HG)

• Offline learning:

– RCD for OT (and HG)

• Iterated learning
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Error driven learning

GENERAL EROR DRIVEN LEARNING ALGORITHM
Input: H_0 starting hypothesis; learning data set
H <-- H_0
Repeat read w from data set

If w not in language generated by H
then change H to some (good/better) hypothesis

Until no more change is needed
Return H
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Triggering Learning Algorithm
(TLA) for P&P

• “Hill climbing 2”-type of learning.

Memoryless.

• If w not in H: select one parameter at

random, and flip it. If w in new grammar,

then change H to it.
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Triggering Learning Algorithm
(TLA) for P&P

• Local optima.

• Alternatives: change more than one

parameter; always move (no greediness).

Niyogi 4.2: improves TLA.
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Learning in OT (and HG)

• Observed form (winner) vs. form

generated by current hypothesis hierarchy

(loser).

• Demote constraints violated by winner

and not by loser below at least one

constraint violated by loser and not by

winner.
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Learning in OT (and HG)

• Online: Error Driven Constraint Demotion

(EDCD; by Tesar)

• Online + stochastic OT: Gradual Learning

Algorithm (GLA; by Boersma)

• Offline: Recursive Constraint Demotion (RCD; by

Tesar)

• (and many other, more recent variants...)
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Basic idea of learning in OT

Winner form w observed, loser form l

produced by current ranking:

... C1 C2 ... Ck ...

w 2 3 1 ...

l 1 0 3 ...

• Ignore constraints Ci s. t. Ci(w) = C(l).
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Basic idea of learning in OT

• l wins for this hierarchy because l has less

violations than w at the highest constraint

Ci such that Ci(w) 6= Ci(l).

• In order to get a hierarchy in which w wins

to l, all constraints for which Ci(w) >

Ci(l) must be lower ranked than at least

one constraint for which Ci(w) < Ci(l).
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EDCD: Error Driven Constraint
Demotion (by B. Tesar)

• In each step, if actual hypothesis hierarchy

produces form l different from observed

data w, then

– find highest ranked constraint Ck such

that Ck(w) < Ck(l);
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– find all constraints Ci such that Ci(w) >

Ci(l) and Ci is currently ranked higher

than Ck;

– demote all the latter ones below Ck.

• Algorithm gets stuck if errors in data.

• For details (which should not necessarily

be followed), such as the idea of strata,

refer to Tesar and Smolensky 2000.
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GLA: Gradual Learning Algorithm
(by P. Boersma)

• Each constraint Ci is assigned a rank, that is, a

real number ri. A higher rank means a higher

position in the hierarchy.

• In each step, if actual hypothesis hierarchy

produces form l different from observed data w,

then

– find all constraints Ck s. t. Ck(w) < Ck(l);
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increase their rank ri by a small number p

(“plasticity”);

– find all constraints Ci such that Ci(w) > Ci(l);
and decrease their rank ri by a small number p

(“plasticity”).

• Algorithm is robust to small percentage of errors.

• For details, such as how plasticity can be used and

the use of this learning algorithm for Stochastic
OT, refer to Boersma and Hayes 2001.
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RCD: Recursive Constraint
Demotion (by B. Tesar)

• Collect all winner forms. Compare them

to all their losing competitors.

• Create a table: for each (winner w, loser

l) pair: winner marks (constraints such

that C(w) > C(l)) vs. loser marks

(constraints such that C(w) < C(l)).
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• Build hierarchy from the top:

1. Add constraint C to hierarchy if C never

appears in the table as winner mark.

2. Remove rows from table where C

appears as loser mark.

3. Go back to step 1 if table is not empty.

• Algorithm detects errors and stops (table

not empty, and yet all constraints appear

somewhere as winner mark).
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A note on HG

• You can employ same algorithms as in

OT: work with hierarchies.

• Exponential weights: assign weight −1 to

lowest ranked constraint, −q to second

lowest ranked constraint, −q2 to third

lowest ranked constraint, etc. (q > 1;

test different q values, such as 2, 10, etc.)
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By next week:

• Your presentations
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