Methodological skills rMA linguistics, week 8

> Tamás Biró ACLC University of Amsterdam t.s.biro@uva.nl

Types of the explanatory variables

 \times type of the dependent variable

Scale of the	categorical	quantitative
explanatory	(nominal, ordinal)	(interval, ratio,
variable(s) is		logarithmic)
Dependent variable	crosstabs	logistic regression
with categorical scale		
Dependent variable	t-test,	correlation,
with quantitative scale	ANOVA	regression

Student projects:

Motivation, background: anecdotal evidence, past data.

Precise research question, operationalized.

Units, variables, population, sample.

Sampling distribution of the mean: The Central Limit Theorem

NB: Sampling distribution of other statistics discussed later.

Central Limit Theorem

Four steps three weeks ago (note colours: red, black, green):

1. An ugly mathematical function with two parameters (μ and σ):

$$y = N(x|\mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

- 2. Normal distribution: a distribution that follows such an ugly function.
- 3. A mathematician will tell you that Mean of such a distribution $(\mu) =$ first parameter of the function (μ) . Std. dev. of such a distribution $(\sigma) =$ 2nd param. of the function (σ) .
- 4. Central Limit Theorem (next slide): $\mu = \mu$ and $\sigma = \sigma/\sqrt{n}$.

Central Limit Theorem

- Given population with any distribution. Population mean is μ . Population standard deviation is σ .
- Draw a simple random sample (SRS) of size n.
 Calculate sample mean x̄. Sampling distribution of the mean: repeat sampling + averaging many times.

• Central Limit Theorem:

Sampling distribution of \bar{x} (approximately) follows a Normal distribution: $N\left(x|\mu = \mu = \mu, \sigma = \sigma = \frac{\sigma}{\sqrt{n}}\right)$.

Central Limit Theorem

• **Central Limit Theorem** (version 1):

sampling distribution of \bar{x} is Normal: $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.

- This theorem is only approximately true if original population is not <u>Normal</u>, but *n* is large. (Not true if *n* is small.)
- **Central Limit Theorem** (version 2):

The sum (and, hence, the mean) of independent random variables X_1 , X_2 ,..., X_n approaches ('converges' to) a Normal distribution, as n grows larger.

- Therefore: many statistical procedures require:
 - Independence of the cases in the sample.

and

- Normality of the population, or
- close to Normal distribution and larger sample size, or
- very large sample size (if Normality does not hold).

Additionally:

"Normality of the population" can be replaced by "Normality of the sample".

Testing Normality of the sample: Normal quantile plots!

Standard Normal (Gaussian) distribution

Normal (Gaussian) distribution

- e = 2.7182... Mean: μ . Standard deviation: σ .
- Area under curve is 1.
- 68–95–99.7 rule: area within 1/2/3 σ from μ .

• e = 2.7182... Mean: $\mu = 0$. Standard deviation: $\sigma = 1$.

- Area under curve is 1.
- 68–95–99.7 rule: area within 1/2/3 from 0.

http://en.wikipedia.org/wiki/File:Boxplot_vs_PDF.svg

A Standard Normal Table: *cumulative proportions* http://bcs.whfreeman.com/ips6e/content/cat_050/ips6e_table-a.pdf

• Normal distribution is a **continuous distribution**:

Probability $P(a < X \le b)$ of the random variable X having a value between a and bis equal to the area under the *probability density* curve between a and b.

• Value for b in the Standard Normal table: $P(-\infty < X \le b)$, the area between $-\infty$ and b.

A Standard Normal Table: *cumulative proportions* http://bcs.whfreeman.com/ips6e/content/cat_050/ips6e_table-a.pdf

- Probability $P(a < X \le b)$ of the random variable X having a value between a and b is the difference of the value for b and the value for a: $P(-\infty < X \le b) - P(-\infty < X \le a)$.
- Symmetry of the Standard Normal Distribution: $P(-\infty < X \le b) = P(-b \le X < +\infty).$

•
$$P(|X| \ge |a|) = 2 \cdot P(-\infty < x \le -|a|).$$

Normal calculations, inverse Normal calculations

- Calculate area right to z = 1.47.
- Find area from z = -1.82 to z = 0.93.
- What is z if left to it you find area 0.300?
- Similar questions with any other Normal distribution: normalize it $(x \rightarrow z)$ first.

Normal calculations, inverse Normal calculations

And now, you:

- For what z is 95% of area between -z and z?
- For what z is 5% of area right of z?

Transforming variables: Standardizing observations

Standardizing observations

- μ : population mean of variable X.
- σ : population standard deviation of variable X.

Cases	X	Y	 Z = X standardized
case 1	x_1		$z_1=rac{x_1-\mu}{\sigma/\sqrt{n}}$
case 2	x_2		$z_2=rac{x_2-\mu}{\sigma/\sqrt{n}}$
case i	x_i		$z_i = rac{x_i - \mu}{\sigma / \sqrt{n}}$
case n	x_n		$z_n = rac{x_n - \mu}{\sigma / \sqrt{n}}$
sample mean	\overline{x}		$\overline{z} = rac{\overline{x}-\mu}{\sigma/\sqrt{n}}$
sample std. dev.	s		

Standardizing observations

- μ: population mean of variable X.
 σ: population standard deviation of variable X.
- Transform each data point: $z_i = \frac{x_i \mu}{\sigma / \sqrt{n}}$.
- Averaging over the entire sample: $z := \overline{z} = \frac{\overline{x} \mu}{\sigma/\sqrt{n}}$.
- *z*-statistic: a new statistic that we measure on the sample.
- Sampling distribution of \overline{x} is $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$. Thus, the sampling distribution of the *z*-statistic is N(0, 1).

Toward the inference for the mean

Suppose $\mu = 3.5$ and $\sigma = 1.5$.

You draw a random sample of size n = 9, and calculate \overline{x} .

- What is the probability that $\overline{x} > 3.5$? The same as the probability that $z = \frac{\overline{x}-3.5}{1.5/\sqrt{9}} > \frac{3.5-3.5}{1.5/\sqrt{9}} = 0$.
- What is the probability that $\overline{x} < 2.5$? The same as the probability that $z < \frac{2.5-3.5}{1.5/\sqrt{9}} = -2$.
- What is the probability that $3 < \overline{x} < 4$? The same as the probability that $\frac{3-3.5}{1.5/\sqrt{9}} = -1 < z < \frac{4-3.5}{1.5/\sqrt{9}} = +1$.

Inference for the mean: z-test and p-scores

Suppose you know that $\sigma = 1.5$. You have drawn a Simple Random Sample (SRS) of size n = 9. You have got $\overline{x} = 4$.

Your null-hypothesis H_0 is that $\mu = 3.5$. Supposing H_0 is true,

- (... what is the probability of drawing a SRS with $\overline{x} = 4$?)
- ... what is the probability of drawing a SRS with an \overline{x} at least as extreme as 4 (i.e., $\overline{x} \ge 4 = \mu + 0.5$)?
- ... what is the probability of drawing a SRS with an \overline{x} at least as extreme as 4 (i.e., $\overline{x} \ge 4 = \mu + 0.5$ or $\overline{x} \le 3 = \mu 0.5$)?

Inference for the mean: confidence interval

Suppose you know that $\sigma = 1.5$. You have drawn a Simple Random Sample (SRS) of size n = 9. You have got $\overline{x} = 4$.

• What is the best guess you can give for μ ?

• Find an interval such that if μ falls within that interval, then the probability of drawing a SRS with \overline{x} not more extreme than 4 is less than p < 0.05.

Cookbook z-test and p-test with one sample

Basic question: $\mu = ?$

What is the population mean?

- Draw SRS (simple random sample) of size *n*.
- Calculate sample mean \overline{x} .
- Best guess for population mean: $\mu \approx \overline{x}$.

Confidence interval: $\mu = ?$

- Draw SRS of size n, with sample mean \overline{x} .
- Best guess for population mean: $\mu = \overline{x} \pm \text{error margin} = [\overline{x} \text{error margin}, ..., \overline{x} + \text{error margin}]$
- If $\overline{x} SE_m \le \mu \le \overline{x} + SE_m$, then it is not very improbable to draw a SRS such as ours.
- Confidence level C%: if we repeat the procedure many times, then in C% of the cases, the population mean will fall within the confidence interval.

Statistical tests: $\mu = ?$

Null hypothesis H_0 vs. alternative hypothesis H_a .

- Draw SRS of size n. Calculate statistic s.
- If H_0 is true, how improbable to draw a SRS such as ours?

 p-value: given the sampling distribution of s, and provided that H₀ is true, what is the probability of drawing a SRS with an s at least as extreme as the s of our sample?

Population σ known: *z*-test

Null hypothesis H_0 : population mean $\mu = m$. Alternative hypothesis H_a : population mean $\mu > m$. One-sided z-test:

• Calculate *z*-statistic:
$$z = \frac{\overline{x} - m}{\sigma/\sqrt{n}}$$
.

• p-value: probability that the sample's z-statistic \geq our z.

Population σ known: *z*-test

Null hypothesis H_0 : population mean $\mu = m$. Alternative hypothesis H_a : population mean $\mu < m$. One-sided z-test:

• Calculate *z*-statistic:
$$z = \frac{\overline{x} - m}{\sigma/\sqrt{n}}$$
.

• p-value: probability that the sample's z-statistic \leq our z.

Population σ known: *z*-test

Null hypothesis H_0 : population mean $\mu = m$. Alternative hypothesis H_a : population mean $\mu \neq m$. Two-sided z-test:

• Calculate z-statistic:
$$|z| = |\frac{\overline{x}-m}{\sigma/\sqrt{n}}|$$
.

• p-value: probability that the sample's |z|-statistic \geq our |z|.

Population σ known: *z*-procedure

What is the population mean μ ?

- Draw SRS of size n, with sample mean \overline{x} .
- Standard error of the mean: $SE_m = \frac{\sigma}{\sqrt{n}}$.
- z^* : critical value for *confidence level* C%.
- Best guess for the population mean: $\mu = \overline{x} \pm z^* \cdot SE_m$.
- If we repeat sampling many times, in C% of the cases $\overline{x} z^* \cdot SE_m \le \mu \le \overline{x} + z^* \cdot SE_m$.

Population σ unknown: Student's *t*-procedures

Estimate population std.dev. σ with sample std.dev. s (n-1).

	z-procedures	Student's t -procedures
	one-sided <i>z</i> -tests	one-sided <i>t</i> -tests
	two-sided <i>z</i> -tests	two-sided <i>t</i> -tests
	conf. interval with z	conf. interval with t
	population σ	sample s (with $n-1$)
Statistic	$z = \frac{x - \mu}{\sigma / \sqrt{n}}$	$t = \frac{x - \mu}{s / \sqrt{n}}$
Sampling	Normal distribution	Student's t distribution
distribution		with $df = n - 1$

Population σ unknown: *t*-test

Null hypothesis H_0 : population mean $\mu = m$. Alternative hypothesis H_a : population mean $\mu > m$. One-sided *t*-test:

• Calculate *t*-statistic:
$$t = \frac{\overline{x} - m}{s/\sqrt{n}}$$
.

• p-value: probability that the sample's t-statistic \geq our t.

Population σ unknown: *t*-test

Null hypothesis H_0 : population mean $\mu = m$. Alternative hypothesis H_a : population mean $\mu < m$. One-sided *t*-test:

• Calculate *t*-statistic:
$$t = \frac{\overline{x} - m}{s/\sqrt{n}}$$
.

• p-value: probability that the sample's t-statistic \leq our t.

Population σ unknown: *t*-test

Null hypothesis H_0 : population mean $\mu = m$. Alternative hypothesis H_a : population mean $\mu \neq m$. Two-sided *t*-test:

- Calculate *t*-statistic: $|t| = |\frac{\overline{x}-m}{s/\sqrt{n}}|$.
- p-value: probability that the sample's |t|-statistic \geq our |t|.

Population σ unknown: *t*-procedure

What is the population mean μ ?

- Draw SRS of size n, with sample mean \overline{x} .
- Standard error of the mean: $SE_m = \frac{s}{\sqrt{n}}$.
- t^* : critical value for *confidence level C*%, with df = n 1.
- Best guess for the population mean: $\mu = \overline{x} \pm t^* \cdot SE_m$.
- If we repeat sampling many times, in C% of the cases $\overline{x} t^* \cdot SE_m \le \mu \le \overline{x} + t^* \cdot SE_m$.

Normal quantile plots

Do data follow Normal distribution?

- Arrange observed data values from smallest to largest. Record what percentile a value occupies.
- Normal score: z value of a percentile in the Standard Normal distribution. The value that the corresponding percentile should have, if the distribution were really Normal.
- Plot data against corresponding Normal score.

If data follow Normal distribution, then plotted points lie close to a straight line.

Basics of inference

(Cf. Cohen's two articles.)

- H_0 (null-hypothesis): effect size ES = 0 (most often). (Cohen, 'The Earth Is Round (p < .05)': "nil hypothesis")
- H_a (alternative hypothesis): there is an effect, $ES \neq 0$. Cohen: the "nil hypothesis" is (practically) always true!
- Cf. Cohen, 'A Power Primer': *H*₁: there is a well-defined small/medium/large ES.

```
Goal: reject H_0 to argue for H_a.
```


• H_0 (null-hypothesis): effect size ES = 0 (most often). Cohen, 'The Earth Is Round (p < .05)': "nil hypothesis"

 \rightarrow which (usually) correspond to statistic = 0.

Sampling distribution of the test statistic: if H_0 is true, then test statistic is most often close to 0.

• H_a (alternative hypothesis): there is an effect, $\mathsf{ES} \neq 0$. H_1 : the effect is ES (where $\mathsf{ES} \neq 0$).

 \rightarrow which (usually) correspond to a statistic $\neq 0$.

• H_0 (null-hypothesis): effect size ES = 0 (most often). Cohen, 'The Earth Is Round (p < .05)': "nil hypothesis"

 \rightarrow which (usually) correspond to statistic = 0.

Sampling distribution of the test statistic: if H_0 is true, then test statistic is most often close to 0.

p = the probability of (obtaining a test statistic at least as extreme as the one we have just obtained based on our observations | provided that H_0 is true).

p = the probability of (obtaining a test statistic at least as extreme as the one we have just obtained based on our observations | provided that H_0 is true).

- Low *p*-value \rightarrow either H_0 is false, or we have bad luck.
- We reject H₀ with confidence level α if p < α
 the level of "bad luck" that we hope never to have.
- If statistic from data > critical value corresponding to $\alpha,$ then $p<\alpha.$

p = the probability of (obtaining a test statistic at least as extreme as the one we have just obtained based on our observations | provided that H_0 is true).

- High p-value $\rightarrow H_0$ is either true, or false (e.g., small effect size), or we have bad luck.
- We say we do not have sufficient evidence to reject H_0 .
- BIG ERROR: to conclude that H_0 is true!

Example: *z*-test

- (Suppose we know std. dev. of population is σ .)
- H_0 : the population mean is m.
- Sample of size n. Data x_1 , x_2 ,..., x_n .

Calculate sample mean \overline{x} , then z-statistic: $z := \frac{\overline{x}-m}{\sigma/\sqrt{n}}$.

- $P(z = ...|H_0)$: what is the chance of getting such a value for z, supposing H_0 is true?
- Hence, is it probable that H_0 is true?

Example: *z*-test

- (Known σ .) H_0 : the population mean is m. Sample of size n. Calculate z-statistic: $z := \frac{\overline{x}-m}{\sigma/\sqrt{n}}$.
- From the Central Limit Theorem we know that if H_0 is true, then probability of |z| > 1.96 is less then 5%.

So, critical value for C = 95% confidence level: $z^* = 1.96$. If $z > z^* = 1.96$, then reject H_0 with confidence level $\alpha = 0.05$ (two-tailed).

• Higher n or higher $\frac{\overline{x}-m}{\sigma}$ ('effect size') \rightarrow higher $z \rightarrow$ higher chance to reject H_0 , given a simple random sample (SRS).

Some of the problems with inference

(Cf. Cohen's two articles.)

- H_0 (null-hypothesis): effect size ES = 0 (most often). (Cohen, 'The Earth Is Round (p < .05)': "nil hypothesis")
- H_a (alternative hypothesis): there is an effect, $ES \neq 0$. Cohen: the "nil hypothesis" is (practically) always true!
- Cf. Cohen, 'A Power Primer': *H*₁: there is a well-defined small/medium/large ES.

```
Goal: reject H_0 to argue for H_a.
```


(Cohen, 'The Earth Is Round (p < .05)':

A correct, non-probabilistic Aristotelian modus tollens:

- If H_0 is correct, then data D cannot occur.
- *D* has, however, occurred.
- Therefore, H_0 is false.

(Cohen, 'The Earth Is Round (p < .05)':

An incorrect probabilistic "modus tollens":

- If H_0 is correct, then data D would probably not occur.
- *D* has, however, occurred.
- Therefore, H_0 is probably false.

Conditional probability

- P(A|B): probability of A, provided that we know that B is true. $P(A|B) = \frac{P(A \cap B)}{P(B)}$.
- Researcher interested in $P(H_0|D)$: the probability that H_0 is true, given observation D.
- Statistics can only provide $P(D|H_0)$: probability of obs. data (and more extreme data), given H_0 .

Bayes' theorem:

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A|B) \cdot P(B)}{P(A)}$$

(Cohen,	'The Earth	Is Round	(p <	.05)':
---------	------------	----------	------	--------

Result	normal	schizophrenic	Total
Negative test	949	1	950
Positive test	30	20	50
Total	979	21	1000

Test is "good": most normal people tested as negative, and most schizo people tested as positive. Still, a positive test does not prove schizophrenia (p = 0.60), because very low $P(H_0)$.

Type I error and Type II error

Statistical procedure	H_0 is true	$\mid H_1 \mid H_a$ is true
set at conf. level C	in reality	in reality
Effect-size is	= 0	$\neq 0$
rejects H_0	Type I error	
does not reject H_0		Type II error

 $\alpha = 1 - C = P(\text{Type I error}|H_0)$; $\beta = P(\text{Type II error}|H_a)$

What interests us: **power** of the statistical test = $1 - \beta$: the probability of rejecting H_0 if H_0 is false.

Cohen: power depends on Effect-size, n and C (or α).

SPSS lab

http://www.birot.hu/courses/2012-methodology/lab2.html

Next week

- Crosstabs and the χ^2 -test.
- Two student presentations.

See you next week!

