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Types of the explanatory variables

× type of the dependent variable

Scale of the categorical quantitative
explanatory (nominal, ordinal) (interval, ratio,

variable(s) is logarithmic)
Dependent variable crosstabs logistic regression

with categorical scale
Dependent variable t-test, correlation,

with quantitative scale ANOVA regression
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Student projects:

Motivation, background: anecdotal evidence, past data.

Precise research question, operationalized.

Units, variables, population, sample.
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Sampling distribution of the mean:

The Central Limit Theorem

NB: Sampling distribution of other statistics discussed later.
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Central Limit Theorem

Four steps three weeks ago (note colours: red, black, green):

1. An ugly mathematical function with two parameters (µ and σ):

y = N(x|µ, σ) =
1

σ
√
2π
e
−1
2

(
x−µ
σ

)2

2. Normal distribution: a distribution that follows such an ugly function.

3. A mathematician will tell you that

Mean of such a distribution (µ) = first parameter of the function (µ).

Std. dev. of such a distribution (σ) = 2nd param. of the function (σ).

4. Central Limit Theorem (next slide): µ = µ and σ = σ/
√
n.
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Central Limit Theorem

• Given population with any distribution.
Population mean is µ. Population standard deviation is σ.

• Draw a simple random sample (SRS) of size n.
Calculate sample mean x̄. Sampling distribution of the
mean: repeat sampling + averaging many times.

• Central Limit Theorem:

Sampling distribution of x̄ (approximately) follows a Normal

distribution: N
(
x|µ = µ = µ, σ = σ = σ√

n

)
.
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Central Limit Theorem

• Central Limit Theorem (version 1):

sampling distribution of x̄ is Normal: N
(
µ, σ√

n

)
.

• This theorem is only approximately true if original population
is not Normal, but n is large. (Not true if n is small.)

• Central Limit Theorem (version 2):

The sum (and, hence, the mean) of independent random
variables X1, X2,...,Xn approaches (‘converges’ to) a
Normal distribution, as n grows larger.
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• Therefore: many statistical procedures require:

– Independence of the cases in the sample.

and

– Normality of the population, or
– close to Normal distribution and larger sample size, or
– very large sample size (if Normality does not hold).

Additionally:

“Normality of the population” can be replaced by
“Normality of the sample”.

Testing Normality of the sample: Normal quantile plots!

Tamás Biró, UvA 8



Standard Normal (Gaussian) distribution
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Normal (Gaussian) distribution

N(x|µ, σ) = 1
σ
√
2π
e−

1
2(
x−µ
σ )

2

• e = 2.7182.... Mean: µ. Standard deviation: σ.

• Area under curve is 1.

• 68–95–99.7 rule: area within 1/2/3 σ from µ.
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Standard Normal distribution

N(x|µ, σ) = 1√
2π
e−

x2

2

• e = 2.7182.... Mean: µ = 0. Standard deviation: σ = 1.

• Area under curve is 1.

• 68–95–99.7 rule: area within 1/2/3 from 0.
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Standard Normal distribution

http://en.wikipedia.org/wiki/File:Boxplot_vs_PDF.svg
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Standard Normal distribution

A Standard Normal Table: cumulative proportions
http://bcs.whfreeman.com/ips6e/content/cat_050/ips6e_table-a.pdf

• Normal distribution is a continuous distribution:

Probability P (a < X ≤ b) of the random variable X having
a value between a and b
is equal to the area under the probability density curve
between a and b.

• Value for b in the Standard Normal table: P (−∞ < X ≤ b),
the area between −∞ and b.
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Standard Normal distribution

A Standard Normal Table: cumulative proportions
http://bcs.whfreeman.com/ips6e/content/cat_050/ips6e_table-a.pdf

• Probability P (a < X ≤ b) of the random variable X having
a value between a and b is the difference of the value for b
and the value for a: P (−∞ < X ≤ b)− P (−∞ < X ≤ a).

• Symmetry of the Standard Normal Distribution:
P (−∞ < X ≤ b) = P (−b ≤ X < +∞).

• P (|X| ≥ |a|) = 2 · P (−∞ < x ≤ −|a|).
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Normal calculations,

inverse Normal calculations

• Calculate area right to z = 1.47.

• Find area from z = −1.82 to z = 0.93.

• What is z if left to it you find area 0.300?

• Similar questions with any other Normal distribution:
normalize it (x→ z) first.
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Normal calculations,

inverse Normal calculations

And now, you:

• For what z is 95% of area between −z and z?

• For what z is 5% of area right of z?
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Transforming variables:

Standardizing observations

Tamás Biró, UvA 17



Standardizing observations

µ: population mean of variable X.
σ: population standard deviation of variable X.

Cases X Y ... Z = X standardized

case 1 x1 z1 =
x1−µ
σ/
√
n

case 2 x2 z2 =
x2−µ
σ/
√
n

...

case i xi zi =
xi−µ
σ/
√
n

...

case n xn zn = xn−µ
σ/
√
n

sample mean x z = x−µ
σ/
√
n

sample std. dev. s
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Standardizing observations

• µ: population mean of variable X.
σ: population standard deviation of variable X.

• Transform each data point: zi = xi−µ
σ/
√
n

.

• Averaging over the entire sample: z := z = x−µ
σ/
√
n

.

• z-statistic: a new statistic that we measure on the sample.

• Sampling distribution of x is N
(
µ, σ√

n

)
.

Thus, the sampling distribution of the z-statistic is N(0, 1).
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Toward the inference for the mean

Suppose µ = 3.5 and σ = 1.5.
You draw a random sample of size n = 9, and calculate x.

• What is the probability that x > 3.5?
The same as the probability that z = x−3.5

1.5/
√
9
> 3.5−3.5

1.5/
√
9

= 0.

• What is the probability that x < 2.5?
The same as the probability that z < 2.5−3.5

1.5/
√
9

= −2.

• What is the probability that 3 < x < 4? The same as the
probability that 3−3.5

1.5/
√
9

= −1 < z < 4−3.5
1.5/
√
9

= +1.
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Inference for the mean: z-test and p-scores

Suppose you know that σ = 1.5. You have drawn a Simple
Random Sample (SRS) of size n = 9. You have got x = 4.

Your null-hypothesis H0 is that µ = 3.5. Supposing H0 is true,

• (... what is the probability of drawing a SRS with x = 4?)

• ... what is the probability of drawing a SRS with an x at
least as extreme as 4 (i.e., x ≥ 4 = µ+ 0.5)?

• ... what is the probability of drawing a SRS with an x at least
as extreme as 4 (i.e., x ≥ 4 = µ+ 0.5 or x ≤ 3 = µ− 0.5)?
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Inference for the mean: confidence interval

Suppose you know that σ = 1.5. You have drawn a Simple
Random Sample (SRS) of size n = 9. You have got x = 4.

• What is the best guess you can give for µ?

• Find an interval such that
if µ falls within that interval,
then the probability of drawing a SRS

with x not more extreme than 4
is less than p < 0.05.

Tamás Biró, UvA 22



Cookbook z-test and p-test

with one sample
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Basic question: µ =?

What is the population mean?

• Draw SRS (simple random sample) of size n.

• Calculate sample mean x.

• Best guess for population mean: µ ≈ x.
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Confidence interval: µ =?

• Draw SRS of size n, with sample mean x.

• Best guess for population mean: µ = x ± error margin =
= [x− error margin, ..., x+ error margin]

• If x− SEm ≤ µ ≤ x+ SEm,
then it is not very improbable to draw a SRS such as ours.

• Confidence level C%: if we repeat the procedure many
times, then in C% of the cases, the population mean will
fall within the confidence interval.
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Statistical tests: µ =?

Null hypothesis H0 vs. alternative hypothesis Ha.

• Draw SRS of size n. Calculate statistic s.

• If H0 is true, how improbable to draw a SRS such as ours?

• p-value:
given the sampling distribution of s, and
provided that H0 is true,
what is the probability of drawing a SRS
with an s at least as extreme as the s of our sample?
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Population σ known: z-test

Null hypothesis H0: population mean µ = m.

Alternative hypothesis Ha: population mean µ > m.

One-sided z-test:

• Calculate z-statistic: z = x−m
σ/
√
n

.

• p-value: probability that the sample’s z-statistic ≥ our z.
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Population σ known: z-test

Null hypothesis H0: population mean µ = m.

Alternative hypothesis Ha: population mean µ < m.

One-sided z-test:

• Calculate z-statistic: z = x−m
σ/
√
n

.

• p-value: probability that the sample’s z-statistic ≤ our z.
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Population σ known: z-test

Null hypothesis H0: population mean µ = m.

Alternative hypothesis Ha: population mean µ 6= m.

Two-sided z-test:

• Calculate z-statistic: |z| = | x−m
σ/
√
n
|.

• p-value: probability that the sample’s |z|-statistic ≥ our |z|.
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Population σ known: z-procedure

What is the population mean µ?

• Draw SRS of size n, with sample mean x.

• Standard error of the mean: SEm = σ√
n

.

• z∗: critical value for confidence level C%.

• Best guess for the population mean: µ = x± z∗ · SEm.

• If we repeat sampling many times, in C% of the cases
x− z∗ · SEm ≤ µ ≤ x+ z∗ · SEm.
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Population σ unknown: Student’s t-procedures

Estimate population std.dev. σ with sample std.dev. s (n−1).

z-procedures Student's t-procedures
one-sided z-tests one-sided t-tests
two-sided z-tests two-sided t-tests
conf. interval with z conf. interval with t
population σ sample s (with n− 1)

Statistic z = x−µ
σ/
√
n

t = x−µ
s/
√
n

Sampling Normal distribution Student’s t distribution
distribution with df = n− 1
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Population σ unknown: t-test

Null hypothesis H0: population mean µ = m.

Alternative hypothesis Ha: population mean µ > m.

One-sided t-test:

• Calculate t-statistic: t = x−m
s/
√
n

.

• p-value: probability that the sample’s t-statistic ≥ our t.
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Population σ unknown: t-test

Null hypothesis H0: population mean µ = m.

Alternative hypothesis Ha: population mean µ < m.

One-sided t-test:

• Calculate t-statistic: t = x−m
s/
√
n

.

• p-value: probability that the sample’s t-statistic ≤ our t.
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Population σ unknown: t-test

Null hypothesis H0: population mean µ = m.

Alternative hypothesis Ha: population mean µ 6= m.

Two-sided t-test:

• Calculate t-statistic: |t| = |x−m
s/
√
n
|.

• p-value: probability that the sample’s |t|-statistic ≥ our |t|.
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Population σ unknown: t-procedure

What is the population mean µ?

• Draw SRS of size n, with sample mean x.

• Standard error of the mean: SEm = s√
n

.

• t∗: critical value for confidence level C%, with df = n− 1.

• Best guess for the population mean: µ = x± t∗ · SEm.

• If we repeat sampling many times, in C% of the cases
x− t∗ · SEm ≤ µ ≤ x+ t∗ · SEm.
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Normal quantile plots

Do data follow Normal distribution?

• Arrange observed data values from smallest to largest.
Record what percentile a value occupies.

• Normal score: z value of a percentile in the Standard Normal
distribution. The value that the corresponding percentile
should have, if the distribution were really Normal.

• Plot data against corresponding Normal score.

If data follow Normal distribution, then plotted points lie close
to a straight line.
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Basics of inference

(Cf. Cohen’s two articles.)
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H0, Ha and H1

• H0 (null-hypothesis): effect size ES = 0 (most often).

(Cohen, ‘The Earth Is Round (p < .05)’: “nil hypothesis”)

• Ha (alternative hypothesis): there is an effect, ES 6= 0.

Cohen: the “nil hypothesis” is (practically) always true!

• Cf. Cohen, ‘A Power Primer’:

H1: there is a well-defined small/medium/large ES.

Goal: reject H0 to argue for Ha.
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The (in)famous p-value

• H0 (null-hypothesis): effect size ES = 0 (most often).
Cohen, ‘The Earth Is Round (p < .05)’: “nil hypothesis”

→ which (usually) correspond to statistic = 0.

Sampling distribution of the test statistic:
if H0 is true, then test statistic is most often close to 0.

• Ha (alternative hypothesis): there is an effect, ES 6= 0.
H1: the effect is ES (where ES 6= 0).

→ which (usually) correspond to a statistic 6= 0.

Tamás Biró, UvA 39



The (in)famous p-value

• H0 (null-hypothesis): effect size ES = 0 (most often).
Cohen, ‘The Earth Is Round (p < .05)’: “nil hypothesis”

→ which (usually) correspond to statistic = 0.

Sampling distribution of the test statistic:
if H0 is true, then test statistic is most often close to 0.

p = the probability of ( obtaining a test statistic at least
as extreme as the one we have just obtained based on our
observations | provided that H0 is true ).
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The (in)famous p-value

p = the probability of ( obtaining a test statistic at least
as extreme as the one we have just obtained based on our
observations | provided that H0 is true ).

• Low p-value → either H0 is false, or we have bad luck.

• We reject H0 with confidence level α if p < α

— the level of “bad luck” that we hope never to have.

• If statistic from data > critical value corresponding to α,
then p < α.
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The (in)famous p-value

p = the probability of ( obtaining a test statistic at least
as extreme as the one we have just obtained based on our
observations | provided that H0 is true ).

• High p-value → H0 is either true, or false (e.g., small effect
size), or we have bad luck.

• We say we do not have sufficient evidence to reject H0.

• BIG ERROR: to conclude that H0 is true!
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Example: z-test

• (Suppose we know std. dev. of population is σ.)

• H0: the population mean is m.

• Sample of size n. Data x1, x2,..., xn.

Calculate sample mean x, then z-statistic: z := x−m
σ/
√
n

.

• P (z = ...|H0): what is the chance of getting such a value
for z, supposing H0 is true?

• Hence, is it probable that H0 is true?
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Example: z-test

• (Known σ.) H0: the population mean is m.
Sample of size n. Calculate z-statistic: z := x−m

σ/
√
n

.

• From the Central Limit Theorem we know that

if H0 is true, then probability of |z| > 1.96 is less then 5%.

So, critical value for C = 95% confidence level: z∗ = 1.96.
If z > z∗ = 1.96, then reject H0 with confidence level
α = 0.05 (two-tailed).

• Higher n or higher x−m
σ (‘effect size’) → higher z → higher

chance to reject H0, given a simple random sample (SRS).
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Some of the problems with inference

(Cf. Cohen’s two articles.)
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H0, Ha and H1

• H0 (null-hypothesis): effect size ES = 0 (most often).

(Cohen, ‘The Earth Is Round (p < .05)’: “nil hypothesis”)

• Ha (alternative hypothesis): there is an effect, ES 6= 0.

Cohen: the “nil hypothesis” is (practically) always true!

• Cf. Cohen, ‘A Power Primer’:

H1: there is a well-defined small/medium/large ES.

Goal: reject H0 to argue for Ha.
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H0, Ha and H1

(Cohen, ‘The Earth Is Round (p < .05)’:

A correct, non-probabilistic Aristotelian modus tollens:

• If H0 is correct, then data D cannot occur.

• D has, however, occurred.

• Therefore, H0 is false.
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H0, Ha and H1

(Cohen, ‘The Earth Is Round (p < .05)’:

An incorrect probabilistic “modus tollens”:

• If H0 is correct, then data D would probably not occur.

• D has, however, occurred.

• Therefore, H0 is probably false.
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Conditional probability

• P (A|B): probability of A, provided that we know that B is

true. P (A|B) = P (A∩B)
P (B) .

• Researcher interested in P (H0|D):
the probability that H0 is true, given observation D.

• Statistics can only provide P (D|H0):
probability of obs. data (and more extreme data), given H0.

Bayes’ theorem:

P (B|A) =
P (A ∩ B)

P (A)
=
P (A|B) · P (B)

P (A)
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H0, Ha and H1

(Cohen, ‘The Earth Is Round (p < .05)’:

Result normal schizophrenic Total

Negative test 949 1 950
Positive test 30 20 50

Total 979 21 1000

Test is “good”: most normal people tested as negative, and
most schizo people tested as positive. Still, a positive test does
not prove schizophrenia (p = 0.60), because very low P (H0).

Tamás Biró, UvA 50



Type I error and Type II error

Statistical procedure H0 is true H1 / Ha is true
set at conf. level C in reality in reality

Effect-size is = 0 6= 0

rejects H0 Type I error
does not reject H0 Type II error

α = 1−C = P (Type I error|H0) ; β = P (Type II error|Ha)

What interests us: power of the statistical test = 1− β:
the probability of rejecting H0 if H0 is false.

Cohen: power depends on Effect-size, n and C (or α).
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SPSS lab

http://www.birot.hu/courses/2012-methodology/lab2.html
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http://www.birot.hu/courses/2012-methodology/lab2.html


Next week

• Crosstabs and the χ2-test.

• Two student presentations.
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See you next week!
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