Introduction to Phonological Analysis

LING 232A/632A, Fall 2013 *Tamás Biró*

Theme: Basics of phonology: phonemes, allophones and segments (continued). Based on: Hayes, 2009, chapter 3.

Question: what do you find on the first pages of an extremely traditional grammar?

1. Structuralist phonology	vs.	Early generative phonology
Sapir (1925): Sound patterns in language		Chomsky, Noam, and Morris Halle (1968): The Sound Pattern of English
Starting point: language (etc.) is a system (Saussure, 1 a function of social convention => a social phenomenon + human behavior is a black box (behav => language is a (static) structure	916) s viorism)	Starting point: language is a <i>product</i> of the mind/brain a function of neurological constraints => a biological/psychological phenomenon + the black box must be opened => language is a computational system
/ <u>Phoneme</u> / ≠ default or elsewhere [alla because phonemes and allophones represent tw different levels of abstraction for descr the sound inventory of a specific langu	ophone], wo ibing age.	Same <u>segment</u> in /UF/ and [SF], if unchanged. Namely, underlying segments either rewritten (if rule applies) or retained (in elsewhere condition). Different sound inventories on U and S levels.
 Methodology: Fieldwork: collect data. Search for minimal pairs and complementary distribution. (is Clark Kent Superman?) 		Methodology: - Fieldwork: collect data. But also: typology. - Define model = representations + mappings: how does the UR <u>maps</u> onto SR?
 In theory, works automatically, but in practice, many questions to solved intuitively (e.g., no minim by coincidens, problems in Haye 	to be al pairs s 3.4).	Model covers data: observational adequacy Model correctly generalizes: descriptive adq. Model explains lg. typology: explanatory adq. aim: internal structure of mind/brain

2. Some useful notions introduced by the structuralists:

natural classes features

3. The cognitive turn: biological and computational aspect.

Why introduce formal system?

- after practice, easier to work with (beyond a certain level of complexity) than with plain text;
- more efficient way of communication between trained scientists;
- cracking the software code in the mind / writing code for artificial intelligence.

Programming: data structure + commands + general architecture.

Cf. two major components of a phonological theory:

- 1. Representation: "grasp it: this is what it is." E.g., segments; features of natural classes; syllable constituents; autosegmental tiers.
- Processes (mappings): "do something with it: this is what it becomes." In many contemporary theories: *underlying form → surface form* (rewrite rules in SPE phonology; Optimality Theory filters). Alternative: declarative approach: restrictions on what *surface form* can look like.

Underlying form/representation \rightarrow surface form/representation. Cf. * form in proto-language > form in documented language.

<u>Transformational</u> approach with <u>mappings</u> and (rewrite) rules, focusing on <u>processes</u> vs. <u>declarative</u> approach with <u>constraints</u>, focusing on <u>representations</u>.

(NB: OT is tricky...)

Q: Are these rules and constraints just a fancy way to describe observed facts? Or do they explain facts?

4. A 2-year-old Hungarian child arriving from the Netherlands to the US...

Reading for Tuesday: Hayes, chapter 4.

Homework:

- 0. Think about all other exercises in sections 1-3, even if you do not have to submit them.
- 1. Hayes, p. 67, exercise 3 on Japanese. Present your phonemic analysis of the 5 nasals. Make sure you include: (a) a statement of what the phonemes and their allophones are; (b) a statement in words of the generalization governing the distribution of allophones, and (c) the rule or rules formalizing the alternations. Additionally,
- (regarding question d) also try to formulate constraint(s), as an alternative to the rule(s), and
- provide the derivations of four words out of 3, 8, 22, 27, 32, 36, 38, 44.
- 2. Create an inventory of the sounds in 'your' language. Describe them using the IPA-symbols. Create the inventory of the phonemes in 'your' language. Search for minimal pairs, or demonstrate complementary distributions, and formulate allophony rules.