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Practical matters

• Sections

• Post-readings: JM Chapters 2, 3.

• Pre-readings: JM 4.1-4.3 (then: 5.1-5.3).

• Python: this week H2, next week chapters 3 and 4
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Today

• On linguistics:
Morphology from an NLP perspective

• On computational skills:
From mathematical abstraction to pseudo-codes

• I suppose the details in JM can be understood and learned
based on the lectures. Please let me know asap if this is not
the case.
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Morphology
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meg szent ség telen ı́t het etlen ei tek ben

PERF holy ness un turn into able un PLUR your(pl) in

‘in your (pl.) things that cannot be desecrated’
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Levels of linguistics

• Phonetics: sounds (articulation, acoustics, perception)

• Phonology: the sound system of a language

• Morphology: words

• Syntax: sentences

• Discourse: texts

+ Semantics: meanings on all levels
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Morphology

• Derivational morphology: word formation.

• Inflectional morphology: rendering words syntactically
appropriate to their context:

– Verbal morphology: e.g., tense and aspect; number-person-gender

agreement

– Nominal morphology: plural formation, case, etc.

– Etc.
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Morphology

• Morpheme: smallest linguistic unit that bears a meaning

– root (±aka stem) vs. affix
– free morphemes vs. bound morphemes

• Word: ???

• Morphological processes:

– Affixation: prefixes, suffixes, infixes, circumfixes

– Conversion (aka zero affixation)

– Reduplication (partial and total)

– Compounding
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Morphology in NLP

Based on phonological segments (phonemes, allophones, IPA-
characters) vs. based on orthography?

• Preprocessing of texts:

– Lemmatization: undo inflectional morphology (only)

Lemma: aka base form / dictionary form / citation form.

– Stemming: find the root/stem (with a crude heuristics).

• Text generation: step subsequent to syntax.

• Spell checkers & co.

• Good approximation provided by FSA/regex.
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FST in NLP: an example
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Transducers and finite-state morphology
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Automata and transducers

Automaton:

defines a set

Transducer:

defines a mapping

in case of “text-like” information:

• Input: string ∈ Σ∗

• Output: accept or reject.

• Input: string ∈ Σ∗

• Output: string ∈ ∆∗
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Various machineries

The sets of formal languages accepted / generated by

are the same! The regular languages.
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Various machineries

. . . various perspectives:

• A formal grammar generates the strings of a language.

• A regular expression matches the strings of a language.

• An automaton accepts the strings in a language.

• A Markov model emits the strings of a language.
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Deterministic finite state automaton

• Q finite set of states

• Σ (input) alphabet

• q0 ∈ Q start state

• F ⊆ Q set of final states (can be empty)

• δ(q, i) transition function Q× Σ ∪ {ε} → Q

Tamás Biró, Yale U., Language and Computation p. 15



Deterministic finite state transducers

• Q finite set of states

• Σ input alphabet and ∆ output alphabet

• q0 ∈ Q start state

• F ⊆ Q set of final states (can be empty)

• δ(q, i) transition function Q× Σ ∪ {ε} → Q

• σ(q, i) output function Q× Σ ∪ {ε} → ∆ ∪ {ε}
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Deterministic finite state automaton

Automaton accepts input string i = i0i1 . . . in−1 iff

there is a series of states q0, q1, . . . qn−1, qn (∈ Qn+1) such that

1. qj+1 = δ(qj, ij) for all j < n, and

2. q0 is the start state, and

3. qn ∈ F is a final state.

NB: ij can also be ε, beside the letters of i.
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Non-deterministic finite state automaton

Automaton accepts input string i = i0i1 . . . in−1 iff

there is a series of states q0, q1, . . . qn−1, qn (∈ Qn+1) such that

1. qj+1 ∈ δ(qj, ij) for all j < n, and

2. q0 is the start state, and

3. qn ∈ F is a final state.

NB: ij can also be ε, beside the letters of i.
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Deterministic finite state transducer

Transducer maps input string i = i0i1 . . . in−1
. onto output string o = o0o1 . . . on−1 iff

there is a series of states q0, q1, . . . qn−1, qn (∈ Qn+1) such that

1. δ(qj, ij) = qj+1 for all j < n, and

2. σ(qj, ij) = oj for all j < n, and

3. q0 is the start state, and 4. qn ∈ F is a final state.

NB: ij can also be ε beside the letters of i,
and oj can also be ε beside the letters of o.
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Finite state automata and transducers

What to do when in state q and reading character i?

The transition function δ(q, i) — variation on a topic:

• Deterministic FSA: δ(q, i) ∈ Q

• Non-deterministic FSA: δ(q, i) ∈ P(Q)

• Deterministic FST: δ(q, i) ∈ (Q×∆)

• Non-deterministic FST: δ(q, i) ∈ P(Q×∆)
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Finite state automata and transducers

What to do when in state q and reading character i?

The transition function δ(q, i) — variation on a topic:

• Deterministic FSA: δ(q, i) ∈ Q

• Non-deterministic FSA: δ(q, i) ∈ P(Q)

• Markov chain: δ(q) is a probability distribution on Q

• Markov model: δ(q) is a probability distribution on Q×∆
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On pseudo-codes

• The lingo when speaking about algorithms

• Half way between human language and programming
languages

• Relatively straightforward to translate to your favorite
programing language

• Focus on important aspects, skip over details
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Running a deterministic FSA
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Running a non-deterministic FSA

Q: How to have a deterministic computer simulate a non-
deterministic automaton?

A: Replace states with set of states
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See you on Thursday!
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