
Language and Computation

week 3, Tuesday, January 28, 2014

Tamás Biró
Yale University

tamas.biro@yale.edu

http://www.birot.hu/courses/2014-LC/

Tamás Biró, Yale U., Language and Computation p. 1

http://www.birot.hu/courses/2014-LC/


Practical matters

• Sections

• Post-readings: JM Chapters 2, 3.

• Pre-readings: JM 4.1-4.3 (then: 5.1-5.3).

• Python: this week H2, next week chapters 3 and 4

Tamás Biró, Yale U., Language and Computation p. 2



Today

• On linguistics:
Morphology from an NLP perspective

• On computational skills:
From mathematical abstraction to pseudo-codes

• I suppose the details in JM can be understood and learned
based on the lectures. Please let me know asap if this is not
the case.

Tamás Biró, Yale U., Language and Computation p. 3



Morphology

Tamás Biró, Yale U., Language and Computation p. 4



meg szent ség telen ı́t het etlen ei tek ben

PERF holy ness un turn into able un PLUR your(pl) in

‘in your (pl.) things that cannot be desecrated’

Tamás Biró, Yale U., Language and Computation p. 5



Levels of linguistics

• Phonetics: sounds (articulation, acoustics, perception)

• Phonology: the sound system of a language

• Morphology: words

• Syntax: sentences

• Discourse: texts

+ Semantics: meanings on all levels

Tamás Biró, Yale U., Language and Computation p. 6



Morphology

• Derivational morphology: word formation.

• Inflectional morphology: rendering words syntactically
appropriate to their context:

– Verbal morphology: e.g., tense and aspect; number-person-gender

agreement

– Nominal morphology: plural formation, case, etc.

– Etc.

Tamás Biró, Yale U., Language and Computation p. 7



Morphology

• Morpheme: smallest linguistic unit that bears a meaning

– root (±aka stem) vs. affix
– free morphemes vs. bound morphemes

• Word: ???

• Morphological processes:

– Affixation: prefixes, suffixes, infixes, circumfixes

– Conversion (aka zero affixation)

– Reduplication (partial and total)

– Compounding

Tamás Biró, Yale U., Language and Computation p. 8



Morphology in NLP

Based on phonological segments (phonemes, allophones, IPA-
characters) vs. based on orthography?

• Preprocessing of texts:

– Lemmatization: undo inflectional morphology (only)

Lemma: aka base form / dictionary form / citation form.

– Stemming: find the root/stem (with a crude heuristics).

• Text generation: step subsequent to syntax.

• Spell checkers & co.

• Good approximation provided by FSA/regex.

Tamás Biró, Yale U., Language and Computation p. 9



FST in NLP: an example

Tamás Biró, Yale U., Language and Computation p. 10



Transducers and finite-state morphology

Tamás Biró, Yale U., Language and Computation p. 11



Automata and transducers

Automaton:

defines a set

Transducer:

defines a mapping

in case of “text-like” information:

• Input: string ∈ Σ∗

• Output: accept or reject.

• Input: string ∈ Σ∗

• Output: string ∈ ∆∗

Tamás Biró, Yale U., Language and Computation p. 12



Various machineries

The sets of formal languages accepted / generated by

are the same! The regular languages.

Tamás Biró, Yale U., Language and Computation p. 13



Various machineries

. . . various perspectives:

• A formal grammar generates the strings of a language.

• A regular expression matches the strings of a language.

• An automaton accepts the strings in a language.

• A Markov model emits the strings of a language.

Tamás Biró, Yale U., Language and Computation p. 14



Deterministic finite state automaton

• Q finite set of states

• Σ (input) alphabet

• q0 ∈ Q start state

• F ⊆ Q set of final states (can be empty)

• δ(q, i) transition function Q× Σ ∪ {ε} → Q

Tamás Biró, Yale U., Language and Computation p. 15



Deterministic finite state transducers

• Q finite set of states

• Σ input alphabet and ∆ output alphabet

• q0 ∈ Q start state

• F ⊆ Q set of final states (can be empty)

• δ(q, i) transition function Q× Σ ∪ {ε} → Q

• σ(q, i) output function Q× Σ ∪ {ε} → ∆ ∪ {ε}

Tamás Biró, Yale U., Language and Computation p. 16



Deterministic finite state automaton

Automaton accepts input string i = i0i1 . . . in−1 iff

there is a series of states q0, q1, . . . qn−1, qn (∈ Qn+1) such that

1. qj+1 = δ(qj, ij) for all j < n, and

2. q0 is the start state, and

3. qn ∈ F is a final state.

NB: ij can also be ε, beside the letters of i.

Tamás Biró, Yale U., Language and Computation p. 17



Non-deterministic finite state automaton

Automaton accepts input string i = i0i1 . . . in−1 iff

there is a series of states q0, q1, . . . qn−1, qn (∈ Qn+1) such that

1. qj+1 ∈ δ(qj, ij) for all j < n, and

2. q0 is the start state, and

3. qn ∈ F is a final state.

NB: ij can also be ε, beside the letters of i.

Tamás Biró, Yale U., Language and Computation p. 18



Deterministic finite state transducer

Transducer maps input string i = i0i1 . . . in−1
. onto output string o = o0o1 . . . on−1 iff

there is a series of states q0, q1, . . . qn−1, qn (∈ Qn+1) such that

1. δ(qj, ij) = qj+1 for all j < n, and

2. σ(qj, ij) = oj for all j < n, and

3. q0 is the start state, and 4. qn ∈ F is a final state.

NB: ij can also be ε beside the letters of i,
and oj can also be ε beside the letters of o.

Tamás Biró, Yale U., Language and Computation p. 19



Finite state automata and transducers

What to do when in state q and reading character i?

The transition function δ(q, i) — variation on a topic:

• Deterministic FSA: δ(q, i) ∈ Q

• Non-deterministic FSA: δ(q, i) ∈ P(Q)

• Deterministic FST: δ(q, i) ∈ (Q×∆)

• Non-deterministic FST: δ(q, i) ∈ P(Q×∆)

Tamás Biró, Yale U., Language and Computation p. 20



Finite state automata and transducers

What to do when in state q and reading character i?

The transition function δ(q, i) — variation on a topic:

• Deterministic FSA: δ(q, i) ∈ Q

• Non-deterministic FSA: δ(q, i) ∈ P(Q)

• Markov chain: δ(q) is a probability distribution on Q

• Markov model: δ(q) is a probability distribution on Q×∆

Tamás Biró, Yale U., Language and Computation p. 21



On pseudo-codes

• The lingo when speaking about algorithms

• Half way between human language and programming
languages

• Relatively straightforward to translate to your favorite
programing language

• Focus on important aspects, skip over details

Tamás Biró, Yale U., Language and Computation p. 22



Running a deterministic FSA

Tamás Biró, Yale U., Language and Computation p. 23



Running a non-deterministic FSA

Q: How to have a deterministic computer simulate a non-
deterministic automaton?

A: Replace states with set of states

Tamás Biró, Yale U., Language and Computation p. 24



Tamás Biró, Yale U., Language and Computation p. 25



Tamás Biró, Yale U., Language and Computation p. 26



See you on Thursday!

Tamás Biró, Yale U., Language and Computation p. 27


