Language and Computation
week 3, Thursday, January 30, 2014

Tamas Biro
Yale University
tamas.biro@yale.edu
http://www.birot.hu/courses/2014-LC/

Tamas Bird, Yale U., Language and Computation

http://www.birot.hu/courses/2014-LC/

Today:

e Understand an algorithm / pseudo-code
e Examples of and issues with algorithms
e Implementing a non-deterministic FSA as a search

e Edit distance as dynamic programming

Tamas Bird, Yale U., Language and Computation

On pseudo-codes

e The lingo when speaking about algorithms

e Half way between human language and programming
languages

e Relatively straightforward to translate to your favorite
programming language

e Focus on important aspects, skip over details

Tamas Biré, Yale U., Language and Computation

Running a deterministic FSA

A massively distributed, non-silicon-based implementation:

e Each state = one student

e Each student with detailed instructions

Tamas Bird, Yale U., Language and Computation

Running a deterministic FSA

function D-RECOGNIZE(fape, machine) returns accept or reject

index — Beginning of tape
current-state — Initial state of machine
loop
if End of mput has been reached then
if current-state 1s an accept state then
return accept
else
return reject
elsif frransition-table[current-state,tape[index]] 1s empty then
return reject
else
current-state — transition-table[curreni-state,tape[index]]
index — index + 1
end

Tamas Bird, Yale U., Language and Computation

"%

)

Non-determinism

Two sources:

e Two arcs with the same symbol

® c-transitions.

Tamas Bird, Yale U., Language and Computation

i
=

p.

Running a non-deterministic FSA

Q: How to have a deterministic computer simulate a non-
deterministic automaton?

e Transform ND-FSA into D-FSA (by replacing states with set
of states)

e look-ahead
e parallelism

e backup: maintaining an agenda, that is, a set of all currently
unexplored choices (search states: node-position pairs).

Tamas Bird, Yale U., Language and Computation

function ND-RECOGNIZE(fape, machine) returns accept or reject

agenda «— {(Initial state of machine, beginming of tape) }
current-search-state — NEXT(agenda)
loop
if ACCEPT-STATE Mcurrent-search-state) returns true then
refurn accept
else
agenda+— agenda || GENERATE-NEW-STATES(current-search-state)
if agenda 1s empty then
return reject
else
current-search-state — NEXT(agenda)
end

function GENERATE-NEW-STATES(current-state) returns a set of search-states

current-node < the node the current search-state 15 1
index+— the point on the tape the current search-state 1s looking at
return a list of search states from transition table as follows:
(transition-table[curreni-node,€], index)
Il
(transition-table[current-node, tape[index]], index + 1)

T-fmnction ACCEPT-ATATE (serteliniiaia) yeturns true or false

ﬂ?ll'l'ﬂ]lf,ﬂﬁa"}ﬂa’— 1‘111:! 'l"||"lJ"‘1rZ| Q.I:hi'.i'i‘ﬂh,tfﬂ'rr:l ;Q 1-1"|

iy FEFHE -Gl LA e Y LN E A L [HS"EHHQ}
end

function GENERATE-NEW-STATES(current-state) returns a set of search-states

current-node «— the node the current search-state 15
index +— the point on the tape the current search-state 1s looking at
return a list of search states from transition table as follows:
(transition-table[current-node, €], index)
Il
(fransition-table[current-node, tape{index|], index + I)

function ACCEPT-STATE Y(search-state) returns true or false

current-node +— the node search-state 15 mn
index +— the point on the tape search-state 1s looking at
if index 1s at the end of the tape and current-node 1s an accept state of machine
then
return true
else
return false

Tamas Bird, Yale U., Language and Computation

p.

State-space search

e Depth-first (LIFO)

e Breadth-first (FIFO)

Tamas Bird, Yale U., Language and Computation

. 10

See you next week!

Tamas Bird, Yale U., Language and Computation

.11

