Language and Computation week 4, Tuesday, February 4, 2014

Tamás Biró Yale University tamas.biro@yale.edu http://www.birot.hu/courses/2014-LC/

Practical matters

- **Post-reading:** JM 3, 23.1.1, 4.1-4.3
- **Pre-reading:** JM 5.1-5.4 (eventually: chapter 7)
- **Python:** this week H 3 and 4; next week H 5.
- Section: chance to practice reading pseudo-codes.

Today

- A short note on FS phonology and morphology (more to come in March)
- Minimal Edit Distance
- Document classification with cosine metrics
- Intro to machine learning

Finite-state phonology and morphology

FSTs and Regular Relations

Given a finite input alphabet Σ and a finite output alphabet Δ : Let relation \mathcal{R} be $\subseteq (\Sigma^* \times \Delta^*)$

- FST as **translator**: maps (some) strings $\in \Sigma^*$ onto strings $\in \Delta^*$.
- FST as **recognizer**: accepts string pairs $\in \mathcal{R}$, rejects if $\notin \mathcal{R}$.
- FST as generator: outputs string pairs $\in \mathcal{R}$, does not produce if $\notin \mathcal{R}$.
- FST as **set relater**: defines relation \mathcal{R} .

(Almost FSA over alphabet $\{(a:b)|a \in \Sigma, b \in \Delta\}$. Why not exactly?)

Finite-state phonology and morphology: Natural language phonology as a *regular relation*?

 SPE phonology (Chomsky and Halle (1968): The Sound Pattern of English) context-sensitive rules map /underlying form/ → [surface form]

/1/ Devoicing /1/ $\rightarrow [\widehat{i}]$ / $\begin{bmatrix} +consonant \\ -voice \end{bmatrix}$ _____

Partially devoice /l/ after a voiceless consonant.

/l/ Dentalization /l/ \rightarrow [$\frac{1}{2}$] / ___ θ /l/ is rendered as velarized and dental before [θ].

/1/ Velarization /1/ \rightarrow [t] / ____]_{word} /1/ is velarized word-finally.

file	slight	wealth	listen	
, /faɪl/	/slaɪt/	/wel0/	/ˈlɪsən/	underlying, forms
	sÎlaıt			/l/ Devoicing
	°	wεłθ		/l/ Dentalization
faił		· · · ·		/l/ Velarization
['faɪł]	[sllait]	['wε¦θ]	['lɪsən]	surface forms

(Bruce Hayes (2009). Introductory Phonology, pp. 29-30.)

- SPE rules are context sensitive, but define a regular relation (modulo...): Johnson (1972), Kaplan and Kay (1994).
 Cf. *Two-level phonology* by Koskenniemi (1983).
- Optimality Theory also defining a regular relation? Sometimes, cf. Frank and Satta (1998), etc.

Finite-state phonology and morphology

/l/ is velarized word-finally:

/ (a:a..z:z)* (a:a..k:k, m:m..z:z, l:velar_l) \$ /

Finite-state phonology and morphology

Natural language phonology as a *regular relation*?

- Language technology (e.g., spell checkers):
 - a cascade of FS-lexicon, FS-morphology and FS-phonology;
 - stemming with and without a lexicon (*Porter stemmer*);
 - tokenization; error correction.
- Spelling suggestions?

Words not recognized by ispell: FSA, stemmer, tokenization.

Minimal Edit Distance

Tamás Biró, Yale U., Language and Computation

p. 10

Metric or distance

Given a set X, the function $d : X \times X \to \mathbb{R}$ is a **distance metric** iff the following are satisfied for all $a, b, c \in X$:

- $d(a,b) \ge 0$ (non-negativity)
- d(a,b) = d(b,a) (symmetry)
- d(a,b) = 0 if and only if a = b (identity of indiscernibles, or coincidence axiom)
- $d(a,b) + d(b,c) \geq d(a,c)$ (subadditivity, or triangle inequality)

Edit Distance, Levenshtein Distance

Levenshtein distance in *dialectometry*

http://us.english.uga.edu/lamsas/

1162 informants from 483 communities. 151 different items.

http://urd.let.rug.nl/nerbonne/papers/lavis2004.pdf
pp. 12 and 14.

NC, VA, WV, DC + MD and DE for comparison: 283 field work sites, 57,833 phonetic transcriptions of words and brief phrases (roughly 243 per site).

http://urd.let.rug.nl/nerbonne/papers/lamsas-lex.pdf
p. 19.

Minimum Edit Distance

function MIN-EDIT-DISTANCE(target, source) returns min-distance $n \leftarrow \text{LENGTH}(target)$ $m \leftarrow \text{LENGTH}(source)$ Create a distance matrix distance[n+1,m+1]Initialize the zeroth row and column to be the distance from the empty string distance[0,0] = 0for each column *i* from 1 to *n* do $distance[i,0] \leftarrow distance[i-1,0] + ins-cost(target[i])$ for each row *j* from 1 to *m* do $distance[0,j] \leftarrow distance[0,j-1] + del-cost(source[j])$ for each column *i* from 1 to *n* do for each row *j* from 1 to *m* do $distance[i, j] \leftarrow MIN(distance[i-1, j] + ins-cost(target_{i-1})),$ $distance[i-1, j-1] + sub-cost(source_{j-1},]target_{i-1}),$ $distance[i, j-1] + del-cost(source_{j-1}))$ **return** *distance*[n,m]

n	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
i	7	6	7	8	9	10	9	8	9	10
t	6	5	6	7	8	9	8	9	10	11
n	5	4	5	6	7	8	9	10	11	10
e	4	3	4	5	6	7	8	9	10	9
t	3	4	5	6	7	8	7	8	9	8
n	2	3	4	5	6	7	8	7	8	7
i	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	e	X	e	c	u	t	i	0	n

n	9	↓ 8	∠←↓9	∠←↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓ 9	∠ 8	
0	8	↓ 7	∠←↓ 8	∠⇔↓9	∠←↓ 10	∠←↓ 11	↓ 10	↓ 9	∠ 8	$\leftarrow 9$	
i	7	↓ 6	∠←↓ 7	∠←↓ 8	∠⇔↓9	∠←↓ 10	↓ 9	∠ 8	$\leftarrow 9$	$\leftarrow 10$	
t	6	↓ 5	∠⇔↓ 6	∠⇔↓ 7	∠⇔↓ 8	$\swarrow \downarrow 9$	∠ 8	← 9	← 10	←↓ 11	
n	5	↓ 4	∠←↓ 5	∠⇔↓ 6	∠⇔↓7	∠←↓ 8	∠⇔∖9	∠←↓ 10	∠←↓ 11	∠↓ 10	
e	4	23	← 4	∠ ← 5	← 6	← 7	$\leftarrow \downarrow 8$.∠←↓ 9	∠←↓ 10	↓ 9	
t	3	∠⊶↓4	∠←↓ 5	∠⇔↓ 6	∠⇔↓ 7	∠←↓ 8	7	$\leftarrow \downarrow 8$	∠←↓9	↓ 8	
n	2	∠ ← ↓ 3	∠←↓4	∠⇔↓ 5	∠⇔↓ 6	∠⇔↓7	∠←↓ 8	↓ 7	∠←↓ 8	∠7	
i	1		∠←↓3	∠⇔↓4	∠⇔↓ 5	∠⇔↓6	∠⇔↓ 7	76	← 7	$\leftarrow 8$	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

Comparing documents with *n*-grams

Task: document categorization/classification

Many documents entering a news agency, to be classified by

- language
- topic
- author
- genre
- political preference etc.

Machine learning: the basic idea

Task: given set X (e.g., of [possible] documents),

a set Y of tags (e.g., of languages, of topics, of authors, etc.), and a **training set** $\{(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)\} \in (X \times Y)^n$, find a method that maps any $x \in X$ onto Y,

so that the performance of the model on a **test set** be maximal.

to be refined!

A text as

- a meaning, a message
- as a series of sentences
- a string of words
- a bag of words
- a series of *n*-grams:
 - a string of n characters / letters / words / etc.
 - overlapping or non-overlapping

Vector Space Model and the Cosine Metric

- $f(w_i, D)$: frequency of word / *n*-gram w_i in document D.
- Given document D, create vector $(f(w_1, D), f(w_2, D), \dots, f(w_n, D))$
- Distance of two vectors: use their cosine distance (normalized dot product):

$$d(\mathbf{a}, \mathbf{b}) = \frac{\sum_{i=1}^{n} a_i \cdot b_i}{\sqrt{\sum_{i=1}^{n} a_i^2} \cdot \sqrt{\sum_{i=1}^{n} b_i^2}}$$

• For each $y \in Y$, create reference vector D_y . To categorize document D, find closest reference vector.

See you on Thursday!

Tamás Biró, Yale U., Language and Computation

p. 22