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Yale University

tamas.biro@yale.edu

http://www.birot.hu/courses/2014-LC/
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Practical matters

• Post-reading: JM 3, 23.1.1, 4.1-4.3

• Pre-reading: JM 5.1-5.4 (eventually: chapter 7)

• Python: this week H 3 and 4; next week H 5.

• Section: chance to practice reading pseudo-codes.
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Today

• A short note on FS phonology and morphology
(more to come in March)

• Minimal Edit Distance

• Document classification with cosine metrics

• Intro to machine learning
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Finite-state phonology and morphology
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FSTs and Regular Relations

Given a finite input alphabet Σ and a finite output alphabet ∆:

Let relation R be ⊆ (Σ∗ ×∆∗)

• FST as translator: maps (some) strings ∈ Σ∗ onto strings ∈ ∆∗.

• FST as recognizer: accepts string pairs ∈ R, rejects if /∈ R.

• FST as generator: outputs string pairs ∈ R, does not produce if /∈ R.

• FST as set relater: defines relation R.

(Almost FSA over alphabet {(a : b)|a ∈ Σ, b ∈ ∆}. Why not exactly?)
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Finite-state phonology and morphology:

Natural language phonology as a regular relation?

• SPE phonology (Chomsky and Halle (1968): The Sound Pattern of English)

context-sensitive rules map /underlying form/→ [surface form]
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(Bruce Hayes (2009). Introductory Phonology, pp. 29-30.)

• SPE rules are context sensitive, but define a regular relation
(modulo. . . ): Johnson (1972), Kaplan and Kay (1994).
Cf. Two-level phonology by Koskenniemi (1983).

• Optimality Theory also defining a regular relation?
Sometimes, cf. Frank and Satta (1998), etc.
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Finite-state phonology and morphology

/l/ is velarized word-finally:

/ (a:a..z:z)* (a:a..k:k, m:m..z:z, l:velar l) $ /
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Finite-state phonology and morphology

Natural language phonology as a regular relation?

• Language technology (e.g., spell checkers):

a cascade of FS-lexicon, FS-morphology and FS-phonology;

stemming with and without a lexicon (Porter stemmer);

tokenization; error correction.

• Spelling suggestions?

Words not recognized by ispell: FSA, stemmer, tokenization.
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Minimal Edit Distance

Tamás Biró, Yale U., Language and Computation p. 10



Metric or distance

Given a set X, the function d : X × X → R is a distance
metric iff the following are satisfied for all a, b, c ∈ X:

• d(a, b) ≥ 0 (non-negativity)

• d(a, b) = d(b, a) (symmetry)

• d(a, b) = 0 if and only if a = b (identity of indiscernibles, or
coincidence axiom)

• d(a, b) + d(b, c) ≥ d(a, c) (subadditivity, or triangle
inequality)
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Edit Distance, Levenshtein Distance
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Levenshtein distance in dialectometry

http://us.english.uga.edu/lamsas/

1162 informants from 483 communities. 151 different items.

http://urd.let.rug.nl/nerbonne/papers/lavis2004.pdf

pp. 12 and 14.

NC, VA, WV, DC + MD and DE for comparison: 283 field
work sites, 57,833 phonetic transcriptions of words and brief
phrases (roughly 243 per site).

http://urd.let.rug.nl/nerbonne/papers/lamsas-lex.pdf

p. 19.
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Minimum Edit Distance
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Comparing documents with n-grams
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Task: document categorization/classification

Many documents entering a news agency, to be classified by

• language

• topic

• author

• genre

• political preference
etc.
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Machine learning: the basic idea

Task: given set X (e.g., of [possible] documents),

a set Y of tags (e.g., of languages, of topics, of authors, etc.),

and a training set {(x1, y1), (x2, y2), . . . (xn, yn)} ∈ (X×Y )n,

find a method that maps any x ∈ X onto Y ,

so that the performance of the model on a test set be maximal.

to be refined!
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A text as

• a meaning, a message

• as a series of sentences

• a string of words

• a bag of words

• a series of n-grams:

– a string of n characters / letters / words / etc.

– overlapping or non-overlapping
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Vector Space Model and the Cosine Metric

• f(wi, D) : frequency of word / n-gram wi in document D.

• Given document D, create vector (f(w1, D), f(w2, D), . . . f(wn, D))

• Distance of two vectors: use their cosine distance
(normalized dot product):

d(a,b) =

∑n
i=1 ai · bi√∑n

i=1 a
2
i ·

√∑n
i=1 b

2
i

• For each y ∈ Y , create reference vector Dy.
To categorize document D, find closest reference vector.
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See you on Thursday!
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