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Practical matters

e Post-reading:
Chapter 4: intro, 4.1-4.3, 4.5.intro, 4.5.1, 45.2, 4.8, 4.12.
Chapter 5: intro, 5.1-5.4 and more to come.
Chapter 9: only at the depth discussed in class.

e Python: H 6-10, especially re in Chapt. 10.

e Sections: Python NLTK
Bird, Klein, Loper: Natural Language Processing with

Python, Ch 1, http://www.nltk.org/book/chO1.html
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Today

e Part-of-speech (POS) tagging

e Basics of automatic speech recognition (ASR)
e The idea of Bayesian inference

e Markov chains — parameter estimation

e Markov models — three problems (Ferguson)

e The Viterbi Algorithm
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From n-grams models to Markov chains
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Part-of-Speech Tagging

Bag-of-words model: syntax ignored

e Theoretical syntax:

— trees, context free grammars (next week)

— more powerful formalisms (cf. Formal Foundations course)
— HPSG and unification (cf. Chapter 15, not in this course)

e Theoretical syntax + probability: PCFG (in two weeks time).

e A useful approximation: Markov Chains
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Part-of-Speech Tagging

Secretariat IS expected to race tomorrow
Secretariat is expected to race tomorrow
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Bayesian inference

e Bayes' theorem:

P(A|B) =

e Example: A = set of POS-tags, B = observation.

arg}rlnax P(A|B) = argjnax(P(BM) - P(A))

e P(A) = prior probabilities. P(B|A) = likelihood.
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Speech recognition
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Speech recognition
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Speech recognition

12 cepstral coetficients
12 delta cepstral coefficients
12 double delta cepstral coefficients
1 energy coefficient
1 delta energy coefficient
1 double delta energy coefficient
39 MFCC features

Chapter 9:

page through it to get an idea of the technical details.
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Speech recognition

Lexicon

one w ahn
two t uw

three thriy

four faor

five faywv Phone HMM
Six sihks

seven sehvaxn

eight eyt ) &) O
zet0 ziyrow 6990

oh ow @mm
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Markov Chains
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Markov Chain for Weather
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Markov Chain for Words

Tamas Bird, Yale U., Language and Computation p. 14



Markov Chain:

“First-order observable Markov Model"

e Set of states (). The state at time ¢ is ¢;.
e a;;: probability transitioning ¢; — g;.
e Transition matrix A = (a;;).

e Current state depends only on previous state:

P(Qi\(h e %‘—1) = P(Qi|%‘—1) = Aj—1,5
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Markov Chain:
“First-order observable Markov Model”

e Given Markov Chain, generate a string: trivial.

e Given string, learn a Markov Model:

— () = observation types.

- Qi = P(C]j\%‘) =7
— Mazimum Likelihood Estimate:

P(qiq;)  # of qiq; bigrams
aij = P(gjlq;) = ——= = :

P(q;)  # of ¢; unigrams

— Laplace Smoothing, Good-Turing Discounting, interpolation, backoff.
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Markov Models
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Probabilistic Finite State Automaton

Add probability to transitions:

e A quintuple (Q727QO7F75(Q77:)

e §(q,1) is

— € (@ for a deterministic FSA
— C @ for a non-deterministic FSA
— a probability distribution over () for a probabilistic FSA

e When in state ¢; and read character ¢ from input tape:
move to state qx with probability d(qx,?)[qx], for all gx € Q.
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Markov Models: sextuple (@, X, g0, Qr, A, B)

Slightly different terminology, slightly different idea.

e () finite set of states ¢1,q2,...,qnN.
Y. set of possible observations (finite? not finite?)

e (o start state (or probability distribution 7 over Q)
qr end (final) state (or F' C Q7)

e A transition probability matrix: Vi : %

j=1 Qg5 — 1

e 3 emission probabilities: Vi: ) . b;(0) =1
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(Hidden) Markov Models

A=apiap...a1 ...y

020102...ON

B = E);(O;)

q0:9end
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a set of states

a transition probability matrix A, each g;; rep-

resenting the probability of moving from state i
: b . ;

to state j,s.t. 3 5_;a;; =1 Vi

a set of observations, each one drawn from a vo-

cabulary V = vy, v2,...,vp.

a set of observation likelihoods, also called
emission probabilities, each expressing the
probability of an observation o; being generated
from a state i

special start and end states that are not associ-
ated with observations
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(Hidden) Markov Models

e Given MM X\ = (A, B), generate series of observation:
trivial.

e Given MM )\ = (A, B), given observation sequence O
determine:

— likelihood P(O|)\): forward algorithm
— find most probable sequence of states: Viterbi algorithm

e Given an observation sequence O, learn A and B:
forward-backward algorithm (aka Baum-Welch algorithm,
special case of Expectation-Maximization/EM algorithm).
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Viterbi algorithm
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Viterbi algorithm

function VITERBI(observations of len T state-graph of len N) returns best-path

create a path probability matrix viterbi/N+2,T]

for each state s from 1 to N do ; Initialization step
viterDi[s,1]1<—ap s * Ds(07)
backpointer[s,1]—0

for each time step 7 from 2 to 7' do , Tecursion step

for each state s frqm 1to Ndo

) . N ) .
viterbi[s,t] — max wrerb;[s’.r— 1] % ay 5 * bs(or)
=1 i

N s
backpointer[s t] — argmax viterbi[s',t — 1] * ay

s'=1
. ; N : : -
viterbi[qr , T]«— max viterbi[s,T| * as g, ; termination step
5=1
: N e -
backpointer[qr ,T] — argmax viterbi[s.T| * as g4z ; termination step
s=1

return the backtrace path by following backpointers to states back in time from
backpointer(qr,T]
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Vi1 (r)

Dj(or)
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Viterbi algorithm

the previous Viterbi path probability from the previous time step
the transition probability from previous state ¢; to current state ¢g;

the state observation likelihood of the observation symbol o; given
the current state j
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See you on Thursday!
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