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Practical matters

• Post-reading:
Chapter 4: intro, 4.1-4.3, 4.5.intro, 4.5.1, 4.5.2, 4.8, 4.12.
Chapter 5: intro, 5.1-5.4 and more to come.
Chapter 9: only at the depth discussed in class.

• Python: H 6-10, especially re in Chapt. 10.

• Sections: Python NLTK
Bird, Klein, Loper: Natural Language Processing with
Python, Ch 1, http://www.nltk.org/book/ch01.html
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Today

• Part-of-speech (POS) tagging

• Basics of automatic speech recognition (ASR)

• The idea of Bayesian inference

• Markov chains – parameter estimation

• Markov models – three problems (Ferguson)

• The Viterbi Algorithm
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From n-grams models to Markov chains
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Part-of-Speech Tagging

Bag-of-words model : syntax ignored

• Theoretical syntax:

– trees, context free grammars (next week)

– more powerful formalisms (cf. Formal Foundations course)

– HPSG and unification (cf. Chapter 15, not in this course)

• Theoretical syntax + probability: PCFG (in two weeks time).

• A useful approximation: Markov Chains
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Part-of-Speech Tagging
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Bayesian inference

• Bayes’ theorem:

P (A|B) =
P (B|A) · P (A)

P (B)

• Example: A = set of POS-tags, B = observation.

arg max
A

P (A|B) = arg max
A

(P (B|A) · P (A))

• P (A) = prior probabilities. P (B|A) = likelihood.
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Speech recognition
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Speech recognition
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Speech recognition

Chapter 9:
page through it to get an idea of the technical details.
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Speech recognition
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Markov Chains
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Markov Chain for Weather
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Markov Chain for Words
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Markov Chain:

“First-order observable Markov Model”

• Set of states Q. The state at time t is qt.

• aij: probability transitioning qi → qj.

• Transition matrix A = (aij).

• Current state depends only on previous state:

P (qi|q1 . . . qi−1) = P (qi|qi−1) = ai−1,i
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Markov Chain:

“First-order observable Markov Model”

• Given Markov Chain, generate a string: trivial.

• Given string, learn a Markov Model:

– Q = observation types.

– ai,j = P (qj|qi) =?

– Maximum Likelihood Estimate:

ai,j = P (qj|qi) =
P (qiqj)

P (qi)
=

# of qiqj bigrams

# of qi unigrams

– Laplace Smoothing, Good-Turing Discounting, interpolation, backoff.
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Markov Models
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Probabilistic Finite State Automaton

Add probability to transitions:

• A quintuple (Q,Σ, q0, F, δ(q, i)

• δ(q, i) is

– ∈ Q for a deterministic FSA
– ⊆ Q for a non-deterministic FSA
– a probability distribution over Q for a probabilistic FSA

• When in state qj and read character i from input tape:
move to state qk with probability δ(qk, i)[qk], for all qk ∈ Q.
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Markov Models: sextuple (Q,Σ, q0, QF , A,B)

Slightly different terminology, slightly different idea.

• Q finite set of states q1, q2, . . . , qN .
Σ set of possible observations (finite? not finite?)

• q0 start state (or probability distribution π over Q)
qF end (final) state (or F ⊆ Q?)

• A transition probability matrix: ∀i :
∑N

j=1 aij = 1

• B emission probabilities: ∀i :
∑

o∈Σ bi(o) = 1
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(Hidden) Markov Models
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(Hidden) Markov Models

• Given MM λ = (A,B), generate series of observation:
trivial.

• Given MM λ = (A,B), given observation sequence O
determine:

– likelihood P (O|λ): forward algorithm
– find most probable sequence of states: Viterbi algorithm

• Given an observation sequence O, learn A and B:
forward-backward algorithm (aka Baum-Welch algorithm,
special case of Expectation-Maximization/EM algorithm).
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Viterbi algorithm
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Viterbi algorithm
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Viterbi algorithm
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See you on Thursday!
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