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Practical matters

• Post-reading: Chapter 5: 5.5. Chapter 6: intro and 6.1-6.5

• Pre-reading: Chapter 12 (intro to syntax and comput. syntax)

• Python: H 6-10, especially re in Chapt. 10.

• Sections: Python NLTK
Bird, Klein, Loper: Natural Language Processing with
Python, Ch 1, http://www.nltk.org/book/ch01.html

• Homework 3 posted by the weekend, due 03/04.
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Today

Hidden Markov models and Ferguson’s three problems:

• The Viterbi Algorithm

• The Forward Algorithm

• The Forward-Backward Algorithm

Tamás Biró, Yale U., Language and Computation p. 3



Recap: two examples of Markov Models
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Markov Models

• A: model of underlying series of “causes” (states)

• B: model of observable series of “effects” (emitted signs)

• Given observations, we are interested in their causes.
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Part-of-Speech Tagging

Tamás Biró, Yale U., Language and Computation p. 6



Speech recognition
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Speech recognition
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Bayesian inference

• Given observation B, most likely cause A:
arg maxAP (A|B) =?

• Bayes’ theorem:
P (A|B) =

P (B|A) · P (A)

P (B)

Hence,

arg max
A

P (A|B) = arg max
A

(P (B|A) · P (A))

• P (A) = prior probabilities. P (B|A) = likelihood.
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Markov Chains and Markov Models
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Markov Chain:

“First-order observable Markov Model”

• No characters read/emitted! That is, characters = states.

• Set of states Q = {q1, . . . qn}. The state at time t is q[t].

• aij: probability transitioning qi → qj.
Transition matrix A = (aij). Normed to 1:

∑n
j=1 aij = 1

• Current state depends only on previous state:

P (q[ti] | q[t1] . . . q[ti−1]) = P (q[ti] | q[ti−1]) = aq[ti−1],q[ti]
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Markov Chain:

“First-order observable Markov Model”

• Given Markov Chain, generate a string: trivial.

• Given string, learn a Markov Model:

– Q = observation types.

– ai,j = P (qj|qi) =?

– Maximum Likelihood Estimate:

ai,j = P (qj|qi) =
P (qiqj)

P (qi)
=

# of qiqj bigrams

# of qi unigrams

– Laplace Smoothing, Good-Turing Discounting, interpolation, backoff.
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Markov Models
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Probabilistic/Weighted Finite State Automaton

Add probability to transitions:

• A quintuple (Q,Σ, q0, F, δ(q, i)

• δ(q, i) is

– ∈ Q for a deterministic FSA
– ⊆ Q for a non-deterministic FSA
– a probability distribution over Q for a probabilistic FSA

• When in state qj and read character i from input tape:
move to state qk with probability δ(qk, i)[qk], for all qk ∈ Q.
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Markov Models: sextuple (Q,Σ, q0, QF , A,B)

Slightly different terminology, slightly different idea.

• Q finite set of states q1, q2, . . . , qN .
Σ set of possible observations (finite? not finite?)

• q0 start state (or probability distribution π over Q)
qF end (final) state (or F ⊆ Q?)

• A transition probability matrix: ∀i :
∑N
j=1 aij = 1

• B emission probabilities: ∀i :
∑
o∈Σ bi(o) = 1
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(Hidden) Markov Models

Tamás Biró, Yale U., Language and Computation p. 16



(Hidden) Markov Models

Markov assumption: P (q[ti]) only depends on q[ti−1],
and not on previous states or previous outputs.

Output independence: P (o[ti]) only depends on q[ti]
and not on previous states or previous outputs.

Tamás Biró, Yale U., Language and Computation p. 17



(Hidden) Markov Models

• Given MM λ = (A,B), generate series of observation:
trivial.

• Given MM λ = (A,B), given observation sequence O
determine:

– likelihood P (O|λ): forward algorithm
– find most probable sequence of states: Viterbi algorithm

• Given an observation sequence O, learn A and B:
forward-backward algorithm (aka Baum-Welch algorithm,
special case of Expectation-Maximization/EM algorithm).
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Viterbi algorithm
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Viterbi algorithm

Problem: Decoding

Given as input an HMM λ = (A,B) and a sequence of
observations O = o1, o2, . . . , oT , find the most probable
sequence of states Q = q1, q2, . . . , qT .

Solution:

Viterbi algorithm: dynamic programming, similar to the
minimum edit distance algorithm, using a trellis.
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Viterbi algorithm

∀j : vt(j) =
n

max
i=1

(vt−1(i) · aij · bj(ot))
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Viterbi algorithm
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The Forward Algorithm
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Forward algorithm

Problem: Likelihood

Given as input an HMM λ = (A,B) and a sequence of
observations O = o1, o2, . . . , oT , determine the likelihood
P (O|λ), the probability that HMM λ emits series O.

P (O|λ) =
∑

q[t1],...,q[tT ]

P (o1, . . . , oT | q[t1], . . . , q[tT ], λ)

Solution:

Forward algorithm: dynamic programming, similar to the
minimum edit distance algorithm, using a trellis.
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Forward algorithm
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Forward algorithm

∀j : αt(j) =

n∑
i=1

αt−1(i) · aij · bj(ot)
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Forward algorithm
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The Forward-Backward Algorithm
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Forward-Backward algorithm

Problem:

Given as input an observation sequence O = o1, o2, . . . , oT
and the set of possible states in the HMM, learn the HMM
parameters A and B.

Solution: Forward-Backward algorithm:

a.k.a. Baum-Welch Algorithm, a special case of the
Expectation-Maximization (EM) algorithm.

an example of unsupervised learning!
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Forward-Backward algorithm

• Forward probability αt(i): probability of seeing the
observations from time beginning to t, given that we are in
state i at time t, and given HMM.

• Backward probability βt(i): probability of seeing the
observations from time t + 1 to the end, given that we
are in state i at time t, and given HMM.

αt(i) · aij · bj(ot+1) · βt+1(j)
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Forward-Backward algorithm

1. Initialize A and B

2. Iterate until convergence

(a) E-step: given current A and B, compute

i. expected state occupancy count γt(j): probability of being in

state j at time t, given O and HMM

ii. expected state transition count ξt(i, j): probability of being in

state i at time t and state j at time t+ 1, given O and HMM

(b) M-step: recompute A and B probabilities, given current ξ and γ.

3. Return A and B.
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See you next week!
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