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Practical matters

e Post-reading: Chapter 5: 5.5. Chapter 6: intro and 6.1-6.5
e Pre-reading: Chapter 12 (intro to syntax and comput. syntax)
e Python: H 6-10, especially re in Chapt. 10.
e Sections: Python NLTK
Bird, Klein, Loper: Natural Language Processing with

Python, Ch 1, http://www.nltk.org/book/chO1.html

e Homework 3 posted by the weekend, due 03/04.
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Today

Hidden Markov models and Ferguson’s three problems:

e The Viterbi Algorithm
e The Forward Algorithm

e The Forward-Backward Algorithm
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Recap: two examples of Markov Models
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Markov Models

e A: model of underlying series of “causes” (states)

e B: model of observable series of “effects” (emitted signs)

e Given observations, we are interested in their causes.
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Part-of-Speech Tagging

Secretariat IS expected to race tomorrow
Secretariat is expected to race tomorrow
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Speech recognition
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Speech recognition

Lexicon
one w ahn
two t uw
three thriy
four faor
five fayv Phone HMM
Six sihks

seven sehvaxn

eight eyt ) &) O
zet0 ziyrow 6990

oh ow @mm
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Bayesian inference

e Given observation B, most likely cause A:
arg max 4 P(A|B) =7

e Bayes' theorem:
P(B|A) - P(A)
P(AIB) = == 57
Hence,
arg;nax P(A|B) = argjnax(P(BM) - P(A))

e P(A) = prior probabilities. P(B|A) = likelihood.
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Markov Chains and Markov Models
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Markov Chain:
“First-order observable Markov Model”
e No characters read/emitted! That is, characters = states.
e Set of states Q = {q1,...qn}. The state at time t is ql[t].

e qa;;: probability transitioning ¢; — g;.
Transition matrix A = (a;;). Normed to 1: 77 a;; = 1

e Current state depends only on previous state:

P(qlti] | qlt1] - - -qlti—1]) = P(qlti] | qlti—1]) = aqe; 11,418
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Markov Chain:
“First-order observable Markov Model”

e Given Markov Chain, generate a string: trivial.

e Given string, learn a Markov Model:

— () = observation types.

- Qi = P(C]j\%‘) =7
— Mazimum Likelihood Estimate:

P(qiq;)  # of qiq; bigrams
aij = P(gjlq;) = ——= = :

P(q;)  # of ¢; unigrams

— Laplace Smoothing, Good-Turing Discounting, interpolation, backoff.

Tamas Biré, Yale U., Language and Computation



Markov Models
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Probabilistic/Weighted Finite State Automaton

Add probability to transitions:
o A quintuple (Q7 27 qo, F7 5(Q7 /I’)

e §(q,1) is

— € (@ for a deterministic FSA
— C @ for a non-deterministic FSA
— a probability distribution over (Q for a probabilistic FSA

e When in state ¢; and read character ¢ from input tape:
move to state qx with probability d(qx,?)|qk], for all gx € Q.
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Markov Models: sextuple (@, X, g0, Qr, A, B)

Slightly different terminology, slightly different idea.

e () finite set of states ¢1,q2,...,qnN.
Y. set of possible observations (finite? not finite?)

e (o start state (or probability distribution 7 over Q)
qr end (final) state (or F' C Q7)

e A transition probability matrix: Vi : %

j=1 Qg5 — 1

e 3 emission probabilities: Vi: ) . b;(0) =1
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(Hidden) Markov Models

A=apiap...a1 ...y

020102...ON

B = E);(O;)

q0:9end
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a set of states

a transition probability matrix A, each g;; rep-

resenting the probability of moving from state i
: b . ;

to state j,s.t. 3 5_;a;; =1 Vi

a set of observations, each one drawn from a vo-

cabulary V = vy, v2,...,vp.

a set of observation likelihoods, also called
emission probabilities, each expressing the
probability of an observation o; being generated
from a state i

special start and end states that are not associ-
ated with observations




(Hidden) Markov Models

Markov assumption: P(q[t;]) only depends on q[t; 1],
and not on previous states or previous outputs.

Output independence: P(o[t;]) only depends on qlt;]
and not on previous states or previous outputs.
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(Hidden) Markov Models

e Given MM X\ = (A, B), generate series of observation:
trivial.

e Given MM )\ = (A, B), given observation sequence O
determine:

— likelihood P(O|)\): forward algorithm
— find most probable sequence of states: Viterbi algorithm

e Given an observation sequence O, learn A and B:
forward-backward algorithm (aka Baum-Welch algorithm,
special case of Expectation-Maximization/EM algorithm).
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Viterbi algorithm
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Viterbi algorithm

Problem: Decoding

Given as input an HMM X = (A, B) and a sequence of

observations O = o01,09,...,07, find the most probable
sequence of states () = q1,¢2,...,qr.
Solution:

Viterbi algorithm: dynamic programming, similar to the
minimum edit distance algorithm, using a trellis.
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Viterbi algorithm

v;_1(i)  the previous Viterbi path probability from the previous time step
ajj the transition probability from previous state ¢; to current state ¢g;

bj(o;)  the state observation likelihood of the observation symbol o; given
the current state j

Vit ve(j) = I?E? (ve—1(2) - aij - bj(ot))
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Viterbi algorithm

function VITERBI(observations of len T state-graph of len N) returns best-path

create a path probability matrix viterbi/N+2,T]

for each state s from 1 to N do ; Initialization step
viterDi[s,1]1<—ap s * Ds(07)
backpointer[s,1]—0

for each time step 7 from 2 to 7' do , Tecursion step

for each state s frqm 1to Ndo

) . N ) .
viterbi[s,t] — max wrerb;[s’.r— 1] % ay 5 * bs(or)
=1 i

N s
backpointer[s t] — argmax viterbi[s',t — 1] * ay

s'=1
. ; N : : -
viterbi[qr , T]«— max viterbi[s,T| * as g, ; termination step
5=1
: N e -
backpointer[qr ,T] — argmax viterbi[s.T| * as g4z ; termination step
s=1

return the backtrace path by following backpointers to states back in time from
backpointer(qr,T]
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The Forward Algorithm
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Forward algorithm

Problem: Likelihood

Given as input an HMM X\ = (A, B) and a sequence of
observations O = o071,09,...,0r, determine the likelihood

P(O|\), the probability that HMM X emits series O.

P(O|\) = Z P(o1,...,or | q[ti],...,q[tr],\)

-5q tT]

Solution:

Forward algorithm: dynamic programming, similar to the
minimum edit distance algorithm, using a trellis.
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Forward algorithm
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Forward algorithm

o;_1(7)  the previous forward path probability from the previous time step
ajj the transition probability from previous state g; to current state ¢

bj(or) the state observation likelihood of the observation symbol o; given
the current state j

\V/] Oét Z ¢ — 1 a,ij . bj (Ot)
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Forward algorithm

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T]

for each state s from 1 to N do . Initialization step
Jorward[s,1]—aq s * bs(07)
for each time step 7 from 2 to 7 do ; recursion step
for each state s from 1 to N do
N
forward([s,t] — Z forward[s',t — 1] = ay s * bs(0r)
=1
N
Jorward[qr  T] — Z Jorward[s,T| % asq4; ; termination step
s=1

return forward[qr ., T ]
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The Forward-Backward Algorithm
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Forward-Backward algorithm

Problem:

Given as input an observation sequence O = 071,09,...,0T
and the set of possible states in the HMM, learn the HMM
parameters A and B.

Solution: Forward-Backward algorithm:

a.k.a. Baum-Welch Algorithm, a special case of the
Expectation-Maximization (EM) algorithm.

an example of unsupervised learning!
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Forward-Backward algorithm

e Forward probability «;(i): probability of seeing the
observations from time beginning to ¢, given that we are in
state ¢ at time ¢, and given HMM,

e Backward probability (5.;(i): probability of seeing the

observations from time ¢t + 1 to the end, given that we
are in state ¢ at time ¢, and given HMM.

at(i) " Qg - bj(OH_l) : 5t—|—1(j)
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Forward-Backward algorithm

1. Initialize A and B

2. lterate until convergence

(a) E-step: given current A and B, compute

i. expected state occupancy count ~:(j): probability of being in
state 5 at time ¢, given O and HMM
ii. expected state transition count &:(%,7): probability of being in
state ¢ at time t and state 5 at time ¢ 4+ 1, given O and HMM
(b) M-step: recompute A and B probabilities, given current £ and .

3. Return A and B.
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function FORWARD-BACKWARD(observations of len T, output vocabulary V., hidden state
ser () returns HMM=(A,B)

initialize A and B

iterate until convergence

E-step
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See you next week!
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