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Practical matters

e Post-reading: Chapters 12 and 16.
e Pre-reading: Section 13.1

e Sections

e Feedback on homework 2.

e Homework 3 posted, due 03/04.

Tamas Bird, Yale U., Language and Computation



Today

Hidden Markov models and Ferguson’s three problems:

e The Viterbi Algorithm
e The Forward Algorithm

e The Forward-Backward Algorithm

As well as introduction to grammars and CFGs.
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Hidden Markov Models
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Markov Models: sextuple (@, >, qo, q¢r, A, B)

e () finite set of states q1,qo,...,qnN.
Y. set of possible observations (finite? not finite?)

e ( start state (or probability distribution 7w over Q)
qr end (final) state (or FF C Q7)

e A transition probability matrix: Vi : >

j=1 CLZ’j =1

e B emission probabilities: Vi: ) . b;(0) =1
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Some intro remarks

e Visual representations of FSAs vs. MMs:

EA

Secretariat is expected to

e Probabilities in a ProbFSA

e Markov Chain: “First-order observable Markov Model”

BB
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(Hidden) Markov Models

A=apiap...a1 ...y

020102...ON

B = E);(O;)

q0:9end

Tamas Bird, Yale U., Language and Computation

a set of states

a transition probability matrix A, each g;; rep-

resenting the probability of moving from state i
: b . ;

to state j,s.t. 3 5_;a;; =1 Vi

a set of observations, each one drawn from a vo-

cabulary V = vy, v2,...,vp.

a set of observation likelihoods, also called
emission probabilities, each expressing the
probability of an observation o; being generated
from a state i

special start and end states that are not associ-
ated with observations




(Hidden) Markov Models

Markov assumption: P(q[t;]) only depends on q[t; 1],
and not on previous states or previous outputs.

Output independence: P(o[t;]) only depends on qlt;]
and not on previous states or previous outputs.
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(Hidden) Markov Models

e Given MM X\ = (A, B), generate series of observation:
trivial.

e Given MM )\ = (A, B), given observation sequence O
determine:

— likelihood P(O|)\): forward algorithm
— find most probable sequence of states: Viterbi algorithm

e Given an observation sequence O, learn A and B:
forward-backward algorithm (aka Baum-Welch algorithm,
special case of Expectation-Maximization/EM algorithm).
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Viterbi algorithm
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Dynamic programing
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Source: http://lcm.csa.iisc.ernet.in/dsa/nodel63.html
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Viterbi algorithm

Problem: Decoding

Given as input an HMM X = (A, B) and a sequence of

observations O = o01,09,...,07, find the most probable
sequence of states () = q1,¢2,...,qr.
Solution:

Viterbi algorithm: dynamic programming, similar to the
minimum edit distance algorithm, using a trellis.
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Viterbi algorithm

v;_1(i)  the previous Viterbi path probability from the previous time step
ajj the transition probability from previous state ¢; to current state ¢g;

bj(o;)  the state observation likelihood of the observation symbol o; given
the current state j

Vit ve(j) = I?E? (ve—1(2) - aij - bj(ot))
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Viterbi algorithm

function VITERBI(observations of len T state-graph of len N) returns best-path

create a path probability matrix viterbi/N+2,T]

for each state s from 1 to N do ; Initialization step
viterDi[s,1]1<—ap s * Ds(07)
backpointer[s,1]—0

for each time step 7 from 2 to 7' do , Tecursion step

for each state s frqm 1to Ndo

) . N ) .
viterbi[s,t] — max wrerb;[s’.r— 1] % ay 5 * bs(or)
=1 i

N s
backpointer[s t] — argmax viterbi[s',t — 1] * ay

s'=1
. ; N : : -
viterbi[qr , T]«— max viterbi[s,T| * as g, ; termination step
5=1
: N e -
backpointer[qr ,T] — argmax viterbi[s.T| * as g4z ; termination step
s=1

return the backtrace path by following backpointers to states back in time from
backpointer(qr,T]
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The Forward Algorithm
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Forward algorithm

Problem: Likelihood

Given as input an HMM X\ = (A, B) and a sequence of
observations O = o071,09,...,0r, determine the likelihood

P(O|\), the probability that HMM X emits series O.

P(O|\) = Z P(o1,...,or | q[ti],...,q[tr],\)

-5q tT]

Solution:

Forward algorithm: dynamic programming, similar to the
minimum edit distance algorithm, using a trellis.
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Forward algorithm

ap5(N)

. ¥ ; (O
ay(j)= ,Zi ag.4(i) a;by(o) M
® : ]
e ®
L] ®

0 5(3)

A N g

\Ja s \ \Ja

0 5(2) \\.

i e IR b](ot) P
K S e
- - |lI -

A 5(1) /

) LD / i
4

O Ot % Ot+1

B fom s
JEXE|
==

Tamas Bird, Yale U., Language and Computation



Forward algorithm

o;_1(7)  the previous forward path probability from the previous time step
ajj the transition probability from previous state g; to current state ¢

bj(or) the state observation likelihood of the observation symbol o; given
the current state j

\V/] Oét Z ¢ — 1 a,ij . bj (Ot)
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Forward algorithm

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T]

for each state s from 1 to N do . Initialization step
Jorward[s,1]—aq s * bs(07)
for each time step 7 from 2 to 7 do ; recursion step
for each state s from 1 to N do
N
forward([s,t] — Z forward[s',t — 1] = ay s * bs(0r)
=1
N
Jorward[qr  T] — Z Jorward[s,T| % asq4; ; termination step
s=1

return forward[qr ., T ]
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The Forward-Backward Algorithm
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Forward-Backward algorithm

Problem:

Given as input an observation sequence O = 071,09,...,0T
and the set of possible states in the HMM, learn the HMM
parameters A and B.

Solution: Forward-Backward algorithm:

a.k.a. Baum-Welch Algorithm, a special case of the
Expectation-Maximization (EM) algorithm.

an example of unsupervised learning!
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Forward-Backward algorithm

e Forward probability «o;(i): probability of seeing the
observations from time beginning to ¢, given that we are in
state ¢ at time ¢, and given HMM.

To compute as described in the Forward Algorithm.

e Backward probability (5.;(i): probability of seeing the
observations from time ¢t + 1 to the end, given that we
are in state ¢ at time ¢, and given HMM.

To compute by analogy to the Forward Algorithm.

(i) - azj - bj(0p41) - Brv1(J)
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Forward-Backward algorithm

1. Observation O is given.
Initialize A and B (in a clever way)

2. lterate until convergence

(a) E-step: given O and given current HMM (A and B), compute Vt, j
i. forward probability i;(j) and backward probability 5:(j)
ii. expected state occupancy count ~:(j): probability of being in
state j at time ¢ (by using () and B:(7))
iii. expected state transition count &;(¢,j): probability of being in
state ¢ at time t and state j at time ¢t + 1 (by using a:(7), B:(7))
(b) M-step: recompute A and B probabilities, given current £ and .

3. Return final values of A and B.
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function FORWARD-BACKWARD(observations of len T, output vocabulary V., hidden state
ser () returns HMM=(A,B)

initialize A and B

iterate until convergence

E-step
T M Vit g
B i) — ﬁri’)'—’?u"f’j{@z+1)"ﬁr+l(ﬂ \pig :
*:_uIU!JF} — aT(hT) r A aﬂd 7
M-step
-1
(i, j)
Al o - t=1
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=1
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Intro to syntax
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Formal Grammars

N a set of non-terminal symbols (or variables)
2 a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of the form A — f5 ,

where A 1s a non-terminal,

f is a string of symbols from the infinite set of strings (XU N )x

S a designated start symbol

Capital letters like A, B, and S Non-terminals

S The start symbol
Lower-case Greek letters like o, 3, and y Strings drawn from (ZUN )x
Lower-case Roman letters like #, v, and w Strings of terminals
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Formal Grammars

Frame Verb Example

0 eat, sleep I ate

NP prefer, find, leave Find [yp the flight from Pittsburgh to Boston]

NP NP show, give Show [yp me] [yp airlines with flights from Pittsburgh]
PPe n il fly, travel I would like to fly [pp from Boston] [pp to Philadelphia]
NP BP o help, load Can you help [yp me] [pp with a flight]

VPto prefer, want, need I would prefer [yp;, to go by United airlines]

VPbDrst can, would, might I can [ypp;sr go from Boston]

S mean Does this mean [¢ AA has a hub in Boston]
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Chomsky hierarchy

Recursively Enumerable Languages
Context-Sensitive Languages
Mildly Context-Sensitive Languages
Context-Free Languages
<Hegular (or Right Linear) Language

)
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Chomsky hierarchy

Type Common Name Rule Skeleton Linguistic Example
0  Turing Equivalent o— f,s.t.aFe HPSG, LFG, Minimalism
1 Context Sensitive aAB — ayf,st. yFe
— Mildly Context Sensitive TAG, CCG
2  Context Free A—y Phrase-Structure Grammars
3 Regular A—xBorA—x Finite-State Automata
NB:
0: Turing machine
1: Linear bounded automaton
2: Non-deterministic push-down automaton
3: Finite-state automaton
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See you on Thursday!
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