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Practical matters

• Post-reading: Chapters 12 and 16.

• Pre-reading: Section 13.1

• Sections

• Feedback on homework 2.

• Homework 3 posted, due 03/04.
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Today

Hidden Markov models and Ferguson’s three problems:

• The Viterbi Algorithm

• The Forward Algorithm

• The Forward-Backward Algorithm

As well as introduction to grammars and CFGs.
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Hidden Markov Models
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Markov Models: sextuple (Q,Σ, q0, qF , A,B)

• Q finite set of states q1, q2, . . . , qN .
Σ set of possible observations (finite? not finite?)

• q0 start state (or probability distribution π over Q)
qF end (final) state (or F ⊆ Q?)

• A transition probability matrix: ∀i :
∑N
j=1 aij = 1

• B emission probabilities: ∀i :
∑
o∈Σ bi(o) = 1
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Some intro remarks

• Visual representations of FSAs vs. MMs:

• Probabilities in a ProbFSA

• Markov Chain: “First-order observable Markov Model”
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(Hidden) Markov Models
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(Hidden) Markov Models

Markov assumption: P (q[ti]) only depends on q[ti−1],
and not on previous states or previous outputs.

Output independence: P (o[ti]) only depends on q[ti]
and not on previous states or previous outputs.
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(Hidden) Markov Models

• Given MM λ = (A,B), generate series of observation:
trivial.

• Given MM λ = (A,B), given observation sequence O
determine:

– likelihood P (O|λ): forward algorithm
– find most probable sequence of states: Viterbi algorithm

• Given an observation sequence O, learn A and B:
forward-backward algorithm (aka Baum-Welch algorithm,
special case of Expectation-Maximization/EM algorithm).

Tamás Biró, Yale U., Language and Computation p. 9



Viterbi algorithm
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Dynamic programing

Source: http://lcm.csa.iisc.ernet.in/dsa/node163.html
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Viterbi algorithm

Problem: Decoding

Given as input an HMM λ = (A,B) and a sequence of
observations O = o1, o2, . . . , oT , find the most probable
sequence of states Q = q1, q2, . . . , qT .

Solution:

Viterbi algorithm: dynamic programming, similar to the
minimum edit distance algorithm, using a trellis.
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Viterbi algorithm

∀j : vt(j) =
n

max
i=1

(vt−1(i) · aij · bj(ot))
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Viterbi algorithm
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The Forward Algorithm
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Forward algorithm

Problem: Likelihood

Given as input an HMM λ = (A,B) and a sequence of
observations O = o1, o2, . . . , oT , determine the likelihood
P (O|λ), the probability that HMM λ emits series O.

P (O|λ) =
∑

q[t1],...,q[tT ]

P (o1, . . . , oT | q[t1], . . . , q[tT ], λ)

Solution:

Forward algorithm: dynamic programming, similar to the
minimum edit distance algorithm, using a trellis.
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Forward algorithm

Tamás Biró, Yale U., Language and Computation p. 18



Forward algorithm

∀j : αt(j) =

n∑
i=1

αt−1(i) · aij · bj(ot)
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Forward algorithm
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The Forward-Backward Algorithm
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Forward-Backward algorithm

Problem:

Given as input an observation sequence O = o1, o2, . . . , oT
and the set of possible states in the HMM, learn the HMM
parameters A and B.

Solution: Forward-Backward algorithm:

a.k.a. Baum-Welch Algorithm, a special case of the
Expectation-Maximization (EM) algorithm.

an example of unsupervised learning!
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Forward-Backward algorithm

• Forward probability αt(i): probability of seeing the
observations from time beginning to t, given that we are in
state i at time t, and given HMM.
To compute as described in the Forward Algorithm.

• Backward probability βt(i): probability of seeing the
observations from time t + 1 to the end, given that we
are in state i at time t, and given HMM.
To compute by analogy to the Forward Algorithm.

αt(i) · aij · bj(ot+1) · βt+1(j)
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Forward-Backward algorithm

1. Observation O is given.
Initialize A and B (in a clever way)

2. Iterate until convergence

(a) E-step: given O and given current HMM (A and B), compute ∀t, j
i. forward probability αt(j) and backward probability βt(j)

ii. expected state occupancy count γt(j): probability of being in

state j at time t (by using αt(j) and βt(j))

iii. expected state transition count ξt(i, j): probability of being in

state i at time t and state j at time t+1 (by using αt(j), βt(j))

(b) M-step: recompute A and B probabilities, given current ξ and γ.

3. Return final values of A and B.
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Intro to syntax
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Formal Grammars

Tamás Biró, Yale U., Language and Computation p. 27



Formal Grammars
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Formal Grammars
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Chomsky hierarchy
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Chomsky hierarchy

NB:

0: Turing machine

1: Linear bounded automaton

2: Non-deterministic push-down automaton

3: Finite-state automaton
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See you on Thursday!
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