Language and Computation

week 8, Thursday, March 06, 2014

Tamás Biró Yale University tamas.biro@yale.edu http://www.birot.hu/courses/2014-LC/

Practical matters

- **Post-reading:** Chapters 12, 16 and 14.1
- **Pre-reading:** Sections 13.1-3
- Homework 3 returned after the break.
- **Midterm:** will be posted tomorrow.
- Proof of HW 2, part 3 posted.
- To come: Viterbi and Forward-Backward an example

Today

- Formal definition of Formal Grammars
- Chomsky Hierarchy
- The Pumping Lemma
- Beyond regular languages: Context-Free Grammars
- Probabilistic Context Free Grammars

(Parsing to come after the break)

Formal Grammars: an example

A toy grammar for English:

Phrase Structure Rules: Lexical Insertion Rules:

$$\begin{split} S \to NP \quad VP & V \to \{ \text{ eat, love, walk, sleep} \} \\ VP \to V & V & V \to \{ \text{eats, loves, walks sleeps} \} \\ NP \to V \quad NP & N \to \{ \text{ John, Marry. . . } \} \\ NP \to N & N \to \{ \text{ apple, pear. . . } \} \\ NP \to Det \quad N & Det \to \{ \text{ the, a, an, } \emptyset \} \\ \end{split}$$

A toy grammar for English: $S \Rightarrow NP \quad VP \Rightarrow Det \quad N \quad VP \Rightarrow$ $\Rightarrow Det \quad N \quad V \quad NP \Rightarrow Det \quad N \quad V \quad N \Rightarrow$ $\Rightarrow The \quad N \quad V \quad N \Rightarrow The \quad John \quad V \quad N \Rightarrow$ $\Rightarrow The \quad John \quad sleep \quad N \Rightarrow The \quad John \quad sleep \quad apple$

This is a sentence derived from this grammar.

A toy grammar for English – lessons:

- Introduce additional categories: $V_{\text{transitive}}$ vs. $V_{\text{intransitive}}$.
- Proper names as *NP*s.
- Agreement

 \rightarrow more general formalism needed (feature structures: Ch. 15)

Formal Grammars: an example

$V \rightarrow V$ and. . . what?

Subcategorization frames for a set of example verbs:

Frame	Verb	Example
Ø	eat, sleep	I ate
NP	prefer, find, leave	Find [<i>NP</i> the flight from Pittsburgh to Boston]
NP NP	show, give	Show [NP me] [NP airlines with flights from Pittsburgh]
$PP_{\rm from} PP_{\rm to}$	fly, travel	I would like to fly [<i>PP</i> from Boston] [<i>PP</i> to Philadelphia]
NP PP _{with}	help, load	Can you help [<i>NP</i> me] [<i>PP</i> with a flight]
VPto	prefer, want, need	I would prefer [VPto to go by United airlines]
VPbrst	can, would, might	I can [VPbrst go from Boston]
S	mean	Does this mean [<i>s</i> AA has a hub in Boston]

- N a set of non-terminal symbols (or variables)
- Σ a set of **terminal symbols** (disjoint from *N*)
- *R* a set of **rules** or productions, each of the form $A \rightarrow \beta$, where *A* is a non-terminal,
 - β is a string of symbols from the infinite set of strings $(\Sigma \cup N) *$
- S a designated start symbol

Capital letters like A, B, and S	Non-terminals
S	The start symbol
Lower-case Greek letters like α , β , and γ	Strings drawn from $(\Sigma \cup N) *$
Lower-case Roman letters like <i>u</i> , <i>v</i> , and <i>w</i>	Strings of terminals

Given formal grammar $G = (N, \Sigma, R, S)$:

Def: Given strings a and $b \in (\Sigma \cup N)^*$, $a \Rightarrow_G b$ iff there exist $p, q, r, s \in (\Sigma \cup N)^*$ such that

- a = p + q + s,
- b = p + r + s, and
- $(q \rightarrow r) \in R$

Def: A string $a \in \Sigma^*$ is grammatical in grammar G iff $S \Rightarrow^* a$.

p. 11

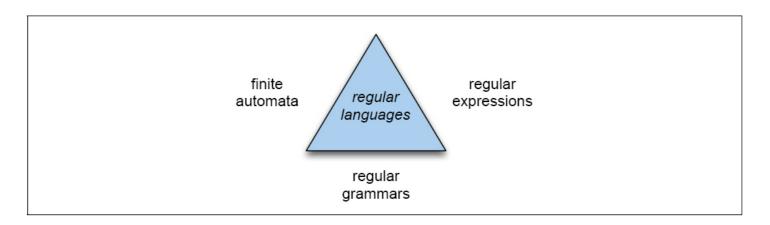
The Chomsky Hierarchy

Generative power of a formalism

What is the set of languages generated by a formalism?

• **Overgeneration:** too powerful a formalism, also generating languages that we don't want.

• **Undergeneration:** too weak a formalism, not generating the languages we would like to.


Generative power of a formalism

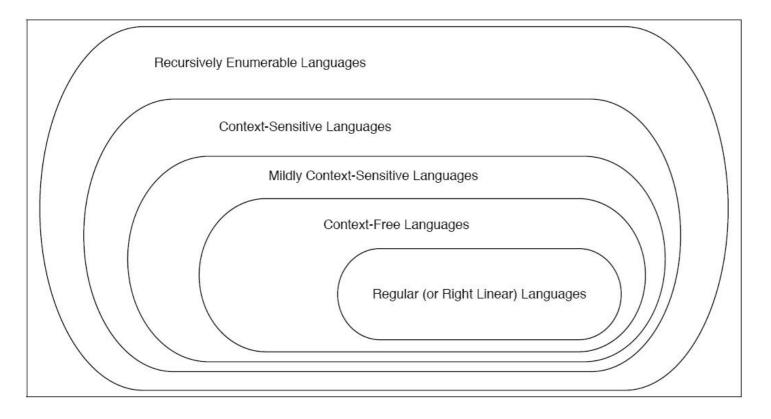
What is the set of languages generated by a formalism? **Goal:** generate exactly the attested human languages. If reached: our formalism *accounts* for human languages. Making happy

- the theoretical linguist wishing to characterize the possible languages of the world, who is now offered a mathematical tool to do so.
- the cognitive scientist wishing to decipher the "mental software" run by our brain.

Regular languages

But this is too weak a formalism for natural languages!

What can we do with formal grammars?


Chomsky hierarchy

Туре	Common Name	Rule Skeleton	Linguistic Example
0	Turing Equivalent	$\alpha \rightarrow \beta$, s.t. $\alpha \neq \epsilon$	HPSG, LFG, Minimalism
1	Context Sensitive	$\alpha A\beta \rightarrow \alpha\gamma\beta$, s.t. $\gamma \neq \epsilon$	
—	Mildly Context Sensitive		TAG, CCG
2	Context Free	$A ightarrow \gamma$	Phrase-Structure Grammars
3	Regular	$A \rightarrow xB$ or $A \rightarrow x$	Finite-State Automata

NB:

- 0: Turing machine
- 1: Linear bounded automaton
- 2: Non-deterministic push-down automaton
- 3: Finite-state automaton

The Chomsky Hierarchy

Weak and strong equivalence

 $\{a^n b^m | n, m \in \mathbb{N}^+\}$

- Regular expression: /a+ b+/
- Finite State Automaton: initial state q₀, state q₁, end state q₂, arc q₀ → q₀ with label a, arc q₁ → q₁ with label b, arc loop q₀ → q₁ with label a, arc loop q₁ → q₂ with label b.
- Regular grammar: $S \rightarrow a \ S$, $S \rightarrow a \ A$, $A \rightarrow b \ A$, $A \rightarrow b$
- Context Free Grammar: $S \to A \ B$, $A \to A \ A$, $B \to B \ B$, $A \to a$, $B \to b$

The Pumping Lemma

```
For all L infinite regular languages,
```

there are strings x, y and z such that

 $y \neq \epsilon$ and

```
xy^n z \in L for all N \ge 0.
```

```
Example: \{a^nb^n\} is not regular.
```


The Pumping Lemma

Example: $L = \{xx^{rev} | x \in \{a, b\}^*\}$ is not regular.

where x^{rev} is the string x reversed. The strings in L are symmetrical. **Proof:**

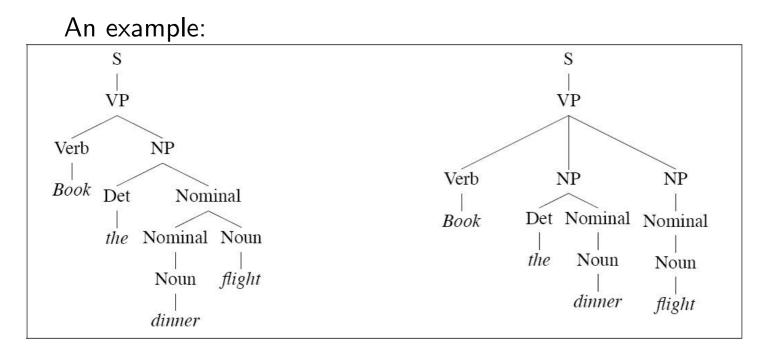
- Intersect L with regular language aa*bbaa*.
 If L were regular, then intersection would also be regular, because regular languages are closed for intersection (J&M 2.3).
- 2. Resulting language is $a^n b^2 a^n$, which is not regular, due to the pumping lemma. Therefore L cannot be regular, either.

- N a set of non-terminal symbols (or variables)
- Σ a set of **terminal symbols** (disjoint from *N*)
- *R* a set of **rules** or productions, each of the form $A \rightarrow \beta$ [*p*], where *A* is a non-terminal,

 β is a string of symbols from the infinite set of strings $(\Sigma \cup N)*$, and *p* is a number between 0 and 1 expressing $P(\beta|A)$

S a designated start symbol

$$\sum_{\beta \in (N \cup \Sigma)^*} P(A \to \beta) = 1$$


Probability of tree T (which yields sentence S):

$$P(T,S) = \prod_{i=1}^{n} P(RHS_i | LHS_i)$$

the product of the probabilities of the n rules used to expand each of the n non-terminal nodes in parse tree T(J&M 14.1.1).

Probabilistic CFG: an example					
Grammar		Lexicon			
$S \rightarrow NP VP$	[.80]	$Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$			
$S \rightarrow Aux NP VP$	[.15]	Noun \rightarrow book [.10] flight [.30]			
$S \rightarrow VP$	[.05]	<i>meal</i> [.15] <i>money</i> [.05]			
$NP \rightarrow Pronoun$	[.35]	<i>flights</i> [.40] <i>dinner</i> [.10]			
$NP \rightarrow Proper-Noun$	[.30]	$Verb \rightarrow book [.30] \mid include [.30]$			
$NP \rightarrow Det Nominal$	[.20]	<i>prefer</i> ;[.40]			
$NP \rightarrow Nominal$	[.15]	$Pronoun \rightarrow I[.40] \mid she [.05]$			
$Nominal \rightarrow Noun$	[.75]	me[.15] you [.40]			
$Nominal \rightarrow Nominal Noun$	[.20]	<i>Proper-Noun</i> \rightarrow <i>Houston</i> [.60]			
Nominal \rightarrow Nominal PP	[.05]	NWA [.40]			
$VP \rightarrow Verb$	[.35]	$Aux \rightarrow does [.60] \mid can [40]$			
$VP \rightarrow Verb NP$	[.20]	Preposition \rightarrow from [.30] to [.30]			
$VP \rightarrow Verb NP PP$	[.10]	<i>on</i> [.20] <i>near</i> [.15]			
$VP \rightarrow Verb PP$	[.15]	through [.05]			
$VP \rightarrow Verb NP NP$	[.05]				
$VP \rightarrow VP PP$	[.15]				
$PP \rightarrow Preposition NP$	[1.0]				

(booking a flight serving dinner vs. booking a flight on behalf of 'dinner'.)

Parsing and grammar learning

- **Parsing:** Given (probabilistic) CFG *G*, given sentence *s*, find (possible/most probable) parse tree for *s* in *G*.
- Learning: Given set of sentences, build a (probabilistic) context free grammar.

Have a nice break, and

see you after the spring recess!

