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Practical matters

e Post-reading: JM 12, JM 13, 14.1-4.

e Pre-reading: JM 11.1 and intro of 11.3.

e http://birot.hu/courses/2014-LC/readings.txt
e Assignment 3 returned. Midterm due now.

e Assignment 4 posted during the weekend. Due: 04/08.

e (To come: Viterbi and Forward-Backward — an example)
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Today

e Remarks on Assignment 3 (also as an intro to PCFGs)
e Probabilistic Context Free Grammars
e Parsing PCFGs

e Learning PCFGs

e (Further parsing techniques)

Next time: Computational Phonology
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Minimal Cost Paths in a Weighted FSA
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Minimal Cost Paths in a Weighted FSA

Weighted Finite State Automata (WFSAs)
vs. Hidden Markov Models (HMMs):

e Y is finite in WFSA, not necessarily in HMM.
e HMM is multiplicative, WFSA is additive.
e HMM maximizes probabilities, WFSA minimizes costs.

e — log of HMM probabilities — WFSA costs.
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Minimal Cost Paths in a Weighted FSA

Weighted Finite State Automata (WFSAs)
vs. Hidden Markov Models (HMMs):

e HMM: transition from any ¢ to any ¢’ possible,
e ... but maybe a, , = 0, and so probability of path = 0.
e WFSA: transition possible only if ¢’ € d(q, 7).

e |f goal is minimal cost, then suppose +oo cost.
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Minimal Cost Paths in a Weighted FSA

Weighted Finite State Automata (WFSAs)
vs. Hidden Markov Models (HMMs): different picture

e HMM: emission in states.
e WFSA: reading during transitions.
e HMM: stochastic/probabilistic process.

e WFSA: non-deterministic, but not stochastic/probabilistic:
transition is either possible, or not.
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Probabilistic Context Free Grammars
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Probabilistic Context Free Grammars

N a set of non-terminal symbols (or variables)

2 a set of terminal symbols (disjoint from N)

R aset of rules or productions, each of the form A — f8 |p|,
where A 1s a non-terminal,
f3 is a string of symbols from the infinite set of strings (ZUN )x,
and p is a number between 0 and 1 expressing P(f3|A)

S adesignated start symbol

Y PA-pB) =1

BeE(NUX)*
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Probabilistic Context Free Grammars

Independence assumption: rewrite rules are applied
independently from each other.

Probability of tree T' (which yields sentence S):

P(T, S) = f[ P(RHS;|LHS;)

1=1

the product of the probabilities of the n rules used to expand
each of the n non-terminal nodes in parse tree T'

(J&M 14.1.1).

Consistency: if ) ;. ¢ P(7,5) =1. Not always the case!

Tamas Bird, Yale U., Language and Computation



Probabilistic CFG: an example

Grammar Lexicon
S — NP VP [.80] Det — that [.10] | a[.30] | the [.60]
S — Aux NP VP [15] Noun — book [.10] | flight [.30]
S — VP [.05] | meal [.15] | money [.05]
NP — Pronoun [.35] | flights [.40] | dinner [.10]
NP — Proper-Noun [.30] Verb — book [.30] | include [.30]
NP — Det Nominal [.20] | prefer;|.40]
NP — Nominal [.15] Pronoun — I[.40] | she [.05]
Nominal — Noun [.75] | me [.15] | vou [.40]
Nominal — Nominal Noun [.20] Proper-Noun — Houston [.60]
Nominal — Nominal PP [.05] | NWA [.40]
VP — Verb [.35] Aux — does [.60] | can [40]
VP — Verhb NP [.20] Preposition — from [.30] | to [.30]
VP — Verb NP PP [.10] | on [20] | near [.15]
VP — Verb PP [.15] | through [.05]
VP — Verh NP NP .05]
VP — VP PP [.15]
PP — Preposition NP [1.0]
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Probabilistic Context Free Grammars
An example:

S S
| |
\'IP VTP
/ ~\
Verb NP
| k ST R Verb NP NP
Book et Nonfnal | 2
| E i Book Det Nominal Nominal

e
the Nominal Noun | | |
| | the Noun  Noun
Noun flight | |

| dinner  flight
dinner

(booking a flight serving dinner vs. booking a flight on behalf of ‘dinner’.)

P(T;,5) =22 x 107 P(T,,S)=6.1x10""7
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Probabilistic Context Free Grammars

Parse tree 1" over sentence S, a.k.a. S is the yield of tree T

Parse selection: picking the most probable parse:

T(S) = argmax P(T|S)
Tsuch that S =yield(T")

T(S) = argmax P(T.5)

Ts.t. S =yield(T) P(S)

T(S) = argmax  P(T,S)
Ts.t. S =yield(T)

Tamas Bird, Yale U., Language and Computation



Parsing and learning a PCFG
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Parsing and Learning a PCFG

e Parsing: Given (probabilistic) CFG G, given sentence s,
find (possible/most probable) parse(s) tree for s in G.

e Learning: Given set of (parsed/unparsed) sentences,
build a (probabilistic) context free grammar.

Tamas Bird, Yale U., Language and Computation



Learning a PCFG

e Learning: Given set of sentences, build a PCFG.
e Tree bank: a set of parsed sentences.

e Maximum likelihood estimate:

e Without a tree-bank: inside-outside algorithm

a version of EM, similar to forward-backward for HMM.
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Parsing a PCFG

e Parsing: Given PCFG G, given sentence s,
find (possible/most probable) parse(s) tree for s in G.

e Probabilistic CKY (bottom-up, left-to-right: requires CNF)

function PROBABILISTIC-CKY (words,grammar) returns most probable parse
and 1ts probability

for j«—from 1 to LENGTH(words) do
forall { A| A — words[j| € grammar}
table[j—1, j,Al<—P(A — words|j])
for i —from j — 2 downto O do
fork—i+1to j—1do
forall { A|A — BC < grammar,
and rableli,k,B| > 0 and tablelk, j,C] > 0 |
if (table[i j,A] < P(A — BC) x tableli,k,B] x table[k.j,C]) then

tableli j,A]— P(A — BC) x tableli,k,B] x table[k,j,C]
backli.j, Al —{k,B,C}

return BUILD_TREE(back[1l, LENGTH(words), S]), table[1, LENGTH(words), S]
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See you next week!
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