Language and Computation

week 10, Thursday, April 03

Tamás Biró Yale University tamas.biro@yale.edu http://www.birot.hu/courses/2014-LC/

Practical matters

- **Post-reading:** JM 11
- Pre-reading: JM 17.1-2, 18.1, 19.1, 20.1
- http://birot.hu/courses/2014-LC/readings.txt
- Assignment 4 posted, due: 04/10.
- (To come(?): Viterbi and Forward-Backward an example)
- Midterm returned.

Today

- Finite State phonology
- Optimality Theory: general definition
- Implementations of OT

Next week: learning OT; computational semantics.

Finite-state phonology

Regular relation (recap)

- Relation $\mathcal{R} \subseteq \Sigma^* \times \Delta^*$
- is a **regular relation** iff
- accepted by a *Finite State Transducer* over Σ and Δ , that is,
- matched by a regular expression over $(\Sigma \cup \{\epsilon\}) \times (\Delta \cup \{\epsilon\})$.

Phonology: mapping $UR \mapsto SR$

Is it a regular relation?

- Non-cyclic SPE-rules are finite-state (Johnson 1972; Kaplan and Kay, 1981/1994):
 - SPE based on context-sensitive rules (Chomsky and Halle 1968): $A \rightarrow B/C_{-} D$, that is, $C \ A \ D \rightarrow C \ B \ D$.
 - But, they are not applied recursively!
 - -/.* (C:C) (A:B) (D:D) .*/, equivalent to some FST.
 - Cascade of SPE rewrite rules \rightarrow cascade of FSTs.

Phonology: mapping $\mathsf{UR} \mapsto \mathsf{SR}$

Is it a regular relation?

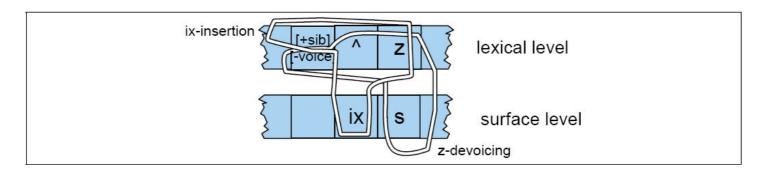
• Kimmo Koskenniemi (1983): **two-level morphology** with *declarative constraints*

Rule Type	Interpretation
$\texttt{a:b} \Leftarrow \texttt{c} __\texttt{d}$	a is always realized as b in the context $c _\d$
$\texttt{a:b} \Rightarrow \texttt{c} __\texttt{d}$	a may be realized as b only in the context c d
$\texttt{a:b} \Leftrightarrow c __d$	a must be realized as b in context $c - d$ and nowhere else
a:b/	a is never realized as b in the context $c - d$

Example: allomorphs of English plural morpheme

Morphology:< fax > + PluralPhonology:UF/f a: k s + z /Phonology:SF[f a: k s i z]

Solution with **rules** in SPE-style phonology (early generative phonology):


$$\emptyset \rightarrow i / [+ sibilant] + _ z #$$

z \rightarrow s / [- voice] + _ #

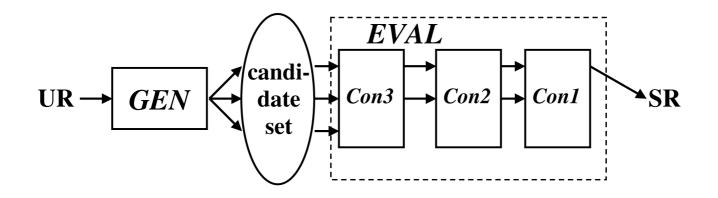
Example: allomorphs of English plural morpheme

Morphology: <fax> + Plural **Phonology:** UF /fa: ks + z /**Phonology:** SF [fa: ksiz]

Solution with constraints in two-level morphology:

Example: allomorphs of English plural morpheme

Morphology:< fax > + PluralPhonology:UF/fa: k s + z /Phonology:SF[fa: k s i z]


Solution with soft constraints in Optimality Theory:

/fa: ks + z/	*SZ	*SS	Faithfulness
	e.g., voice assim	e.g., OCP	
[f a: k s z]	*!		
[f a: k s s]		*!	*
🖙 [fa: ksiz]			*
[fa: ksis]			*!*

Architectures for phonology

• Overall architectures: Optimality Theory

Phonology: mapping $UR \mapsto SR$

Is it a regular relation?

- Optimality Theory is finite-state under some assumptions Frank and Satta (1998), Karttunen (1998), Gerdemann and van Noord (2000).
 Gen oo Constr_1 oo Constr_2 oo ... oo Constr_n
- Non-finite state constraints: Eisner (1997), Bíró (2003)
- OT as weighted FST: Ellison (1994), Eisner (1997, etc.)

Optimality Theory: the basic idea

Simplified language typology:

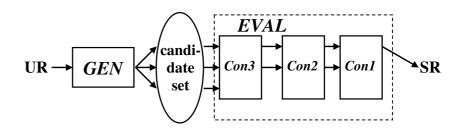
- Stress on first syllable
- Stress on last syllable
- Stress on penultimate syllable
- No language with stress on second syllable as a rule

Simplified language typology:

- EARLY: stress as early as possible
- LATE: stress as late as possible
- NONFINAL: stress not on last syllable.

	/σσσσ/	EARLY	LATE	NonFinal
R	[s u u u]	0	3	0
	[u s u u]	1!	2	0
	[u u s u]	2!	1	0
	[uuus]	3!	0	1

	/σσσσ/	NonFinal	LATE	LATE
	[s u u u]	0	3!	0
	[usuu]	0	2!	1
R	[u u s u]	0	1	2
	[uuus]	1!	0	3


OT accounts for this simplified language typology:

- Stress on first syllable: Early \gg Late, NonFinal, NonFinal \gg Early \gg Late
- Stress on last syllable Late \gg Early, NonFinal
- Stress on penultimate syllable
 NONFINAL ≫ LATE ≫ EARLY
- No language with stress on second syllable as a rule: No such hierarchy.

Basic ideas of Optimality Theory

Gen and Eval

- Gen and constraints are universal.
- Constraints ranked into strict domination hierarchy
- Language typology due to differences in hierarchy \rightarrow learning: find the correct hierarchy.

Optimality Theory at a disciplinary crossroads

Theoretical linguistics \rightarrow constraints

Computer science

ightarrow optimization

Cognitive science

OT: optimize some target function, motivated by linguistic research.

Optimization in linguistics

$$SF(u) = \underset{c \in Gen(u)}{\operatorname{arg opt}} H(c)$$

Harmony Grammar:

$$H(c) = \sum_{i=1}^{n} w_i \cdot C_i(c)$$

Optimality Theory:
 $H(c) = (C_1(c), C_2(c), \dots, C_n(c))$
Principles and Parameters:
 $H(c) = \lambda I^n$ ($w_i \wedge C_i(c)$)

Principles and Parameters:

$$H(c) = \bigvee_{i=1}^{n} (w_i \wedge C_i(c))$$

Implementations of Optimality Theory

How to find the most harmonic element of Gen(u)?

- Exhaustive search
- Finite state representations
- Dynamic programming / chart parsing
- Genetic algorithms
- Simulated annealing

See you next week!

Tamás Biró, Yale U., Language and Computation

p. 23