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Practical matters

• Post-reading: JM 11

• Pre-reading: JM 17.1-2, 18.1, 19.1, 20.1

• http://birot.hu/courses/2014-LC/readings.txt

• Assignment 4 posted, due: 04/10.

• (To come(?): Viterbi and Forward-Backward – an example)

• Midterm returned.
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Today

• Optimality Theory: general definition

• Implementations of OT

• Learning OT

Next time: computational semantics.
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Phonology as a (regular?) relation (U,SF(U))

(While alternative approaches to phonology also exist,)

Lexicon + morphology → underlying form U
Phonology: U 7→ SF. Phonetics: SF to sound wave.

• Early generative phonology (SPE):
cascade of context-sensitive rewrite rules.
Procedural perspective

• Two-level phonology and morphology:
declarative constraints.

• Optimality Theory: soft constraints.
Teleological perspective
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Optimality Theory: the basic idea
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Optimality Theory

Simplified language typology:

• Stress on first syllable

• Stress on last syllable

• Stress on penultimate syllable

• No language with stress on second syllable as a rule
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Optimality Theory

An OT model to account for this simplified language typology:

• Early: stress as early as possible
# syllables intervening between left edge of word and stress.

• Late: stress as late as possible
# syllables intervening between stress and right edge.

• NonFinal: stress not on last syllable.
# of stresses on last syllable of the word.
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Optimality Theory

Gen(σσσσ) = {[suuu], [usuu], [uusu], [uuus]}.

/σσσσ/ Early Late NonFinal

+ [s u u u ] 0 3 0
[u s u u ] 1! 2 0
[u u s u ] 2! 1 0
[u u u s ] 3! 0 1

SF(σσσσ) =[suuu]
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Optimality Theory

Gen(σσσσ) = {[suuu], [usuu], [uusu], [uuus]}.

/σσσσ/ NonFinal Late Early

[s u u u ] 0 3! 0
[u s u u ] 0 2! 1

+ [u u s u ] 0 1 2
[u u u s ] 1! 0 3

SF(σσσσ) =[uusu]
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Optimality Theory

OT accounts for this simplified language typology:

• Stress on first syllable: Early � Late, NonFinal,
as well as NonFinal � Early � Late

• Stress on last syllable Late � Early, NonFinal

• Stress on penultimate syllable
NonFinal � Late � Early

• No language with stress on second syllable as a rule:
No such hierarchy.
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Basic ideas of Optimality Theory

• Gen and Eval

• Gen and constraints are universal.

• Constraints ranked into strict domination hierarchy

• Language typology due to differences in hierarchy
→ learning: find the correct hierarchy.
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Basic ideas of Optimality Theory

Two views of Optimality Theory:

• Constraints as filters:
“Clever” filters: filters out “worse ones”, not “bad ones”.

• Constraints as elementary functions:
Find candidate that violates the “least” constraints.
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Optimality Theory at a disciplinary crossroads

Theoretical linguistics → constraints

Computer science
→ optimization

Cognitive science

OT: optimize some target function,
motivated by linguistic research.
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Optimization in linguistics

SF(u) = arg opt
c∈Gen(u)

H(c)

Harmony Grammar: H(c) =
∑n

i=1wi · Ci(c)
opt: min for < on R.

Optimality Theory: H(c) = (C1(c), C2(c), . . . , Cn(c))
opt: lexicographical order on Rn.

Principles and Parameters: H(c) =
∧n

i=1(wi ∨ Ci(c))
opt: false “more optimal” than true.
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Implementing Optimality Theory
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Implementations of Optimality Theory

How to find the most harmonic element of Gen(u)?

• Exhaustive search

• Finite state representations

• Dynamic programming / chart parsing

• Genetic algorithms

• Simulated annealing
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Errors of the mental computation

static knowledge processing in the brain
Optimality Theory Simulated Annealing for OT
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Errors of the mental computation
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Basic idea of Simulated Annealing

Step 1 – introducing landscape:

• Horizontal: universal neighbourhood structure (a.k.a.
topology) on the universal candidate set.

• Vertical: grammar-dependent harmony (violation profile of
the constraints).

• Random walk in this landscape.
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Basic idea of Simulated Annealing

Step 2 – walking in this landscape:

• Pick a random neighbour of your position.

• If neighbour is more optimal: move.

• If less optimal: move in the beginning, don’t move later.
(Exponential expression applied to vector-valued target function.)
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Basic idea of Simulated Annealing

Step 3 – performing a random walk on this landscape:

• Start random walk from some initial position.

• End position returned as output of algorithm: form produced

• Hopefully, global optimum (grammatical form) found. Yet,

• Neighbourhood structure → local optima, where random
walker can get stuck. Performance errors.
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Basic idea of Simulated Annealing

Step 4 – Precision of the algorithm

• Precision of the algorithm: chance of ending up in global
optimum, and hence returning grammatical form.

• Precision of the algorithm depends on its speed.

• Trade precision for speed – just like human mind!
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Basic idea of Simulated Annealing

Level its product its model the product

in the model

Competence in narrow standard globally

sense: static knowledge grammatical form OT optimal

of the language grammar candidate

Dynamic language acceptable or SA-OT local

production process attested forms algorithm optima

Performance in its acoustic (phonetics,

outmost sense signal, etc. pragmatics) ??
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Variation in Optimality Theory

Often more than one grammatical form: SF1 ∼ SF2.
Some possible approaches:
• More element in Gen(U), with same violation profile.

• Also generate other elements than Gen(U).

• 1 mental grammar = combination of more “elementary grammars”.

E.g, Paul Boersma’s Stochastic OT :

Tamás Biró, Yale U., Language and Computation p. 24



Learning Optimality Theory

Tamás Biró, Yale U., Language and Computation p. 25



Language acquisition
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Language acquisition

Tamás Biró, Yale U., Language and Computation p. 27



Language acquisition
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Learning in Optimality Theory

General idea:

• Speaker-teacher wants to say underlying form uf.

• Speaker-teacher’s grammar produces surface form sf.

• Listener-learner hears surface form sf = winner form w.

• Listener-learner’s grammar would produce uf as loser form l.

• Listener-learner updates her grammar, in order to produce w, and not l:

Winner-preferring constraints are promoted and loser-preferring

constraints are demoted in hierarchy hypothesized by the learner.
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Learning in Optimality Theory

General idea:

• Winner preferring constraints vs. Loser preferring constraints

• All L must be dominated by at least one W.

• Demote L, possibly promote W.
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Learning in Optimality Theory

General idea:

• Recursive Constraint Demotion: off-line (batch learning)

• Error Driven Constraint Demotion: on-line

• Gradual Learning Algorithm
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See you on Thursday!
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