Language and Computation

week 11, Tuesday, April 08

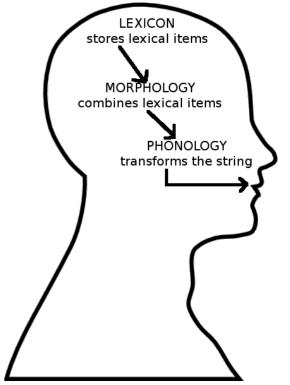
Tamás Biró Yale University tamas.biro@yale.edu http://www.birot.hu/courses/2014-LC/

Practical matters

- **Post-reading:** JM 11
- **Pre-reading:** JM 17.1-2, 18.1, 19.1, 20.1
- http://birot.hu/courses/2014-LC/readings.txt
- Assignment 4 posted, due: 04/10.
- (To come(?): Viterbi and Forward-Backward an example)
- Midterm returned.

Today

- Optimality Theory: general definition
- Implementations of OT
- Learning OT


Next time: computational semantics.

Phonology as a (regular?) relation (U, SF(U))

(While alternative approaches to phonology also exist,) Lexicon + morphology \rightarrow underlying form UPhonology: $U \mapsto SF$. Phonetics: SF to sound wave.

- Early generative phonology (SPE): cascade of context-sensitive rewrite rules. *Procedural perspective*
- Two-level phonology and morphology: declarative constraints.
- Optimality Theory: soft constraints. <u>Teleological perspective</u>

Optimality Theory: the basic idea

Simplified language typology:

- Stress on first syllable
- Stress on last syllable
- Stress on penultimate syllable
- No language with stress on second syllable as a rule

An OT model **to account for** this simplified language typology:

- EARLY: stress as early as possible
 # syllables intervening between left edge of word and stress.
- LATE: stress as late as possible
 # syllables intervening between stress and right edge.
- NONFINAL: stress not on last syllable.
 # of stresses on last syllable of the word.

$Gen(\sigma\sigma\sigma\sigma) = \{[suuu], [usuu], [uusu], [uuus]\}.$

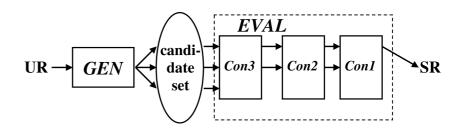
	/σσσσ/	EARLY	LATE	NonFinal
ß	[s u u u]	0	3	0
	[u s u u]	1!	2	0
	[u u s u]	2!	1	0
	[uuus]	3!	0	1

 $SF(\sigma\sigma\sigma\sigma) = [suuu]$

$Gen(\sigma\sigma\sigma\sigma) = \{[suuu], [usuu], [uusu], [uuus]\}.$

/σσσσ/	NonFinal	LATE	EARLY		
[s u u u]	0	3!	0		
[u s u u]	0	2!	1		
🖙 [uusu]	0	1	2		
[uuus]	1!	0	3		

 $SF(\sigma\sigma\sigma\sigma\sigma) = [uusu]$


OT accounts for this simplified language typology:

- Stress on first syllable: EARLY ≫ LATE, NONFINAL, as well as
 NONFINAL ≫ EARLY ≫ LATE
- Stress on last syllable Late \gg Early, NonFinal
- Stress on penultimate syllable NonFinal \gg Late \gg Early
- No language with stress on second syllable as a rule: No such hierarchy.

Basic ideas of Optimality Theory

Gen and Eval

- Gen and constraints are universal.
- Constraints ranked into strict domination hierarchy
- Language typology due to differences in hierarchy \rightarrow learning: find the correct hierarchy.

Basic ideas of Optimality Theory

Two views of Optimality Theory:

- Constraints as filters:
 "Clever" filters: filters out "worse ones", not "bad ones".
- Constraints as elementary functions: Find candidate that violates the "least" constraints.

Optimality Theory at a disciplinary crossroads

Theoretical linguistics \rightarrow constraints

Computer science

ightarrow optimization

Cognitive science

OT: optimize some target function, motivated by linguistic research.

Optimization in linguistics

$$SF(u) = \underset{c \in Gen(u)}{\operatorname{arg opt}} H(c)$$

Harmony Grammar: opt:

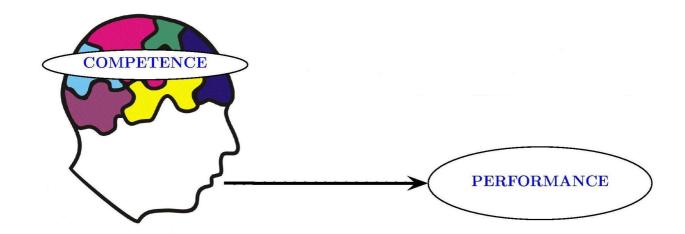
$$H(c) = \sum_{i=1}^{n} w_i \cdot C_i(c)$$

min for < on \mathbb{R} .

Optimality Theory: opt: $H(c) = (C_1(c), C_2(c), \dots, C_n(c))$ lexicographical order on \mathbb{R}^n .

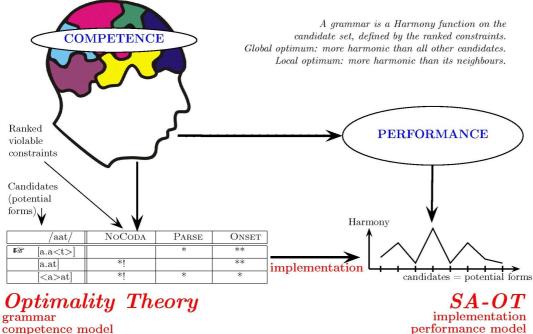
Principles and Parameters: opt: $H(c) = \bigwedge_{i=1}^{n} (w_i \lor C_i(c))$ false "more optimal" than true.

Implementing Optimality Theory


Implementations of Optimality Theory

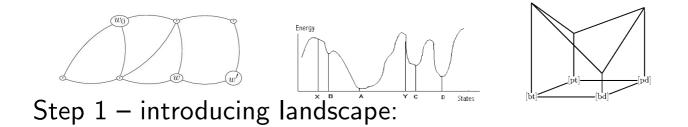
How to find the most harmonic element of Gen(u)?

- Exhaustive search
- Finite state representations
- Dynamic programming / chart parsing
- Genetic algorithms
- Simulated annealing


Errors of the mental computation

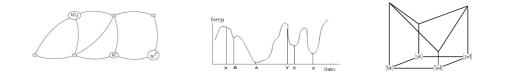
static knowledge Optimality Theory processing in the brain Simulated Annealing for OT

Errors of the mental computation

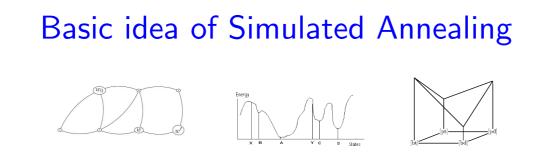


competence model grammatical form = \mathbb{G} (globally) optimal candidate

produced forms = globally or locally optimal candidates


Basic idea of Simulated Annealing

- Horizontal: universal *neighbourhood structure* (a.k.a. *topology*) on the universal candidate set.
- Vertical: grammar-dependent harmony (violation profile of the constraints).
- Random walk in this landscape.


Basic idea of Simulated Annealing

Step 2 – walking in this landscape:

- Pick a random neighbour of your position.
- If neighbour is more optimal: move.
- If less optimal: move in the beginning, don't move later. (Exponential expression applied to vector-valued target function.)

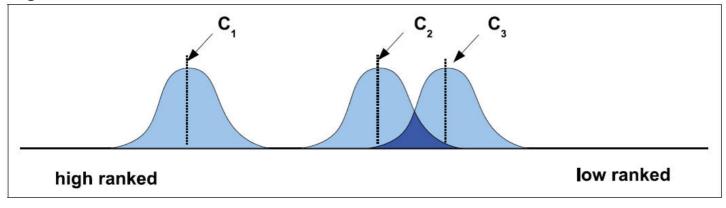
Step 3 – performing a random walk on this landscape:

- Start random walk from some initial position.
- End position returned as output of algorithm: form produced
- Hopefully, global optimum (grammatical form) found. Yet,
- Neighbourhood structure \rightarrow local optima, where random walker can get stuck. Performance errors.

Step 4 – Precision of the algorithm

- **Precision** of the algorithm: chance of ending up in global optimum, and hence returning grammatical form.
- Precision of the algorithm depends on its speed.
- Trade precision for speed just like human mind!

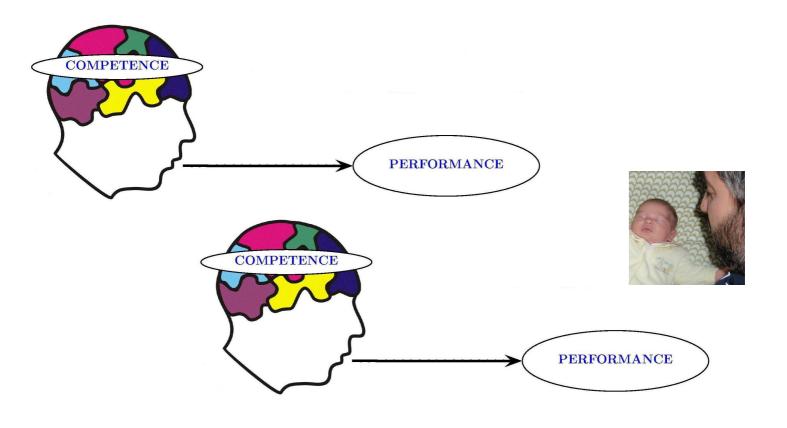
Basic idea of Simulated Annealing

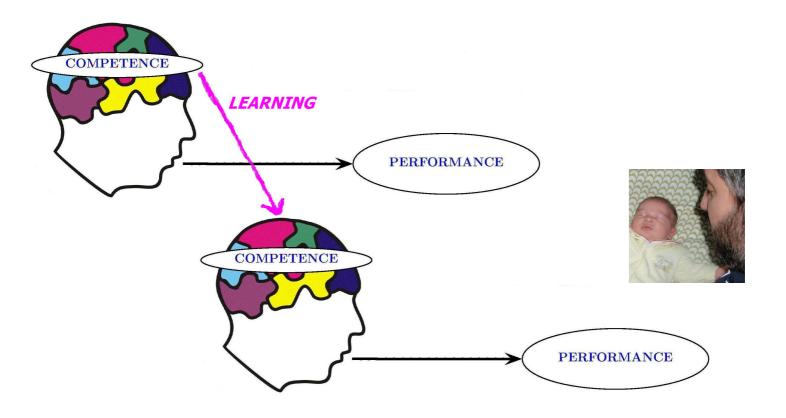

Level	its product	its model	the product
			in the model
Competence in narrow		standard	globally
sense: static knowledge	grammatical form	ОТ	optimal
of the language		grammar	candidate
Dynamic language	acceptable or	SA-OT	local
production process	attested forms	algorithm	optima
Performance in its	acoustic	(phonetics,	
outmost sense	signal, etc.	pragmatics)	??

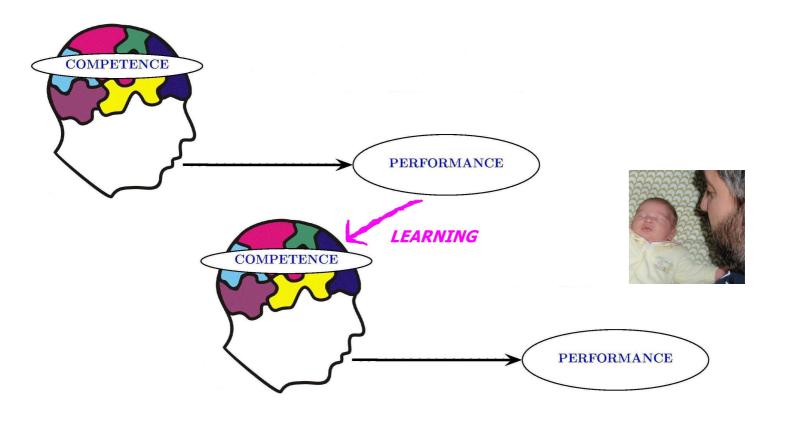
Variation in Optimality Theory

Often more than one grammatical form: $SF_1 \sim SF_2$. Some possible approaches:

- More element in Gen(U), with same violation profile.
- Also generate other elements than Gen(U).
- 1 mental grammar = combination of more "elementary grammars".
 E.g, Paul Boersma's *Stochastic OT*:




Learning Optimality Theory


Language acquisition

Language acquisition

Language acquisition

Learning in Optimality Theory

General idea:

- Speaker-teacher wants to say *underlying form* uf.
- Speaker-teacher's grammar produces *surface form* sf.
- Listener-learner hears *surface form* sf = *winner form* w.
- Listener-learner's grammar would produce uf as *loser form* I.
- Listener-learner updates her grammar, in order to produce w, and not I:

Winner-preferring constraints are promoted and loser-preferring constraints are demoted in hierarchy hypothesized by the learner.

Learning in Optimality Theory

General idea:

/underlying form/	C ₁	C ₂	C3	C4	C5	C ₆	C7	C ₈
Candidate 1 (learning observation)	$*! \rightarrow$	$* \rightarrow$			$* \rightarrow$			
Candidate 2 (learner's output)						←*		

- Winner preferring constraints vs. Loser preferring constraints
- All L must be dominated by at least one W.
- Demote L, possibly promote W.

Learning in Optimality Theory

General idea:

/underlying form/	C1	C ₂	C3	C4	C5	C ₆	C7	C ₈
Candidate 1 (learning observation)	$*! \rightarrow$	$* \rightarrow$			$* \rightarrow$			
Candidate 2 (learner's output)						←*		

- Recursive Constraint Demotion: off-line (batch learning)
- Error Driven Constraint Demotion: on-line
- Gradual Learning Algorithm

See you on Thursday!

Tamás Biró, Yale U., Language and Computation

p. 32