Language and Computation

week 11, Thursday, April 10

Tamás Biró Yale University tamas.biro@yale.edu http://www.birot.hu/courses/2014-LC/

Practical matters

- Post-reading: JM 11, 17, 20.1-3.
- Pre-reading: JM 18.1, 19.1, 20.1, 21.1.
- http://birot.hu/courses/2014-LC/readings.txt
- Assignment 4 due. Assignment 5 to come soon.
- Midterm returned.

Today

- Stochastic approaches to Optimality Theory
- Optimality Theory: learnability
- Introduction to semantics
- Selected topics in computational semantics

Next time: Computational discourse and dialogue systems.

Stochastic approaches to Optimality Theory

Stochastic grammars: why?

- Frequency in corpora? No! (Or yes?) (*I was born in New Haven* vs. *I was born in New York*)
- Free variation: more than one grammatical form

 being produced by a single brain
 being produced by speakers of a language community
 (more stupid vs. stupider)
- Gradient grammaticality judgement
- Performance errors (e.g., fast speech errors)

Variation in Optimality Theory

- More elements in Gen(U) with same violation profile.
- Implementation can return other candidates than the (globally) optimal element of Gen(U).
- 1 mental grammar = stochastic combination of more "elementary grammars". E.g, Boersma's *Stochastic OT*:

Learning Optimality Theory

Language acquisition

Language acquisition

Language acquisition

Learning in Optimality Theory

General idea:

- Speaker-teacher wants to say *underlying form* uf.
- Speaker-teacher's grammar produces *surface form* sf.
- Listener-learner hears *surface form* sf = *winner form* w.
- Listener-learner's grammar would produce uf as *loser form* I.
- Listener-learner updates her grammar, in order to produce w, and not I:

Winner-preferring constraints are promoted and loser-preferring constraints are demoted in hierarchy hypothesized by the learner.

Learning in Optimality Theory

General idea:

/underlying form/	C1	C ₂	C3	C4	C5	C ₆	C7	C ₈
Candidate 1 (learning observation)	$*! \rightarrow$	$* \rightarrow$			$* \rightarrow$			
Candidate 2 (learner's output)								

- Winner preferring constraints vs. Loser preferring constraints
- All L must be dominated by at least one W.
- Demote L, possibly promote W.

Learning in Optimality Theory

General idea:

/underlying form/	C1	C ₂	C3	C4	C5	C ₆	C7	C ₈
Candidate 1 (learning observation)	$*! \rightarrow$	$* \rightarrow$			$* \rightarrow$			
Candidate 2 (learner's output)								

- Recursive Constraint Demotion: off-line (batch learning)
- Error Driven Constraint Demotion: on-line
- Gradual Learning Algorithm

Semantics

Tamás Biró, Yale U., Language and Computation

p. 14

Semantics: the study of 'meaning'

F. de Saussure (1916): linguistic sign

signifier:phonetics, phonology,morphology,syntaxsignified:-semantics

What is meaning?

- A mental construct? Category formation:
 - Prototypes
 - Examplars
- Reference theories: what the linguistic sign refers to in the world '*The current king of France*'?

• Truth value: The set of possible worlds in which the proposition holds.

"Bird" class

What is meaning?

- Lexical semantics: "atomic units"
- Compositional semantics: from atomic units to the meaning of phrases and sentences.

What is meaning?

• WE DO NOT KNOW IT!

- But let us handle it. . .
- How to do it?

Why handle meaning?

Seemingly,

most "ultimate" NLP tasks require access to meaning:

machine translation, question answering, information extraction, dialogue systems, spell checking, etc.

at least, when we think of the way humans solve these tasks.

• To improve quality of "lower level" NLP tasks:

speech synthesis and recognition, part-of-speech tagging, morphological and syntactic parsing, etc.

How to handle meaning?

• By tackling the problem:

Create a computational model of the mental representation of the world. . . Hope to do so in the 60s, but then given up.

- By circumventing the problem:
 E.g., Probabilistic Grammars with corpus based frequencies.
- By employing intermediate solutions

Word sense

- Create a computational model of the mental representation of the world. . . Hope to do so in the 60s, but then given up.
- Its usasge: a vector of contexts in which the word is used in the corpus.
- \rightarrow WDS: word sense disambiguation, a classic example of Machine Learning.

See you next week!

