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Practical matters

• Post-reading: JM 11, 17, 20.1-3.

• Pre-reading: JM 18.1, 19.1, 20.1, 21.1.

• http://birot.hu/courses/2014-LC/readings.txt

• Assignment 4 due. Assignment 5 to come soon.

• Midterm returned.
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Today

• Stochastic approaches to Optimality Theory

• Optimality Theory: learnability

• Introduction to semantics

• Selected topics in computational semantics

Next time: Computational discourse and dialogue systems.
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Stochastic approaches to Optimality Theory
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Stochastic grammars: why?

• Frequency in corpora? — No! (Or yes?)
(I was born in New Haven vs. I was born in New York)

• Free variation: more than one grammatical form
. . . being produced by a single brain
. . . being produced by speakers of a language community
(more stupid vs. stupider)

• Gradient grammaticality judgement

• Performance errors (e.g., fast speech errors)
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Variation in Optimality Theory

• More elements in Gen(U) with same violation profile.

• Implementation can return other candidates
than the (globally) optimal element of Gen(U).

• 1 mental grammar = stochastic combination of more
“elementary grammars”. E.g, Boersma’s Stochastic OT :
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Learning Optimality Theory
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Language acquisition
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Language acquisition
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Language acquisition

Tamás Biró, Yale U., Language and Computation p. 10



Learning in Optimality Theory

General idea:

• Speaker-teacher wants to say underlying form uf.

• Speaker-teacher’s grammar produces surface form sf.

• Listener-learner hears surface form sf = winner form w.

• Listener-learner’s grammar would produce uf as loser form l.

• Listener-learner updates her grammar, in order to produce w, and not l:

Winner-preferring constraints are promoted and loser-preferring

constraints are demoted in hierarchy hypothesized by the learner.
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Learning in Optimality Theory

General idea:

• Winner preferring constraints vs. Loser preferring constraints

• All L must be dominated by at least one W.

• Demote L, possibly promote W.
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Learning in Optimality Theory

General idea:

• Recursive Constraint Demotion: off-line (batch learning)

• Error Driven Constraint Demotion: on-line

• Gradual Learning Algorithm
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Semantics
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Semantics: the study of ‘meaning’

F. de Saussure (1916): linguistic sign

signifier: phonetics, phonology, morphology, syntax
signified: – semantics
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What is meaning?

• A mental construct? Category formation:

• Prototypes

.

• Examplars

• Reference theories: what the
linguistic sign refers to in the world
‘The current king of France’?

• Truth value:
The set of possible worlds in which the proposition holds.
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What is meaning?

• Lexical semantics: “atomic units”

• Compositional semantics:
from atomic units to the meaning of phrases and sentences.
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What is meaning?

• WE DO NOT KNOW IT!

• But let us handle it. . .

• How to do it?
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Why handle meaning?

• Seemingly,
most “ultimate” NLP tasks require access to meaning:

machine translation, question answering, information
extraction, dialogue systems, spell checking, etc.

at least, when we think of the way humans solve these tasks.

• To improve quality of “lower level” NLP tasks:

speech synthesis and recognition, part-of-speech
tagging, morphological and syntactic parsing, etc.
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How to handle meaning?

• By tackling the problem:
Create a computational model of the mental representation
of the world. . . Hope to do so in the 60s, but then given up.

• By circumventing the problem:
E.g., Probabilistic Grammars with corpus based frequencies.

• By employing intermediate solutions
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Word sense

• Create a computational model of the mental representation
of the world. . . Hope to do so in the 60s, but then given up.

• Its usasge: a vector of contexts in which the word is used in
the corpus.

→ WDS: word sense disambiguation,
a classic example of Machine Learning.
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See you next week!
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