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Practical matters

• “Superficial” reading: JM 22-24

• Pre-reading: Intro to JM 25

• Assignments 4 returned, 5 posted

• Python: if needed, programming section

• Sections
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Today

• Anaphora resolution and coreference resolution
→ machine learning from vectors

• Information extraction

• Named entity recognition
→ machine learning from vectors

• Question answering
→ machine learning from vectors

Next time: Machine translation as a summary
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Anaphora resolution, coreference resolution
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Anaphora resolution, coreference resolution

Johni is a good friend of Kevinj. Hei/j? loves Mary.
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Anaphora resolution, coreference resolution
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Anaphora resolution, Coreference resolution

• John Smithi is a professor. Mr. Smithi works at Yale.

• My neighbors are Johni and Marryj.
Hei is a doctor and shej is a lawyer.

• Last night I walked my dogi. Maxi was very happy.

• I saw a cati. The felinei was black.

• He had a hammeri with him. The tooli was heavy.

• Row, row, row your boat, // Gently down the stream.
Merrily, merrily, merrily, merrily, // Life is but a dream.
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Anaphora resolution, Coreference resolution

• Explicit representation of the world, of the context
combined with a deep semantic analysis.

• Heuristic approaches (such as the Hobbs Algorithm):

• Take the closest plausible NP in the context.

• “Closest”: take some syntactic information into account (parse tree)

• Constraints: gender, person, number, binding theory, etc.

• Machine learning
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Anaphora resolution, Coreference resolution

Machine learning: (same idea as your midterm)

• X = { possible anaphora-antecedent pairs }.

• Binary (boolean) classification: Y = {t, f}.

• Supervised, or unsupervised, or semi-supervised.

• Anaphora-antecedent pairs represented as vectors.

• Classifiers such as log-linear models, Naive Bayes, etc.

• Evaluation: precision, recall, f -score.

Tamás Biró, Yale U., Language and Computation p. 9



Features for Pronominal Anaphora Resolution

John saw a beautiful 1961 Ford Falcon at the used car dealership.(U1)

He showed it to Bob.(U2)

He bought it.(U3)
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Information Extraction
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Information Extraction

• Named Entity Recognition

• Event detection

• Relation detection and classification:

• semantic relations among named entities
• temporal analysis of events

Extracted information → template filling.
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Templates representing world/situation/context

Citing high fuel prices, United Airlines said Friday it has increased

fares by $6 per round trip on flights to some cities also served by lower-

cost carriers. American Airlines, a unit of AMR Corp., immediately

matched the move, spokesman Tim Wagner said. United said the

increase too effect Thursday [...]
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Named Entity Recognition

Generic named entity types:
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Named Entity Recognition

Ambiguities everywhere:
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Named Entity Recognition
Potential named entities as feature vectors:
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Named Entity Recognition

Machine learning: (same idea as your midterm)

• X = { possible named entities }.

• Binary classification: Y = {t, f}, for each NER type.

• Supervised, or unsupervised, or semi-supervised.

• Possible named entities represented as vectors.

• Classifiers such as log-linear models, Naive Bayes, etc.

• Evaluation: precision, recall, f -score.
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Question Answering and Summarization
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Question Answering and Summarization

• Information Retrieval (IR): return documents that are
relevant to a particular natural language query.

• (Passage retrieval)

• Question Answering (QA): find answer in the documents
(a word, a phrase, a sentence)

• Text summarization: produce an abridged version
Includes natural language generation.
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IR: Information Retrieval
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IR: Information Retrieval
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Question Answering: passage retrieval
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QA: Factoid Question Answering
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QA: Factoid Question Answering

Tamás Biró, Yale U., Language and Computation p. 27
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Entailment

• Upward entailment:
She sang in French. ⇒ She sang.

• Downward entailment:
She did not sing in French. ⇐ She did not sing.

• No entailment:
Exactly three students sang in French.
vs. Exactly three students sang.
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General recipe

Machine learning: (same idea as your midterm)

• X = { possible . . . }.

• Binary classification: Y = {t, f}.

• Supervised, or unsupervised, or semi-supervised.

• . . . represented as vectors.

• Classifiers such as log-linear models, Naive Bayes, etc.

• Evaluation: precision, recall, f -score.
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See you next week!
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