
Language and Computation
LING 227 01 / 627 01 / PSYC 327 01
Assignment #3
Due: March 04, 2014

The solutions to the problem set must be handed in on paper at the beginning of
the class. It must be typed (printed), no handwritten solution will be accepted.
(Learning how to type mathematical formulae and pseudo-code is part of the
skills one has to acquire.)

Additionally, you will also send your Python code in an email by 4 pm on
the day of the deadline to tamas.biro@yale.edu. The file name must contain
both your first name and last name.

Each problem set is worth 10 points in total.

Problem 1: Minimal Cost Paths in Weighted
Finite State Automaton (4 points)

Probabilistic Finite State Automata, already introduced informally in the
lecture of 02/20, are non-deterministic automata with arcs also labelled with
probabilities. While probabilities in a probabilistic FSA must sum up to 1
(which probabilities?), the more widespread Weighted FSAs relax this re-
quirement: any positive and negative weights can be written on their arcs. A
weighted FSA not only reads a string on its (input) tape, but it also sums up
the weights along the transition arcs. Therefore, a weighted FSA can be seen
as a mapping from Σ∗ to the set of real numbers R.1

Although slight variations exist, here is a formal definition that will serve us
perfectly:

Def 1. A Weighted Finite State Automaton over the set of real numbers
R is a sextuple (Σ, Q, q0, qF , δ, w) such that

1. Σ is a finite alphabet (a.k.a. label set),

2. Q is a finite set of states,

3. q0 ∈ Q is the initial state,

4. qF ∈ Q is the final state,

5. δ : Q× Σ→ P(Q) is a transition function (a.k.a. transition table,
or a set of transitions).

6. w : Q× Σ×Q→ R is a weight function.

1One can also introduce probabilistic/weighted FSTs with arcs that contain character pairs
and probabilities/weights.

1

A few notes:

• FSAs, FSTs, and by analogy, WFSAs are usually defined with a set F of
final (accepting) states. Now, however, we suppose a WFST has a single
final (accepting) state, for the sake of simplicity and analogy with Markov
Models. Observe that with the addition of ε-transitions, any FSA can be
transformed into an FSA with a single final state.

• The transition function δ maps a combination of current state q1 and
character read from the input tape i onto a subset of Q: these are the
states to which the WFST can move from q1, when reading i from the
tape. Observe that, unlike in most definitions, we do not allow for ε-
transitions (δ(q1, ε) is not defined), which is a significant restriction made
for the sake of simplicity.

• The weight function w(q1, i, q2) specifies the cost of moving from q1 to q2
when reading i from the input tape.2 Importantly, w(q1, i, q2) is defined
for all q1, i and q2 such that q2 ∈ δ(q1, i).

A WFSA rejects input strings similarly to FSAs: either there is no transition
corresponding to the current state and current character on the input tape, or
the end state of the FSA after having read the entire input string is not a final
(accepting) state. If, however, the WFSA does accept the input string, then the
transition costs sum up to a total cost. If string σ = σ1σ2 . . . σn is accepted by
the WFSA, then there exists a series of qi ∈ δ(qi−1, i), and qn = qF , while

cost(σ) =

n∑
i=1

w(qi−1, σi, qi)

The story becomes interesting when the string σ can be accepted in different
ways, because the FSA underlying the WFSA is non-deterministic. In this case,
the different accepting paths for string σ may have different costs. We are
interested in finding the minimal cost accepting path.

Remember that the ND-Recognize algorithm stops whenever some accept-
ing path has been found. Now we will have to consider all paths. By modifying
theViterbi Algorithm, you can easily solve

Your task: develop an algorithm that finds the minimal cost accepting path
for a given WFSA conform to our definition above.

You will submit a pseudo-code with some explanation. Explain how WFSAs
relate to Markov Models, and in what respect(s) you had to modify the Viterbi
Algorithm in order to adapt it to WFSAs. Moreover, I wrote above “for the
sake of simplicity” several times: did you—and if so, where—make use of these
simplifying assumptions?

2Alternative definitions introduce finite set of transitions as E ⊆ Q× (Σ ∪ {ε})× R×Q.
In this approach, several weights can be associated to the same (q1, i, q2) triplet, but for our
purposes, we can safely ignore the weights that are not minimal. Moreover, some replace R
with any semiring K. Some also introduce an initial weight and a final weight.

2

Problem 2: Text Normalization (6 points)

J&M section 8.1 describes the complexity of text normalization. Your task is to
write a (Python) program that transforms sentences into a sequence of phones.

For dictionary lookup, you will use the CMU Pronouncing Dictionary. It is
freely available and comes with the NLTK module in Python. It is described by
section 8.2.1 of your textbook, and you will also find a chart with the ARPAbet
symbols on the closing inner cover of the book.3

The CMU Pronouncing Dictionary (the word ‘dictionary’ used in its every-
day sense) can be accessed in different formats, a Python dictionary being one
of them. Here is an example of how it works:

>>> from nltk.corpus import cmudict

>>> cmudict.dict()["apple"]

[[’AE1’, ’P’, ’AH0’, ’L’]]

>>> D=cmudict.dict()

>>> D["apple"]

[[’AE1’, ’P’, ’AH0’, ’L’]]

Remember that all words looked up in the dictionary, as a dictionary key,
must be in lower case.

Your task: Write a Python program that converts a text (such as apple) into
a series of phonemes, as returned by cmudict (such as [’AE1’, ’P’, ’AH0’,

’L’]). The input is read from the standard input, containing, for instance,
one sentence per line. The output will be written to the standard output,
one word per line.

Here is an example of the expected format:

tamas@tamas-laptop:~/course/LC-assignment-3\$ python test.py

26 letters from A to Z

[’T’, ’W’, ’EH1’, ’N’, ’T’, ’IY0’]

[’S’, ’IH1’, ’K’, ’S’]

[’L’, ’EH1’, ’T’, ’ER0’, ’Z’]

[’F’, ’R’, ’AH1’, ’M’]

[’EY1’]

[’T’, ’UW1’]

[’Z’, ’IY1’]

tamas@tamas-laptop:~/course/LC-assignment-3\$ cat testset | python test.py

[’T’, ’W’, ’EH1’, ’N’, ’IY0’]

[’S’, ’IH1’, ’K’, ’S’]

etc.

3For further information: http://www.nltk.org/_modules/nltk/corpus/reader.html and
http://www.nltk.org/_modules/nltk/corpus/reader/cmudict.html More on the Carnegie
Mellon Pronouncing Dictionary [cmudict.0.6]: ftp://ftp.cs.cmu.edu/project/speech/

dict/, and especially http://www.nltk.org/book/ch02.html, “A pronouncing dictionary”.

3

In order for us to easily check the output of your program, please keep the
brackets and the quotation marks. Remember also to print each word in a new
line.

Exactly one pronunciation should be provided for each word, even if CMU-
Dict offers several of them. How you choose between them is something for you
to find out. If the input contains a word that CMUDict cannot pronounce, then
return <>, still a better solution than an exception.

You will write as much comment as possible into your program code.
On paper, you will submit your program code (including comments), and

some additional explanation: How is your program built up, which problems in
text normalization have you considered, what challenges have you encountered?
If there were problems that you considered but decided not to tackle, this is
also the place for you to mention them. (You may decide that some problems
are too complicated to be solved within this problem set. Then, although you
might lose points for performance, you can still gain points here.) This part of
your solution is worth 2 points.

Then, you will also email me your code, which is worth another 2 points.
Please make sure you let us know if you have used Python 2 or Python 3. We
will check whether your code is written in a good programing style, and whether
it runs faultlessly.

Finally, the performance of your program will be checked on a testset, not to
be revealed before the deadline (in order to simulate real life situations and chal-
lenges in computational linguistics). This testset will contain examples similar
to the difficulties discussed in section 8.1 of your textbook (see also the example
above, which includes a number and letter names), without being extremely
nasty to you. Your performance on this testset—your program’s ability to solve
most of these complexitities—is worth yet another 2 points.

For those of you new to Python, here is the skeleton of a program that reads from the
standard input as long as something is provided:

while (True):

l=raw_input("? ") # read a line from the standard input

if not l : # if line is empty,

print("bye") # then, be polite and

break # leave. Otherwise

do something else, for example,

print(l)

4

