
Language and Computation
LING 227 01 / 627 01 / PSYC 327 01
Assignment #5
Due: Monday, April 28, 2014

This last time, the solutions must be handed in electronically, only. You will
send a single Python code to tamas.biro@yale.edu. Do not forget to include
your first and last name in the code’s filename, which should not contain white
spaces, please.

The goal of this homework is manifold again. You will get hands-on experi-
ence with phonology, Optimality Theory and learnability—an experience that
might be generalized to computational approaches to theoretical linguistics, in
a broad sense. You will also practice (or learn) how to use objects, functions
and exceptions in Python—skills that you can transfer to other programming
languages, as well.

You must submit the homework by the deadline, even if you have not man-
aged to solve all the problems.

Each problem set is worth 10 points in total. Your code will not be a
single running program, but a set of functions and class definitions, which we
will import into our test script making use of those functions and classes. For
instance, you will be asked to write a function gen(string) that generates a list
of candidates for any string; if our test script with your definition generates
the correct outputs for the inputs we provide, then you will get the points this
part of the assignment is worth. If you give a different name to your function
(such as Gen), or if it returns a different data structure (such as a tuple, and
not a list), then the code will not run.

Problem: Learning Word Stress with
Optimality Theory and GLA (10 points)

1.1 A refined model for stress in OT

In class, I introduced an extremely oversimplified example of how contemporary
theoretical phonology accounts for metrical stress in the languages of the world
(04/08, slides 6 to 10). The three constraints Early, Late and NonFinal
accounted for the existence of three language types and the lack of a fourth
possible type.

Although there is a kernel of truth in this toy example, reality is much
more complex. Many languages, including English, require a more complicated
system. First of all, longer words in many languages, such as in English, have
not only primary, but also secondary (and even tertiary) stress. Moreover,
languages often make a distinction between heavy syllables and light syllables,
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the earlier ones being stronger at attracting stress.1 Still, we suppose that word
stress can somehow be predicted (“computed”) in all these languages.2

In what follows, I am introducing a model that is much closer to what is
currently considered as the standard approach to stress in phonology. What is
missing from the analysis is the notion of foot, and therefore this model does
not exactly make the right predictions. Nevertheless, it will help us better
understand what the learnability of a theoretical framework entails.

1.2 Basic components of an OT analysis

1.2.1 Gen: the generator function

The Gen function will map any input word to all possible stress patterns.
Exactly one syllable will be assigned a primary stress, and all other syllables may
either be left unstressed, or receive secondary stress. (Tertiary stress is ignored.)
We suppose, which is not self-evident, that the input is already syllabified.

In particular, the input to our system will be a string over the two-letter
alphabet Σ = {L, H}, where L stands for a light syllable and H for a heavy
one. For instance, LHL is a three-syllable input word with a heavy syllable
in the middle. The Gen function maps this input onto a set of strings over
∆ = {L, H, 1, 2}. The character 1 stands for the primary stress, and it will
be inserted after the syllable to be stressed. Similarly, the secondary stress
symbol 2 will be inserted after all syllables with a secondary stress. Thus, for
any input u ∈ Σ∗, Gen(u) contains the strings that are arrived at by inserting
the primary stress symbol 1 after exactly one of the characters in u, while any
other character f u can be followed by 2. For instance, Gen(LHL) is the set
{L1HL, L1H2L, L1HL2, L1H2L2, LH1L, LH1L2, L2HL1 . . .}.3

How many candidates does an input map onto? If the input consists of n
syllables, then there are n different options for assigning the primary stress.
Subsequently, each of the remaining n − 1 syllables can either be assigned a
secondary stress, or be left unstressed. Therefore, the number of candidates is
n · 2n−1. When you implement your gen(string) function, you may want to
test your code by counting the number of candidates generated for inputs with
different lengths.

1The precise definition of what counts as heavy depends on the language. Usually, a syllable
is heavy, if it contains a long vowel, and/or a consonant following the vowel (the latter being
called the syllable coda).

2Such is not the case in languages where the position of the stress in unpredictable, and
must be stored in the lexicon. A famous example is Russian, in which the word [muka] can
mean ‘torture’ or ‘flour’, depending on whether the first or the second syllable is stressed. In
English, the part-of-speech of a word can influence the place of the stress: compare the verb
to record to the noun a record.

3As an optional problem: can you prove that {Gen(i)|i ∈ Σ∗} is a regular language, and
that the relation {(i, o)|i ∈ Σ∗, o ∈Gen(i)} is a regular relation?
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1.2.2 Constraints

Although mainstream Optimality Theory posits that the set of constraints is
universal across the languages of the world, it turns out that it is far not universal
across linguists themselves. Yet, there is a canonical set of constraints that have
been frequently used for computational experiments on learning stress systems.

Many of these constraints refer to metrical feet, which we have not included in
our current analysis. Therefore, let me propose an alternative set of constraints,
somehow analogous to the standard ones, but not exactly equivalent to them.
While they might prove questionable in the light of linguistic data, they will
perfectly serve the needs of our computational experiment. Here they are:

• Parse-Left2Right (PL2R): A syllable must bear stress, unless its left
neighbor is stressed. The number of violations assigned is equal to the
number of unparsed syllables that are not immediately preceded by a
stressed syllable.4

• Parse-Right2Left (PR2L): A syllable must bear stress, unless its right
neighbor is stressed. The number of violations assigned is the number of
unparsed syllables that are not immediately followed by a stressed syllable.

• NoClash (NC): Stressed syllables must not be adjacent. Assign one
violation to each stressed syllable followed by another stressed syllable.

• PrimaryStressLeft (PSL): The primary stress must occur as early as
possible. Assign one violation mark per each syllable intervening between
the left edge of the word and the syllable with the primary stress.

• PrimaryStressRight (PSR): The primary stress must occur as late
possible. Assign one violation mark per each syllable intervening between
the syllable with the primary stress and the right edge of the word.

• AllStressesLeft (ASL): All stresses must occur as early as possible. For
each stressed syllable, count the number of syllables intervening between
the left edge of the word and this syllable, and then sum up these counts
for all stressed syllables.5

• AllStressesRight (ASR): All stresses must occur as late as possible. For
each stressed syllable, count the number of syllables intervening between
this syllable and the right edge of the word, and then sum up these counts
for all stressed syllables.

4For instance, a word initial unstressed syllable incurs a violation mark. A series of three
unstressed syllables incur (at least) two violation marks.

5For instance, ASL(H2 L1 H2 L L2) = 0 + 1 + 2 + 0 + 4 = 7, because the leftmost stress is
adjacent to the left edge of the word (no violation), then the primary stress incurs one violation
mark, the middle syllable incurs two of them, the fourth syllable is unstressed (no violation
of ASL), but the rightmost syllable incurs four marks, due to the four intervening syllables
between the left edge of the word and this rightmost syllable.
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• WordNonFinal (WNF): The last syllable of the word must not bear
stress. Assign the word as many violations as the number of stresses on
its last syllable (i.e., 0 or 1).

• WordStressLeft (WSL): The first syllable of the word must bear stress.
Assign one violation to the candidate, if its first syllable is not stressed;
zero, otherwise.

• WordStressRight (WSR): The last syllable of the word must bear
stress. Assign one violation to the candidate, if its last syllable is not
stressed; zero, otherwise. (NB: WSR= 1−WNF.)

• Weight2Stress (W2S): Heavy syllables must be stressed. Assign one
violation mark per every heavy syllable that is not stressed.

1.2.3 Grammar and learning

In traditional Optimality Theory, a grammar G is a permutation (hierarchy)
of these 11 constraints. Given a set of underlying forms (lexicon) U , the Gen
function defined above generates a set of candidates Gen(u) for each u ∈ U . Sub-
sequently, the ranked constraints filter out the sub-optimal candidates, yielding
the most harmonic output(s) SF(u) corresponding to u. The series of filters is
frequently referred to as the Eval module of OT.

Thus, during production, the speaker searches for the best output form,
given a constraint hierarchy. During learning, however, the learner’s task is the
opposite: given a finite set of learning data (input-output pairs), she has to find
a constraint hierarchy that can produce all of them. Here, we adopt mainstream
OT’s postulate that Gen and the constraints are given by the onset of language
acquisition; alternative approaches also exist.

These eleven constraints have 11! = 39, 916, 800 permutations. While many
of these different rankings will define the same u 7→SF(u) mappings, it is not
realistic to perform an exhaustive search on this huge space. Therefore, we need
smarter approaches.

Adopting the trick introduced by Paul Boersma, we implement an OT hi-
erarchy by assigning a ranking value (a real/floating point number) to each
constraint. The higher the ranking value of a constraint, the higher it is ranked
in the hierarchy. We do not add noise to these ranking values, but employ them
for learning in the Gradual Learning Algorithm (GLA), as follows:

Initialized with a (random) hierarchy, the learner maintains a hypothetical
grammar GL. In each learning cycle, the learner is presented with a piece of
observation, a “winner form” w generated by the teacher’s grammar GT (the
target grammar). The learner recovers the underlying form u from which w
was generated (not a self-evident step in general, but trivial in the case of
stress assignment), and then calculates the “loser form” l that GL would have
produced. If w 6= l, then an error is detected, which drives this error-driven
learning algorithm (as also explained in section 11.5.3 of Jurafsky and Martin).
If w 6= l, then there must be at least one constraint Cw that prefers w to l
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(i.e., Cw(w) < Cw(l)), and which is ranked high in GT but low in GL; hence, it
should be promoted in GL. Similarly, l wins over w in GL because there is at
least one Cl that prefers l to w (i.e., Cl(l) < Cl(w)), and which is ranked too
high in GL; consequently, it should be demoted.

Therefore, in order to get closer to the target grammar and after having in-
troduced a real (floating point) ranking value for each constraint, GLA suggests
that (1) the ranking values of winner preferring constraints be all increased by 1
and (2) the ranking values of the loser preferring constraints be all decreased
by 1 (alternative suggestions have also been made). We hope, although we do
not have guarantee for it, that after a number of learning cycles the learner’s
grammar will converge on a correct grammar. Correctness refers to the learner’s
ability to correctly reproduce all learning data, and not necessarily to having
reached the teacher’s hierarchy.

To summarize, and filling in some details, here is how in particular we shall
implement the GLA algorithm:

1. We fix a lexicon U = {LH, LLL, LHL, HHL, LLH, HLHL, LLLL, LHLH, HHLL, LLHLL}.

2. Teacher T is initialized with a random grammar GT , by assigning a (uni-
form) random ranking value between Rmin = 0 and Rmax = 50 to each
constraint. Similarly, learner L is also initialized with a (different) random
grammar GL.6

3. The learning data are presented to the learner, either in a random order,
or cyclically (looping through U , k = 10 times):

• For each u ∈ U , let w be the form produced by T .

• L recovers u from w.

• L’s current grammar GL produces l for u.

• If w = l, then L is happy. Otherwise, L updates GL by increasing
the rank of all constraints that prefer w to l by ε, and decreasing
the rank of all constraints that prefer l to w by ε. The parameter ε,
called learning plasticity, will be set to 1.7

4. After learning has terminated, test if L has acquired T ’s grammar (that is,
whether GT and GL encode the same constraint hierarchy); if not, check
if L has acquired T ’s language (that is, whether all underlying forms in U
are mapped onto the same surface forms).

5. Will you obtain the same results if you repeat the experiment with different
random initializations? How frequently will learning be successful?

6The ranking values of the constraints in GL will most probably grow outside of this
[Rmin, Rmax] interval during learning, which is not a problem. Moreover, you may speed up
your algorithm by computing the teacher’s favorites for the underlying forms u ∈ U once, in
the initialization phase, rather than re-compute them each time during the learning process.

7Boersma and Hayes (2001) originally uses ε = 0.1, but that may lead to problems in
floating point arithmetic.
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1.3 Assignment questions

This project will be implemented by making use of the modularity offered by
object-oriented languages such as Python. While more efficient approaches cer-
tainly exist, I am asking you to adopt the following scheme:

• Gen is a function gen(string) with a string argument (over Σ = {L, H})
that returns a list of strings over ∆ = {L, H, 1, 2}. It raises (throws) an
exception if its argument string /∈ Σ∗.

• A constraint is an object belonging to the class Constraint. It is initial-
ized (instantiated) with an argument that is a function f , defining what
it does. It has one method: Constraint.assigns(string) returns the
number of violation marks f(string). Moreover, it also has an attribute,
Constraint.rank, which contains a floating point ranking value.

• Eval is implemented as a function eval(constraints,candidates) that
takes a list of Constraint instances8 and a set of candidates (in the form
of a list of strings) as its two arguments, and returns the optimal subset
of the candidates. The output is again a list of strings—usually with a
single element, but possibly with more, and never with none.

• The function gla(constraints, winner, plasticity=1) implements an
update step of the Gradual Learning Algorithm. It has two obligatory
and one optional arguments, and no return value.9 Its first argument is
again a list of Constraint instances, and the second argument is a string
over ∆ (a piece of learning data). The function first recovers the underly-
ing u ∈ Σ∗ from winner, then makes a call to gen and eval to compute
the loser form, and finally updates the ranking values with ±plasticity
(which is by default = 1, unless otherwise specified).

• Function experiment(lexicon, constraints, k=10, Rmin=0, Rmax=50,

plasticity=1) with two obligatory and four optional arguments imple-
ments the experiment described on the previous page: randomly initializ-
ing the constraint ranking values in the [Rmin, Rmax] interval, both for the
teacher and the learner, and then cyclically feeding GLA with all elements
in lexicon (a list of underlying form strings), k times.

In what follows, I describe what the code you submit should contain, and I
also provide several hints.

8The ranking values of the constraints appear as their attribute Constraint.rank, a higher
value corresponding to a higher rank in the hierarchy. Consequently, the first argument of
eval(constraints,candidates) may not be sorted in advance.

9We might have introduced a boolean return value informing the user whether an update
has taken place. But a Python function does not have to always return some value.
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1.3.1 Constraints

You can use the following code to define the Constraint class:

__metaclass__=type

class Constraint:

rank=0

def __init__(self, violationFunction):

self.f = violationFunction

def assigns(self,string):

return self.f(string)

Subsequently, you will implement each of the eleven constraints defined above.
Use the capital letter abbreviations (such as PL2R, NC, and PSL) as variable
names for them. So your code should introduce these eleven variables, each
pointing to a Constraint object, and when our test script will import your
code, we should be able to apply these constraints to any (meaningful) string.

Here are two examples (each with a minor bug that you should correct):

def nc(string):

viol=0

for position in range(len(string)):

if ( (string[position] == ’1’ or string[position] == ’2’)

and (string[position-2] == ’1’ or string[position-2] == ’2’) ):

viol += 1

return viol

NC=Constraint(nc)

WNF=Constraint(lambda string: int(string[0] in [’1’,’2’]))

Try out what, for instance, NC.assigns(’H1H2L2’) returns. You should imple-
ment all eleven constraints in a similar format.

1.3.2 Gen, the generator function

Now, you will implement gen(string). Here is a fake solution, the skeleton of
which you will copy, and the content of which you should replace (but if you
cannot do so, you can use it so that you can solve the rest of the assignment):

def gen(string):

G=[]

l=len(string)

if l == 1:

G.append(string+’1’)

elif l == 2:

G.append(string[0]+’1’+string[1])

G.append(string[0]+string[1]+’1’) # well, in short: string + ’1’
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G.append(string[0]+’1’+string[1]+’2’)

G.append(string[0]+’2’+string[1]+’1’)

elif l == 3:

G.append(string[:1]+’1’+string[1:])

G.append(string+’1’)

G.append(string[:1]+’1’+string[1:]+’2’)

G.append(string[:1]+’2’+string[1:]+’1’)

# etc. etc.

else:

raise Exception("String is too long. I can’t generate candidate set")

return G

How to implement stress assignment for gen? While several solutions may exist,
here is a reasonable approach (presented in Python-friendly pseudo-code). Let’s
collect the candidates in a list cands:

cands <-- empty list

# here we append all candidates to the list cands

return cands

To begin with, observe that by adding primary stress only to the original input
string underlyingForm, we already obtain valid candidates:

for i: 1 to (and including) length of underlyingForm

candidate <-- slice[0:i] of underlyingForm + ’1’ +

slice[i:end_of_string] of underlyingForm

append candidate to cands

Then, let us insert secondary stresses to all possible positions. First, we consider
the elements so far added to cands (these are the candidates with a primary
stress and no secondary stress), and we create new candidates by assigning a
secondary stress to their first syllable—unless it already contains a primary
stress. Subsequently, we consider all the candidates in cands (with and without
secondary stress on their first syllables), and create new candidates again by
adding a secondary stress to their second syllable; and so forth. Here is the
pseudo-code:

for i: 1 to (and including) length of underlyingForm

candsCopy <-- copy of cands # never iterate over an object

for c in candsCopy # that you modify inside the loop!

position <-- locate position of the i’th syllable in c

if position == (length of c - 1) or c[position+1] != ’1’:

# create new candidate by inserting secondary stress

# to position ’position’, unless there is primary stress

newCandidate <-- slice[0:position] of c + ’2’ +

slice[position:end_of_string] of c

append newCandidate to cands
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To help you, here is the code for the function that finds the position of the
ith syllable (‘H’ or ‘L’) in the string, despite possibly interspersed ‘1’ and ‘2’
characters:

def locate(string, i): # returns position of i’th H or L in string

position = -1 # position being looked at

syllable = 0 # count of number of syllables found so far

while syllable < i:

position += 1

if string[position] == ’H’ or string[position] == ’L’:

syllable += 1

return position

Finally, a perfect implementation of Gen will also test if its argument string ∈ Σ∗.
If not, it will raise (throw) an exception.

1.3.3 Eval

Your next step is to create eval(constraints,candidates). This function
takes two arguments, a list of constraints (such as [WNF,W2S,NC,PSL...] and
a list of candidates (such as those returned by gen). The constraints are not
necessarily sorted in the list of constraints, but your function will sort them by
the rank attributes.10

Be sure you are familiar with Python’s following incredible construction,
called list comprehension:

new_list = [function(x) for x in original_list if condition(x)]

It will select those elements x in original list that satisfy condition(x),
and then create a new list by applying function to these values. Informally, it
corresponds to {f(x)|x ∈ original and condition (x) is true}. The 1st chapter
of the NLTK book provides nice examples when discussing how to create text
statistics (http://www.nltk.org/book/ch01.html).

Using it, you will be able to implement an OT constraint acting as a filter,
by writing a single code line (or two). The idea in mathematical terms is:

m := min {Constr (cand) | cand ∈ candidate set }
filtered set := {cand ∈ candidate set | Constr (cand) = m}

Eval in Optimality Theory is a list of such filters, applied in the right order.
Luckily, stress assignment defines a finite candidate set, and of manageable size,
at that. Therefore, we do not need a smarter approach to Eval, but one can
simply copy the filtering technique of the linguists evaluating OT tableaux.

10In case you use Python’s built-in sorting functions, hint 1: key = (lambda x: x.rank).
Hint 2: reverse=True/False.
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Here is the skeleton with a wrong solution (that can nevertheless be used to
test further parts of the assignment):

def eval(constraints,candidates):

candidates=[]

# Here you can write your code, for example

candidates.append(candidates[0])

return candidates

Keep in mind that the eval function will return a list of candidates, because
nothing guarantees there will always be a single most harmonic form. You could
check if some constraint hierarchies return more optimal outputs. However,
most of the time (for instance, when you compute the loser and the winner forms
during learning), you need a single form: eval(constraints,candidates)[0].

1.3.4 Learning and experiment

Finally, you will also define the following two functions, as discussed earlier: one
for a single learning step in the Gradual Learning Algorithm,

def gla(constraints, winner, plasticity=1):

# updates the rank of the constraints:

# winner_preferring.rank += plasticity

# loser_preferring.rank -= plasticity

# no return value

and one for the learning experiment (feeding the learner with all forms in the
lexicon, and this cycle repeated k times):

def experiment(lexicon, constraints, k=10, Rmin=0, Rmax=50, plasticity=1):

# Learning successful iff learner generates same outputs for all

# underlying forms in lexicon as teacher.

# Returns True if the learning is successful; False otherwise.

When initializing the teacher and the learner, you may want to use the random

package, and in particular, the random.uniform(min, max) function. Further-
more, it is not necessary to define the constraints twice, for the teacher and for
the learner. Rather, you can first assign them the ranks in the teacher’s gram-
mar, compute the teacher’s surface forms for all the items in the lexicon, store
that information, and only subsequently assign them the initial ranks in the
learner’s grammar, so that you can start the learning cycles. After the learning
has terminated, you will test the learner’s final grammar on each item in the
lexicon in order to determine the function’s return value.

As an optional plus, although not part of this problem set, I will appreciate
a paragraph in your email describing your observations in case you will have
“played” with this model: that is, you will have measured the frequency of
successfully learning, as a function of the method’s various parameters.

Good luck!
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