
�� � �� � � � � � �� � �	

� �
 �� � � � � �
 � � � �
 � �� �� �
� �
 � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � �

Tekstmanipulatie, week 10

Two mottos for the day:
In Unix everything is file.
In Unix everything is text.

1. A few more commands, just for fun (?)

� � ! : diplays a line of text.

Example:

" #$ %& % # ' ' & (&) *

% # ' ' & (&) *

" #$ %& + ' & , # -& . /

+ ' & , # -& . /

� 0 12 : evaluates a mathematical expression. Arguments of the expression to be
evaluated, as well as the operations are given as separate arguments of #3 4).
Check 56 7 # 3 4) for further details (logical operations, modulo, etc.). Example:

" # 3 4) 8 9 : ; <

2. Wild cards

UNIX gives you the possibility of using wildcards. These are:

The character * denotes any sequence of zero or more characters
The character ? denotes a single character
The construct [cset] denotes any single character in the cset.

A few examples:

�� � �� � � � � � �� � �	

� �
 �� � � � � �
 � � � �
 � �� �� �
� �
 � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � �
x* any name beginning with 'x' (e.g. x, xold, xerxes)

x any name containing an 'x' (e.g. x, xold, fox, maxi, xx)

x? any two-character-long name beginning with 'x' (e.g. xx, xy,
x2)

[ptks] either the character 'p' or 't' or 'k' or 's'.

x[aeiou] any two-character-long name beginning with an 'x' followed
by a vowel (e.g. xa, xu)

x[aeiou]* any name beginning with an 'x' followed by a vowel (e.g. xa,
xaver, xerxes)

x[aeiou]*[abc]*x any name beginning with an 'x' followed by a vowel,
then any characters (or none), then 'a' or 'b' or 'c', then any characters
(none or one or more), and ending with an 'x' (e.g. xabx, xanax,
xenmnaqwx).

. any name containing a period

[A-Z]* any name beginning with a capital letter.

[1-9] any non-zero number

???? any four-character-long name

????* any at least four-character-long name

???*[0-9.x] any at least four-character-long name ending with a
numeral, a period or an 'x'

[!T]* any name not beginning with a capital T.

Remark: Wildcards usually don't match the '/' characters referring to subdirectories,
neither the initial period of some special file names.

How to use them?

") 5 = 3 =

: removes all files matching the expression (e.g. 'xerxes',
'maxi', 'fox')

" $ 4 3 > 6 # ? & . @ A -C
B

D ?) #$ E &) - : copies files 'xa', 'xe',..., 'xu' to

�� � �� � � � � � �� � �	

� �
 �� � � � � �
 � � � �
 � �� �� �
� �
 � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � ��

'My_Directory'.

" ' � � � � �

: lists all files whose name contains exactly four
characters.

" ' � 6 4 4 ' # ; � � � =

: lists all files in the directory 'apple' whose name
contains at least three characters.

" 5 , ; > � � � @ = � : moves all files in the root directory whose name
starts with a number into the actual directory.

" ' � � ; = > � � � @ =

: lists all files in the home directory whose name
contains a number.

" ' � � � ; > � � 	 @ > � � 	 @ > � � 	 @

: lists all files in the parent directory
whose name contains exactly three capital letters.

" ' � � ; = : same as simply

' � . Why?

!! Never do anything like 'rm a_*' ! (where '_' stands for a space...)

How does this work? Actually an expression containing a wildcard describes a set of
characters. For instance: 3 > 6 # ? & . @
 � 3 6 � 3 # � 3 ? � 3 & � 3 .

. A file name
matches a wildcard expression iff it is element of the set.

When the shell encounters an expression with a wildcard in the command line, it
automatically replaces it with the list of the matching file names (in the current
directory), except if there is no matching file name.

The command) 5 (or

' �) can receive multiple arguments and would remove / list all
of them. Therefore in the case of a command line like) 5 6 = (or

' � 6 =) what
happens, is the following. First, the pre-processor of the shell replaces the
expression with whatever files names matching it, so you get something like) 5

6 4 4 ' # 6 7 6 7 6 � 6 5 #) ?� 6 6 �� � :

. Then this command is executed, deleting (listing)
all of them.

The command 5 , and $ 4 have two possibilities. If they receive exactly two
arguments which are file names, then they move or copy the first one into the second
one. But if they receive an (unbounded) list of file names followed by the name of a
directory, then they move / copy all files in the list into the directory, retaining their
names. This is how e.g. $ 4 3 > 6 # ? & . @ A -

B
D ?) #$ E &) - works. But if the last name is

not a directory, this does not work. Why? Therefore it is not possible e.g. to rewrite
the first character of all file names from 'a' to 'A' by giving the command 5 , 6 = � =

.

Similarly, in order to concatenate all your files with a name beginning with 'a', you
can simply use:

�� � �� � � � � � �� � �	

� �
 �� � � � � �
 � � � �
 � �� �� �
� �
 � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � �

$ 6 E 6 =

This preprocessing by the shell takes place before running the actual command
(commands, if more than one in a command line), independently of the command
used. Therefore the shell does this for all commands, even if the command does not
expect any file names as arguments.

For example:

" #$ %& � % 6 E *& # � E % # = � - 5 �& ' � E 6 7 * � �&) �

: what would
this command line do?

" #$ %& = 3 =

: lists all file names matching the expression (e.g.
'xerxes', 'maxi', 'fox')

" # 3 4) 8 = �

: this returns you an error message. Why?

3. Metacharacters, escapes, quotes

Let's try to calculate how much is (3 + 4) * 7? We would like to have something like

" # 3 4) � 8 9 � � = �

But this won't work. How can we overcome this problem?

The problem is that some characters have special meanings, those characters are
called metacharacters. We have seen so far the special meanings of the characters
'*', '?', '[' and ']'. The space has also a special meaning: it is the delimiter between two
arguments of a command, therefore a file name containing a space will also cause
problems under all versions of Unix. How to escape from the special meanings of
the metacharacters?

The way is to introduce further metacharacters which will neutralize the effect of the
metacharacters. There are two types of neutralizing characters. The escape
character

�

 (backslash) neutralizes the effect of the following character. Whereas
the two types of quotes (

� � � � �

 and

� � � � �

) neutralize all the metacharacters within
them.

Note that the escape characters are also metacharacters, since they also have

�� � �� � � � � � �� � �	

� �
 �� � � � � �
 � � � �
 � �� �� �
� �
 � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � ��

special meanings. Thus, you have to escape the escape characters, whenever you
want to use them in their original sense (as a simple character). Summing up, we
have so far at least the following metacharacters: *, ?, [,] (used in wild cards), space
(separating the arguments of a command), ", ', \ (escape symbols).

Remember also that at the end of last week's lecture note we had a list of characters
to be preferably avoided in file names: in fact, most of them are metacharacters,
bearing some special meaning, and this is why it is easier to avoid them.
Nonetheless, you may use them in file names (see also the assignments this week),
once you escape them.

Now, a few examples: what is the difference between the following two commands?

�� �� � �� � �� �	 � � �
 	 � �
� � � � � � �

�� �� � �� � �� �	 � � � �
 	 � �
 � � � � � � � �

Now these should work:

" # 3 4) 8 � = �

< �

" # 3 4) 8 � = � �

< �

" # 3 4) � 8 = � �

8 = �

The problem with the latter is that the command has only one argument, because
you also escape the two spaces which should differentiate between the three
arguments (3, * and 7). This does not work either:

" # 3 4) � 8 9 � � = �

becauses the parantheses are also metacharacters. Further metacharacters are: (,)
, & , < , > , | , etc. The solution therefore is something like

" # 3 4) � � 8 9 � � � � = � �

Remark: the difference between the apostrophe ('hard quotation') and the double
quotation mark ("soft quotation") will become clear when we will deal with variables.
In fact if you put a variable between "-s, the variable will be replaced with its actual
value, unlike in the case of hard quotations. Another advantage of having two types
of quotation marks is that you can quote even the quotation marks:

" #$ %& � E % # � � - 5 � & ' ? � 6 7 6 4 & � E) & 4 % # �

E % # � � - 5 �& ' ? � 6 7 6 4& � E)& 4 % #

" #$ %& �� % # (&) * � 6 4 4 ' # � ? � � 7� ' ? � % �

�� � �� � � � � � �� � �	

� �
 �� � � � � �
 � � � �
 � �� �� �
� �
 � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � ��

� % # (&) * � 6 4 4 ' # � ? � � 7 � ' ? � %

Try also these:

#$ %& �� #) # -& . % 6 , # � � ? 7 � ' # � .& E 6 E ? & 7 5 6)� � � � # E (# # 7

*& . � ' # & 7 # � �

#$ %& � � 7 * % #) # -& . % 6 , # � *& . � ' # � .& E 6 E ? & 7 5 6)� � �

� # E (# # 7 � ? 7 � ' # & 7 # � �

#$ %& � % #) # ? � 4 ' # 7 E - & �)& & 5

� # E (# # 7 E % # � # (&) * �

#$ %& � % #) # ? � 4 ' # 7 E - & �)& & 5 � �

� # E (# # 7 E % # � # (&) * �

An other way to calculate something is putting the expression between '$[' and ']',
like:

#$ %& � > 8 9 : @ � > � � ; : @
Question: the backslash character (\) is a metacharacter itself. How to neutralize it?
By typing it twice.

Note: The parameters in Unix are seperated by a space. So space is also a
metacharacter, as you could see it in the above examples ("echo there is plenty of
room..."), and you may want to neutralize it, too.

You could use most metacharacters in file names. For example spaces (as in
Windows >95), but you should always think of neutralizing them. Therefore it is better
to avoid them. For instance,) 5 � ? ' # 7 6 5 # would remove two files, one named
"file" and one named "name", and not the file whose name is "file name", if you
happen to have all of them. To remove this third file, use) 5 � � ? ' # 7 6 5 # �

or) 5

� ? ' # � 7 6 5 #, by escaping the space.

4. From characters to files, and further

Remember the two mottos of the day:

�� � �� � � � � � �� � �	

� �
 �� � � � � �
 � � � �
 � �� �� �
� �
 � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � �

In Unix, everything is a file
In Unix, everything is a text

What does this mean? First, last week we learned that Unix is an operational system,
and the task of operational systems is to create a bridge between the user and
applications on the one hand, and the computer's hardware and periferies on the
other.

Second, remember that Unix was developed in the late 1960s, in a period when
computer memories were very-very limited. Therefore, it was of vital importance to
store all data not immediately used in the background peripheries (magnetic bands,
etc.) in files. Hence the corner stone of the Unix philosophy: data preferably enter
each elementary programs as file, and the results are also stored as files.
Furthermore, a typical Unix program reads only a smaller unit of its input file at once,
it processes it, and writes the result as an output, before reading the next unit of the
input file. Consequently, it does not matters how big a file is, it could be processed 30
years ago even by the computers having only a very restricted memory. As we shall
soon see, the "basic units" of a file are lines. Most of the utilities we are going to use
process their input file line after line: they stop reading their input once they have
reached a new-line character, and do not return back to their input file as long as
they have not finished processing the previous line.

Third, there are many-many files, possibly thousands of them, that are available to
the operational systems. Some of them are on a winchester, others are on a floppy
drive or another, remote, machine. Subsequently, the idea in Unix is to organize all
files into one hierarchical tree, as we learnt it last week. Do not forget that this is just
a virtual tree: by mounting a floppy drive or the winchester of another computer, you
can even incorporate files into that tree that does not have anything to do phyisically
with your hard disk, or even with your system. However, once you have so many
files, why not making everything a file, at least virtually? This is why, for instance,
different terminals and konsoles have a corresponding file: you can write on a
terminal by writing into that file.

So far about the motto "everything is a file". Nevertheless, what is a file? A file is
nothing but a list of numbers, each number being represented on 8 bits, so each
number has to be between 0 and 255. And yet, a file can be much more than just a
list of numbers. The key idea is to realize that this list of numbers can be interpreted
in several different ways. If the numbers, for instance, represent a sequence of
commands that may be understood by the machine (i.e., the numbers can be
interpreted as a program in the machine code), then the file is said to be an
executable file, namely, a program that you can run.

�� � �� � � � � � �� � �	

� �
 �� � � � � �
 � � � �
 � �� �� �
� �
 � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � �

The second typical way to interpret this list of numbers is to see it as a text. The
second motto, viz. "in Unix, everything is a text", expresses the central role of this
second way of interpretation. With the exception of executable files, you almost
always use texts. For instance, imagine that you run a simulation the result of which
is a list of 100 numbers between 10 and 99. Theoretically, you have two possibilities.
Either you write a file of 100 bytes, and the value of each byte is a binary number. Or,
you write a much longer file, three times longer, in which you represent an output on
two bytes (one byte for each digit, so if "56" is the output of your program, first you
write '5', and then '6'), followed by a space or a new-line-character. Which one would
you choose? The first solution creates a much shorter file, and yet, most people go
for the second one: because the second solution produces a human readable
format. In addition, the second format is much more flexible, if you happen to have
outputs higher than 255.

Summarizing, it would be nice to be able to interpret a file as a text. Once you have
that, you can use this way of encoding for any file that should be human readable: a
sequence of numbers, a plain text, an email, a program code, etc. A compiler may
then turn the program code written by you into a non human readable executable
file, and similarly, a LaTeX code written by you into a non human readable graphical
format.

In the following sections, we will go through the consequences of this idea. First, you
have to introduce some standard way to encode a text. What should be the way of
interpreting a sequence of numbers as a text? Each number between 0 and 255
should refer to a character - but how? And, vice-versa, if you want to encode a text,
you have to find out a standard way to encode the character "a", the character "b",
etc. For instance, if your first byte contains the value 65, and your second one
contains the value 48, you can visualize it as A0, once you have decided to represent
the character 0 with the value 48, and A with 65. The other way around, if you want to
encode the text A0, and you have chosen the standard just described, you can
simply write 65-48.

The original standard was called ASCII, and aimed at coding the English alphabet
(i.e. no diacritical marks, such as á, ö, ü, ú). Furthermore, it used only 7 bits, for the
8th bit was used as a security (parity) bit to detect possible errors: thus, the ASCII
standard assigns a value between 0 and 127 to all types of characters, upper and
lower case letters, numbers, space, comma, full stop, $, #, @, etc. But there are also
special characters in ASCII, such as the end-of-file character (^d), end-of-line
character, etc. (The end-of-line character will become very important to us: it breaks
the file into smaller units, namely, into lines, and these are the smaller units on which

�� � �� � � � � � �� � �	

� �
 �� � � � � �
 � � � �
 � �� �� �
� �
 � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � �

most of our commands will operate, as hinted to earlier.) Later on, new standards
were developed enriching the ASCII standard (using the range between 128 and
255) in order to be able to encode other languages: languages that include
diacritical marks (á, é, ü, š, œ, etc.), or even non-Latin characters. However, this
proliferation of standards has created new problems. Recently, Unicode seems to be
the solution: instead of one byte, a character is coded on two bytes, and 65536
possibilities seem to be enough to encode most languages of the world. Due to the
growth in the size of available computer memory and drives, using two bytes for a
character instead of one does not create problems any more.

In the second step, we will discuss the different ways for visualizing and editing a file
seen as a text. The third point on our agenda, from next week on, is to get acquainted
with different commands that manipulate texts ("tekstmanipulatie"). Once we have
understood that almost all files in Unix are seen as a text, it is obvious that
"manipulating a text" is useful not only in humanities computing ("alfa informatica"),
that is, when you have real texts (literary, legal or historical documents, web sites,
manuals of electronic tools, dialogues,...) in front of you. In fact, (almost) everything
you do in Unix is text manipulation: even if you are searching some pattern in a set of
numerical data or solving some task as a system administrator.

5. Coding different alphabets.

"In UNIX everything is text": what does this mean?

Originally computers were built and used by English speaking people. English is a
special language, because it (practically) doesn't use diacritical marks. What about
other languages, that have all kind of strange characters (e.g. á, é , í, ó, ú, ö, ü,...)?
What about languages using not latin alphabets (Arabic, Greek, Hebrew, languages
using Cyrillic alphabet, Asian languages,...)?

You have to differentiate between the following "levels":

Keyboard layout: Which key on the keyboard is understood as what
character? Different languages have different standards: e.g. English:
QWERTY..., German: QWERTZ..., French: AZERTY, etc. Pressing a key sends
a signal to the computer (to the central unit of the machine, and not to the
computer used as a terminal!), that is understood as a number according to

 1.

�� � �� � � � � � �� � �	

� �
 �� � � � � �
 � � � �
 � �� �� �
� �
 � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � � �
the layout set up. Pressing the left-most key in the upper raw of letters, is
understood as Q if your keyboard setting is Dutch, English or German, but
pressing the same button is understood as A if your keyboard setting is
French. (It is needless to say that the keyboard setting is defined within your
operating system, and does not necessarily corresponds to what black letter
is printed physically on the keyboard.)
Code page: a number (either a signal received from the keyboard, i.e. the
standard input, or a byte appearing in a file) is associated with a character
(e.g. 32 is a space, 48 is the character '0', 65 is the character 'A' in the ASCII
standard). This associating process needs a coding system. On modern
computers (from the late 80's) there are several coding systems, different
standards for associating numbers with characters. These standards are
called code pages.

 2.

Font: the exact graphical image of different characters (e.g. Times, Times
New Roman, Arial, Courier, Helvetica,...). Originally fonts were defined using
a matrix of points (either points of the screen or points of a plotter / printer).
(E.g. Commodore 64 used a matrix of 8 × 8 points.) Nowdays people use
"vector-graphic" fonts, that allow enlarging without loosing the quality of the
text. "Bold", "italic", "underlined", etc. multiplies the possibility of fonts.

 3.

For instance, what happens when you type the left most key in the second row? An
electric signals goes from the keyboard to the operating system. That signals tells
which key has been typed. Then, the operating system interprets this signal, based
on several factors. First, the operating system has to decide whether it expects you to
type any character at all? Suppose that you are not running any other program, but
shell is waiting for you to type in some commands. Then, the system has to
determine which character you aimed at. If your keyboard layout has been set to
English, then the operating system will interpret you typing that key as typing the
character 'q' (not 'Q', since the shift key was not pressed simultaneously). So far so
good. The ASCII code of 'q' is 113, so a byte containing the value 113 appears as the
standard input of the shell, and hopefully shell will be able to interpret it somehow.
On the other hand, the operating system decides that that character has to appear
also on your screen. Then a byte containing the value 113 is written to the file which
corresponds to your screen. The content of this file is interpreted according to the
ASCII standard, so 113 means the character 'q'. But this information is not enough to
make the character 'q' appear on your screen: the exact shape of the character (q or
q or � or something else) depends on the setting of your terminal.

Standard code pages are:

�� � �� � � � � � �� � �	

� �
 �� � � � � �
 � � � �
 � �� �� �
� �
 � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � � �

ASCII: American Standard Code for Information Interchange, using 7
bits. (The 8th bit used to be a parity or security bit, to check whether
something went wrong.)

ANSI-standards: American National Standards Institute

 e.g. ANSI-1252: Latin1 for Windows, ANSI-1250:
Central- and Eastern-European characters

ISO-8859 series: International Standards Organization
 e.g. 8859-1: Latin-1 (Western European
languages),
 8859-2: Central- and Eastern-European
languages,
 8859-4: Baltic Languages,
 8859-5: Cyrillic languages
 8859-6: Arabic
 8859-7: Greek
 8859-8: Hebrew
 8859-11: Thai (planned?)
 8859-15: Latin-1, including the Euro-symbol

Unicode (ISO-10646): it uses two bytes for one character (possible by
now, due to the increased memory of computers, and increased
storing capacity), therefore there are not 128 (c.f. ASCII) or 256 (c.f.
ANSI, ISO), but 65,536 possibilities. This makes possible to use more
than one code page in the same time. In the past it was very difficult to
edit a document containing more languages with different alphabets.

Here is a link to Egyptian hieroglyphs, using Unicode, as well as about coding
different "exotic" languages in different ways.

Furthermore, it is useful to differentiate between two types of characters:

Printable characters: letters, digits, punctuation marks, graphical symbols,
white space, tab, etc.
Non-printable characters: they are sort of 'commands' depending on the

�� � �� � � � � � �� � �	

� �
 �� � � � � �
 � � � �
 � �� �� �
� �
 � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � � �
system, like ring the bell, delete the next / previous character, end-of-line
(new-line, move-home), end-of-file (in some systems), change font, etc. In the
ASCII standard these characters have codes between 0 to 31.

Tip: try out 'man ascii', and check its "see also chapter", too!

6. Text editors (vi, pico, emacs, xemacs), e-mailing (pine,
xemacs)

How can we visualize and edit the content of a file? The key idea, once again, is to
interpret the file as a text. Independently of whether the file is really a text or not,
displaying the file as a text is probably the simplest way. To be sure, it is much
simpler than displaying the file as a series of numbers.

First, we have to distinguish between four types of programs:

c a t : This commmand does nothing but sends the content of a file to
somewhere. This may sound quite vague now, but next week we are going to
be more precise. Suffice to say that the syntax c a t f i l e n a m e sends the
content of the file to the screen. Obviously, if the file is too long, you will only
see the end of the file on the screen.

 1.

pg, more, l e s s : these programs are so-called "pagers". Unlike c a t , they help
you read the file page after page. The original Unix program was pg. An
improved program was more, called as such because it knows more. Then
came l e s s : this latter program knows even more, and was called thus out of
irony.

 2.

Text editors 1: unlike the pagers, the main task of these programs is not
simply to display you the content of a file, but also to help you edit it. First
came v i , and it is still used by real Unix gurus. Then came many other
programs. You are expected to get familiarized with p i co (the text editor of
the emailing program p ine), as well as with emacs and xemacs.
Nonetheless, much more text editors exist: for instance, many people like j o e
(it creates a file called 'deadjoe', and the most important combination to
remember is ^K-H, which gives you the help). This first set of text editors
could be also called as "file editors": they display the content of the file by
interpreting each byte as a character, following the ASCII standard (or one of
its extensions).

 3.

�� � �� � � � � � �� � �	

� �
 �� � � � � �
 � � � �
 � �� �� �
� �
 � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � � �

Text editors 2: These are the text editors most of you have been probably the
most familiar with, such as MS Word. Under Unix you have programs such as
Open Office. These editors, in fact, do not display you the content of a file
directly. Rather, they interpret the content of a file according to some rules.
Some of the bytes may contain text, but others contain information about the
format (character size, font, colours, paragraph identing, margins, location of
pictures and the pictures themselves, etc.). When MS Word opens a .doc-file,
you cannot know what is the first byte of the file, what is the second byte, etc.,
but what you see is already the "interpretation" of the file as understood by
the application. Similarly, you can look at the html- source code of a web site,
by your browser shows you what the file "means". The different ways of
mapping the "meaning" (the information about the edited text) to a file (a
series of bytes) is called "format": e.g. Word 2, Word 6, Word 97, WordPerfect,
HTML, rtf, etc. Obviously, you can use a text editor of this second type as a file
editor (first type text editor) if you save the file in "plain text format".

 4.

Intro to vi

Since we will need to create and to edit longer files than the ones we have created
with 'cat', we need to learn how to use some text editors.

vi has been long considered to be the standard editor for Unix. Hopefully you will
never need to use it, and you will always have an alternative editor available. (But
you never know...). So le'ts have 10 minutes of vi, just in order to be able to
appreciate any other text editors.

Start vi by typing: vi <filename>. Then don't panic!

There are three modes in vi:
- command mode: typing a character is understood as a command, and does not
appear on the screen.
- input mode: now you can type in whatever text you wish into your text, to the place
where the cursor is.
- status-line mode (last-line mode): issuing long commands that will appear on the
bottom line of your screen.

Changing between these modes:
- when you enter vi, you are in the command mode;
- pressing the 'Esc' button ('escape') brings you back always to command mode;

�� � �� � � � � � �� � �	

� �
 �� � � � � �
 � � � �
 � �� �� �
� �
 � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � � �
- from command mode 'a' or 'i' brings you to input mode;
- from command mode ':' brings you to the last-line mode.

In the input mode you can just type in your text, but you will sometimes be surprised
that you are not able to delete it. Then go back to the command mode (by using Esc)
and bring the cursor onto the character you wish to delete. The just press 'x'. Then 'a'
or 'i' will bring you back to input mode.

In fact 'x' deletes the given character by putting it into a buffer ("cut"). 'y' will put the
given character into the buffer without deleting it ("copy"), and 'p' will paste it to the
actual position of the cursor. If you wish to put more than one character into the buffer
(e.g. copying or moving an entire word), then just type the number of characters
before 'x' or 'y'. For instance '5x' will delete five characters, and put them into the
buffer. Finally, 'dd' will delete you a line, and put it into the buffer. If you get lost, just
don't panic...

By pressing ':', you get to the last-line mode. Pressing 'vi' will start a new file ("new
document"), 'vi <file_name>' opens the mentioned file. Typing 'w' will save (write) our
file, while typing 'w <file_name>' saves as (under) the given name.

Leaving this sadistic editor is possible by typing 'q' (quit), 'q!' (quit, even if not saved)
or by 'wq' (save and quit).

The remaining beauty of vi (like different variations of the mentioned commands,
further commands, searching, using the 36 buffers, etc.) are left for those of you who
have some masochistic inclinations...

Intro to pico

Therefore let's rather try out another editor. This is 'pico', the text editor of the
emailing program called 'pine'. Just run 'pico <file_name>' Alternatively, you can
simply run 'pico' if you wish to start a new file: it is enough to give a name to it when
you save the file before leaving. And now, enjoy! (Compared to vi...)

(By the way: both in the case of vi and of pico, the file name given when launching
the program should not necessarily exist before hand. If it already exists then you
can continue editing it, while if it doesn't, then the file will be created as an empty
document.)

In pico you always have the list of commands in the last lines of your screen. ^ stands

�� � �� � � � � � �� � �	

� �
 �� � � � � �
 � � � �
 � �� �� �
� �
 � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � � �

for the CTRL-button. Thus you can ask for help with ^G (CTRL + g), cut a line with ^K
(paste it at the same place or to another place with ^U), etc. You can insert the
content of another file to the actual position of the cursor with ^R, search for a string
of characters (e.g. a word) in your longer file with ^W, etc. With ^Y and ^V you can
jump one page backwards or forwards. ^T will even check your English spelling... (I
wouldn't trust it too much,...) When you are done, ^O saves your file, and ^X exits. If
exiting without having saved it, you are asked if you want to save your file. Finally, ^C
is the universal escape-combination.

Is it too much information? Don't worry, the only thing to remember is allways to
check the last lines of the screen.

Intro to pine

Once you are familiarized with pico, just type pine, and you have entered an
emailing program. The logic is exactly the same, just always check the menu: on the
front page you have your main menu (typing 'M' will bring back to this), otherwise you
have the menu on the bottom of the screen. (You usually don't need to type the CTRL
button, in this case you don't have the ^ symbol in your menu.)

From the main menu just type L to get into your folder list. Then it is up to you to
create new folders (with 'A') or to delete them. Then you have your emails within your
folders, that you can delete (D), undelete (U), save to another folder (S) or export to a
file (E), forward them (F), reply to them (R), etc. Note the option O that will list you
another dozen of commands.

The only way to really learn it is just by playing with it!

Emacs and XEmacs

Emacs is a text editor with more options than pico, and easier to use than vi.
Although one has to get used to it...

But there is a tutorial (CTRL-H T), and by going through it (with a lot of exercises) you
will get the practice...

XEmacs is a more modern version of Emacs.

�� � �� � � � � � �� � �	

� �
 �� � � � � �
 � � � �
 � �� �� �
� �
 � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � � �

You can use them also for writing and reading emails.

Run XEmacs by typing xemacs. Then read the manual for more information. Don't
forget to ask me for a synopsis of the commands.

Bíró Tamás:
e-mail
English web site
Magyar honlap

Last modified: Thu Jul 3 11:39:17 METDST 2003

