
�� � �� � � � � � �� � �	

� � �� � � � � � � � � �
 � �� �� �
� � � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � �

Tekstmanipulatie, week 12

1.What is a 'regular expression'? �� !

A more detailed description of what a regular expression is.

A regular expression is a set of strings, defined by using "concatenation" (joining
substrings), Kleene-star and Kleene-plus (concatenation of taking finite times
elements from a given set of strings; in the case of Kleene-star this can be zero time,
too), as well as union, intersection or complement of previously defined regular
expressions (concatenatie, repetitie, vereniging, intersectie, complement).

What does this definition mean in a human-readable language? A regular
expression is a way to define a set of strings. It is similar to wild cards: the wild card
expression a*b , for instance, refers to all strings starting with an a, and ending with a
b, thus this expression defines the following infinite set: {ab, aab, abb, acb,
adb,...,azb, aAb,..., aZb, a*b, a+b,..., aaab, aabb, aaBb, a%bcb,...}. What shell does is
to check which elements of this set are existing file names. If at least one file name is
found, then the wild card expression is replaced by the relevant file names.
Otherwise, the wild card expression is left unchanged, and this string of characters is
used as the argument of the given command.

The idea of a regular expression is the same, however, the symbols used and their
meaning are a little bit different. You have basically the following tools at your hand:

Defining a set of characters: 1.
A set composed of one character, such as: a
A set composed of some characters, such as: [abcABC]
An abbreviation of the previous, such as: [a - z]
Any character: . (which corresponds to ? in a wild card expression)

The Kleene-star of a set, is a list of elements of a set, including the empty
string. For instance:

 2.

The strings composed of zero or more instances of the character a: a*

�� � �� � � � � � �� � �	

� � �� � � � � � � � � �
 � �� �� �
� � � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � �
The strings composed of zero or more instances of the character a or
b (such as the empty string, a, b, aa, ab, ba, bb, aab, babb, etc.):
[a b] *
The strings composed of zero or more instances of a digit: [0 - 9] *
The Kleene-plus of a set is the same, but requiring at least one
element of the set (i.e., without the empty string).

Concatenation is writing a string after the other. Examples are: 3.
The concatenation of two characters form a string of two characters:
ab
The concatenation of two sets: [a b c] [0 - 9] refers to all strings
composed of two characters that include an a, a b or a c, followed by a
digit.
The concatenation of a set and the Kleene-star of a set: ba* is the set
{b, ba, baa, baaa,...}.

In addition to that, in Unix you can refer to the position of a string within the
line (beginning or end of the line)

 4.

grep

'grep' is a very useful command, we will use it a lot. Its simplest syntax is:

"# $% & # $ "(' $) * +, -. $ ' /0 1 $2 3

What does it do? It outputs the lines of the given file(s - if more than one given) (or, if
not specified, from the input) that match the given regular expression. It can be seen
as a filter to collect only the useful information (e.g. if too much output from a
program).

If you want the lines that match both of two conditions (conjunction), then use a
pipe-line. If you want lines that match (at least) one of two conditions (disjunction),
then use the -F option or the 'fgrep' command. A few others of its most important
options:

-c returns you only the number of lines matching the given regular
expression
-i ignore case distinction: does not differentiate between capital and
lowercase letters
-v inverse: returns those lines that don't match the condition

�� � �� � � � � � �� � �	

� � �� � � � � � � � � �
 � �� �� �
� � � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � ��

But, the syntax of a regular expression here is slightly different from the one used for
file names (remember the wildcards).
The metacharacters are the following: . (period), *, [], \, ^ and $, as well as '-' within
the [] brackets. Their meanings are:

Definition of characters, sets of characters: 1.
. any character (as ? for file names)
Character classes: see below.
[] any character within the brackets (a set of given
characters). Special rules for this:

- an interval of characters can be
abbreviated by '-': [a-z], [0-9],
[m-p]
- a ^ written in the first position
means the inverse of the listed
characters (anything except
those)
- if you want to list the character
"]" within this list, you should put
it into the first position, thus '[][]'
matches a left bracket and a right
bracket.

Repetition of some sets: 2.
* Kleene-star (Kleene closure): the repetition of the
expression before it, any times (even 0 times)
[In egrep, + stands for Kleene-plus (once, or more times)]
[In egrep, ? stands for optionality (zero times or once)]
[See the examples below on how to refer to n times, or more than n

times, etc. in egrep.]

Position within the line: 3.
^ beginning of the line (only at the beginning, otherwise it
matches itself)
$ end of the line (at the end of the outermost expression,
otherwise it matches itself)

Furthermore, you have so-called "character classes", like:
[:upper:] uppercase letters (A-Z, and including some further, non
English characters depending on your system)
[:lower:] lowercase letters (similarly)

�� � �� � � � � � �� � �	

� � �� � � � � � � � � �
 � �� �� �
� � � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � �
[:alpha:] all letters (A-Z, a-z, and maybe more)
[:digit:] the digits 0 through 9, precisely
[:xdigit:] the hexadecimal digits (0-9, A-F, a-f)
[:punct:] the punctuation characters, such as

� � � � �� �� 	
� �
��� � &
 * � � + � 3 �
'

�� � � �
[:graph:] all "graphic" characters, including the mutually excluding
'alpha', 'punct' and 'digit' classes, except <space>
[:print:] all "printable" characters, like graphic characters and
<space>
[:blank:] <space> and <tab>

E.g. "# $% + + � � - " -� � 3 3 will return all lines containing a number. Notice the double
brackets, that you will need in some systems!

Further possibilities:

\{m\} matches exactly m times
\{m,n\} matches between m and n times
\{0,n\} matches maximum n times
\{m,\} matches minimum n times

These are called BRE = Basic Regular Expressions.

Remarks: The concatenation (written one after the other) of two regular expressions
is also a regular expression. The so-called Kleene-plus (any number of repetitions of
the given regular expression, but at least one) can be realized as: <reg_ex>
<reg_ex>*.

Further possibilities (ERE = Extended Regular Expressions), using $ "# $% or "# $%

� �
:

- don't use the backslash (\) before the {, } symbols in {m, n}, etc.
- ? matches 0 or 1 time
- + matches at least one time (Kleene-plus)
- | means disjunction (OR), like in: $� � 0 0 0 � "# $% � 0 � !�

- you can form groups with (and), e.g. when having a disjunction

A few examples:

[oai]n either 'on' or 'an' or 'in'
[0-9][0-9] two consecutive digits
^[aeiou] a vowel at the beginning of the line
^.[aeiou] a vowel at the second position of a line

�� � �� � � � � � �� � �	

� � �� � � � � � � � � �
 � �� �� �
� � � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � ��

^[aeiou]$ a line consisting exactly of a vowel
[^0-9] anything but a digit (it will return you all lines containing
(also) something different from a digit
[^0-9]$ a line ending with something different from a digit
^[d\-] a line beginning with a 'd' or a '-' (when is it useful?)
abb* an occurence of 'a', followed by any number of
occurrences of 'b' (but at least one)
[0-9][0-9]* a sequence of any number (but at least one) of digits (an
unsigned integer)

Don't forget using escape characters or quotes, when needed!

What is the difference between g rep app le and grep ^app le$? The first one
will return all lines containing the string apple , whereas the second one will return
only the lines that contain exactly apple and nothing else.

2. Permissions, � �� � �

What information does the "long list" contain?

� � 0 . � �

�# �) # �) # �) 	 ! - # � 0 - 2 � 0 , ,
� 	 � " 	�
� � �� - /,

� # � � # � � # � �
 ! - # � 0 - 2 � 0 , , ��
 � " 	�
 � � ��

- /� $ # / $� " -,

� # � � # � � # � �
 ! - # � 0 - 2 � 0 , , � � � � " 	�
� � 	 �

- /� # �� 1

colors according to file types
very first character: '-' for simple file, 'd' for directory, 'l' fpr symbolic link, etc.
3 times 3 character: permission for user, group and others:

r = permission to read, w= permission to write, x = permission to ex
ecute

number of links belonging to this file (directories have additional links to their

�� � �� � � � � � �� � �	

� � �� � � � � � � � � �
 � �� �� �
� � � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � ��
subdirectories)
user and the group owning the file (group is usually the group of the owner,
but not necessarily)
size of the file in characters ('total' on the top: total number of disk blocks
occupied by the listed files)
Date and time (or date and year) when the file was last modified (using the -u
option: last access)
file name

Users are grouped into groups. The owner can transfer the file to another user or to
another group with the commands 'chown' and 'chgrp' respectively.

Changing the permissions of a file: 'chmod'

chmod <permissions> <file_name>
u = user, g = group, o = others, a = all (also: ug, uo, etc.,
ugo = a)
+ = give permission; - = remove permission
r = permission to read, w= permission to write, x =
permission to execute

E.g.: �
� 1 � " � � - /� # �� 1 or � � 1 � �) - /,

Setting the permissions:
4 = permission to read, 2 = permission to write, 1 = permission to ex
ecute

E.g. �
� 1 � � � � - /� # �� 1 means: rwx to owner, r-x to group and

-wx to others.
What permissions would you give to a file that contain your private
mails? To a secret document that the group is writing together? To a
program you want the others to use, but not change it, nor check its
content?

The meaning of read, write and execute depends on the file type:
 regular files directories

read read contents list directory
write change file alter files in directory
execute run program files accessible (to read or execute them)

�� � �� � � � � � �� � �	

� � �� � � � � � � � � �
 � �� �� �
� � � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � �

3. Link,

� �

A person can have several names, like diminutive or aliases. Similarly, you can link
several names to the same file.

First, let's understand a little bit the mechanism of the file structure. The information
relating to a given file is to be found on three levels:

Within the catalogue you can find the name of the file and a pointer to the
relevant line within the so-called "i-node table".
In the "i-node table" you will find all relevant information (e.g. permissions)
and a pointer to the actual place where the content of the file is to be found.
The actual place where the content of the file is to be found (e.g. the
winchester, the floppy, and other machine,...)

There are two types of linking:

The "hard link" creates a new file name with a pointer to the same line in the
"i-node table".
The "soft link" (symbolic link) creates a pointer to the original file name.

The command '

. / & $) -2 � - / "('
, -. $ * & / $ �' / 0 1 $ * ' creates a hard link. Adding the

-s will create a soft link.

The number appearing after the permissions in the long list ('

. 2 �. ') shows the
number of hard links to the given file. The very first character in the long list is 'l' in
the case of symbolic links.

Changing the content of a linked file will affect the third level. Moving and removing a
file will affect only the first level, that is only the file name. If you delete by chance a
file that has been linked with a hard link to another one, you are on the safe side,
because the content still exist, and the other file name points to it. One the other
hand, if the given content is pointed to by only one file name (independently of
whether this file is pointed to by a soft link), then deleting this file will result in the lost
of the content, too.

Try out what happens if you have a soft link 'A' pointing to a file 'B', and then you
delete 'B': what happens to 'A'? And what happens if you create a new file with the

�� � �� � � � � � �� � �	

� � �� � � � � � � � � �
 � �� �� �
� � � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � �
name 'B'?

4. Protokols (� � � �, � � ���

��� �	 ,

 �!)

Suppose you are home and you want to log in to Hagen. Or you are anywhere else
but in the Unix computer room. How can you log in to a remote computer? How can
you make your local computer become a terminal of another computer?

Telnet is one solution. It exists under almost any systems, such as DOS, Windows,
UNIX, etc. Just run it, and you will get a window that is a terminal of a remote
computer in front of you. The only disadvantage is that it is not a graphic interface,
therefore you won't be able to use the most comfortable tools, like clicking with the
mouse, etc.

In fact "telnet" is a protocol. What is a protocol? It is a standard of communication
between two different systems, that may be very far from each other, and may be
operating in very different ways. Independently of their inner structure, they still can
understand each other, due to the standardized protocols.

For what reason would two computers communicate with each other? They may
want to exchange information, like emails or files. Therefore one basic protocol is

� � (for File Transfer Protocol, see later in this course). Another one is the
well-known

�� � % (hypertext transfer protocol), which is a more advanced protocol to
transfer more specialized files (allowing e.g. links). Telnet is thus the protocol using
which you can log in into a remote computer, and opening a terminal of the remote
machine using your local computer.

There is a newer version of it, which is called '2 2 �

', that stands for 'secure shell
protocol'. It is the same as telnet, i.e. it opens a terminal (a shell) belonging to the
remote computer on your local computer. The only difference is that it encodes the
information, thus no third party can have access to the information going between
you and the remote computer, in both directions. Therefore it gets more and more
popular, and many system administrators tend to forbid telnet, allowing only ssh.
(There is a secure version of http, too, it is called https.)

�� � �� � � � � � �� � �	

� � �� � � � � � � � � �
 � �� �� �
� � � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � ��

How would I surf on the web if I don't have a graphical interface? How can I run my
favourite Netscape? Well, this is a big disadvantage of not having a graphical
interface, indeed. But, either you believe or not, life existed even before graphical
interfaces! The prehistorical browser you still can use is called: '

. � /) '. Use the
cursor-up and cursor-down keys to see the page and to walk between the links
(these are highlighted), use the cursor-right to follow a link, and use the cursor-left to
come back. To open a new URL, either you type it in the command line when starting
lynx, or -- once it has been run -- press 'G'. Other commands appear in the bottom
line (including H for help and O for options). To quit, press Q.

It is worth trying out once to make up your mind: press Q, then you are asked if you
are sure that you want to leave. Press N for 'no', and look at lynx's reaction!

If you design a web-site, no matter how wonderful graphic it has, it should be usable
also using lynx...

The abbreviation

, � % stands for File Transfer Protocol. This is the simplest way to
transfer files from one machine to another one, supposing you can log in to the
remote machine, as well. The ftp program creates an interface which allows you only
to do the basic steps that you need to transfer files. (The interfaces created by other
protocols let you do more: in the case of 'telnet' you can do on the further machine
whatever you could do from a non graphic terminal; while in the case of web
browsers, like lynx and others :-)), they will automatically present you the files
transferred.)

You will need it if for instance a Windows fun friend of you will send you some funny
attachments that you are not able to open on Linux. Something happening pretty
often...

In the early and middle 90s, before the web became so popular, there used to be lot
of "anonymous ftp servers". If you knew their addresses, you could just log in as a
"guest", without any password, and download public files, programs, images, etc. that
were made available by others. Nowadays people prefer putting these files on their
web page.

Unless you have a fancy ftp program that shows you your local directory and your
remote directory, and let you transfer files by clicking on a button, you have the
following commands:

ftp machines.name.nl - connect to the given machine (you can give
the name of the remote machine as an argument already when
running ftp).

�� � �� � � � � � �� � �	

� � �� � � � � � � � � �
 � �� �� �
� � � � � �
� �� �
 � �� � � � �
� � � � � � � �� � � � � �

disconnect - disconnect from the remote machine

bye - exit the ftp program (not 'exit', not 'quit', but 'bye'!)

bin - change the transfer protocol to binary (8 bits, instead of 7 bits;
very important when transferring images, word files, etc.)

put - put a file from the local system to the remote system

get - get a file from the remote system to the local system

mput, mget - the same but allow you using standard UNIX wildcards

cd, pwd - change directory, print working directory on the remote
system

lcd, lpwd - same on the local system

help - for more commands

Bíró Tamás:
e-mail
English web site
Magyar honlap

Last modified: Thu Jul 3 11:39:17 METDST 2003

