#### Partitions & Parameters

Roeland Hancock & Thomas G. Bever Department of Psychology University of Arizona Tucson, AZ US

#### Overview

- Acquisition theories
  - Nativism: Parameter setting
  - Empiricism: Connectionism, statistical learning
- The middle road: a dynamical systems model
  - Dynamical systems primer
  - Learning mechanisms
  - Examples

#### **Theoretical Issues**

- Acquisition
  - Poverty of the stimulus (POS)
  - Creating new candidate grammars (NCG)
- Possible and impossible languages
- Universals
- Language change

# Solution 1: Parameters (Chomsky & Lasnik)

- Innate UG
- Set parameters with critical examples
- Addresses
  - POS
  - Universals

#### **Possible Parameters**

- Word Order
  - VO (e.g. Modern English)
  - OV (e.g. German, Dutch)
- Branching
  - right-branching (e.g. English)
  - left-branching (e.g. Japanese)

#### Parameters

- Need some structure before setting parameters
- How would such a system actually work in the brain?
- Language change
  - "language change sometimes takes place through an abrupt change in grammars, reflecting a new parameter setting. In that case, one cannot view language acquisition as a function of children matching their input..." (Lightfoot, 1997)
  - or may be gradual, occurring over multiple generations

#### Mixed Evidence

- Degree-0 learnability (Lightfoot, 1991)
- German and Dutch are OV, but also have V2 movement
- (5a) Ich<sub>Subj</sub> denke<sub>TensedVerb</sub>, das ich [den Fuchs]<sub>Obj</sub> sehen<sub>Non-TensedVerb</sub> kann<sub>TensedVerb</sub> *I* think that *I* the fox see can
  'I think that I can see the fox'.
- (5b)  $Ich_{Subj} kann_{TensedVerb} t_{Subj} [den Fuchs]_{Obj} sehen_{Non-TensedVerb} t_{TensedVerb}$  I can the fox see 'I can see the fox'.

Example from Pearl & Weinberg (2007)

### Solution 2: Connectionism

- Goal: form connections that are equivalent to those of a native speaker
- biologically relevant (sometimes)
- minimal built-in assumptions
- well-understood mechanics

#### Connectionism

- POS
- poor at generalizing
- minimal linkage between different structural descriptions
- Not realistically constrained (cf Love et al, 2006; Hancock, 2008)

## Statistical Learning

- Behavioral evidence
- Notable that languages have statistical cues (e.g. canonical forms; Bever, 2007)
- Not powerful enough to produce grammars

# The Middle Road

- Provide the explanatory power of P&P in a learning framework
  - account for abrupt, parametric changes; creolization
  - without structural analysis
  - using minimal data
  - constraints on possible languages
- Using dynamical systems

A (small) dynamical system



Dynamical Systems

#### Iterated Function Systems (IFS)

• A function, f, over a real interval, I, with  $f(I) \subseteq I$ 

$$x_1 = f(x_0), x_2 = f(x_1), x_3 = f(x_2), \dots, x_n = f(x_{n-1})$$

• Orbits:

$$\{x_0, x_1, ..., x_n, ...\}$$

 Connectionist models (e.g. SRNs) can also be described as dynamical systems (Andrews, 2003)





# Model

#### **Present Model**

- Assume a *fixed* state space (something like UG)
- Find a partition that is consistent with the input data
- POS is only relevant insofar as the poverty limits the identification of a partition
  - also true for any parameter theory
- with a suitable partition
  - unobserved regions of state-space can be accessed
  - and previously accessible regions can be blocked

#### Tent Map as an Example

- A very simple example filling in for a fixed function (something like UG)
- Orbits form derivations
- Real interval is an abstract lexicon
- Placement of partition is critical-functions like parameters
- In the brain-thalmocortical loops (Ullman, 2006)

## Dynamical Grammar

- Statistical Processes
  - Chunker
    - $\bullet$  break a sentence into labeled chunks in the set  ${\cal C}$
  - $\bullet$  Partition  $\mathcal P$
  - A map  $\Phi: C \rightarrow \mathcal{P}$
- Innate Process
  - A function G:  $\mathcal{P} \rightarrow$  Structural Descriptions (SD)



### **Statistical Process**

# Learning a Partition

- A learner needs to discover *a* partition consistent with the partitions of other native speakers
- Most of the time, superficially similar sentences will have similar derivations
  - e.g. NVN templates
- Find partitions which minimize the difference in analyses of the most common sentence forms
- Minimize the size of each partition
- This can be done with fairly minimal computations (Kennel & Buhl, 2003)

# Matching Derivations









**Branching Parameter** 

Baker (2003)



### ABBA vs BAAB

Symbolic Dynamics

Tent Map



BAAB

Symbolic Dynamics

Tent Map





# Symbolic Dynamics

Tent Map

## Non-monotonicity



- These are 'fuzzy parameters', not strict binary settings
  - Some variance can be tolerated
  - Language change (OV -> VO)
  - Unidirectionality from topology
- The 'parameters' (i.e. partition points) themselves are learned, not just their values

# Comparison

| Present Model                                                       | Connectionism                                 |
|---------------------------------------------------------------------|-----------------------------------------------|
| use a fixed state space                                             | reconstruct a state space                     |
| lightweight statistical computations; variable rates of convergence | many computations; constant, slow convergence |
| structures appear and disappear in a linked fashion                 | little relation between different SDs         |

| Present Model                 | P&P                          |
|-------------------------------|------------------------------|
| use a fixed state space       | UG                           |
| statistical computations      | structural analysis          |
| no <i>a priori</i> parameters | a set of possible parameters |
| not all boundaries are sharp  | coarse                       |

## Summary

- Parametric variation without innate parameters
- Statistically learned lexicon
- Computationally efficient
- Underlying universal structure