
Effects of Lexical Frequency and Phonotactics on the Learning of Phonological Alternations

Gaja Jarosz Yale University

Learning Meets Acquisition Workshop Osnabrück, Germany, March 2009

Outline

- Zamuner, Kerkhoff, & Fikkert (in prep):
 - Investigate interaction of phonotactics & alternations
 - What can explain the complex effects?
- Computational model
 - The Learning Theory (Jarosz 2006)
 - The simulation & explanation of effects
- Discussion

Phonotactics & Alternations

- There is reason to think learning of phonotactics may precede learning of alternations:
 - Experimental findings support this overall progression...
 - Phonotactic knowledge (including contrasts):
 - Some knowledge by **9 months** (Jusczyk et al 1993; Friederici and Wessels 1993; Anderson et al, 2003; Werker and Tees, 1984)
 - Alternations:
 - Up to 4 yrs or even later before productive alternations are acquired (Berko 1958; Stager and Werker 1997; Pater 1997; Pater, Stager and Werker 2004; MacWhinney 1978; Fikkert & Freitas 2006; Bals, Odden & Rice 2005)
 - Though interesting new findings by White, Peperkamp, Kirk, & Morgan (2008)

Phonotactics & Alternations

- There is reason to think learning of phonotactics may precede learning of alternations:
 - Arguments from Learnability...
 - Much grammar learning can occur prior to knowledge of morphology and underlying forms (Tesar & Prince, 2003/2007; Prince & Tesar 2004; Hayes 2004, & others)
 - That knowledge can aid in later morphophonemic learning (Tesar and Prince, to appear; Jarosz 2006)
- But there is very little work addressing the interaction of phonotactics and alternations in acquisition...

- Zamuner, Kerkhoff, & Fikkert (in prep: "ZKF") address the relationship between phonotactics and alternations directly
- Picture naming task focusing on [t] & [d] in Dutch nouns
- Two age groups: 2;6 and 3;6
- Production accuracy by target UR and morphological status:
 - Mono-morphemic target /t/
 - [watər] "water"
 - Mono-morphemic target /d/
 - [rɪdər] "knight"
 - Bi-morphemic target /t/
 - [pεtə] "caps" ~ [pεt] "cap"
 - Bi-morphemic target /d/
 - [bεdə] "beds" ~ [bεt] "bed"

- ZKF's results:
 - Children never produced [d] syllable-finally
 - $/b\epsilon d/$ and $/p\epsilon t/$ never pronounced with d_{σ}

- ZKF's results:
 - Children never produced [d] syllable-finally
 - /bɛd/ and /pɛt/ never pronounced with d_{σ}
 - Intervocalically:
 - /t/ produced more accurately than /d/ for both age groups

	bi-morphemic						monomorphemic		
	/t/				/d/		/t/		/d/
Age 2;6		83%			5%		100%		28%
Age 3;6		97%			13%		99%		75%

- ZKF's results:
 - Children never produced [d] syllable-finally
 - /bɛd/ and /pɛt/ never pronounced with d_{σ}
 - Intervocalically:
 - /t/ produced more accurately than /d/ for both age groups
 - Monomorphemic words more accurate than bi-morphemic
 - Both for /t/s and /d/s

		bi-morphemic				monomorphemic		
	/t/		/d/		/t/		/d/	
Age 2;6		83%	5%			100%	28%	
Age 3;6		97%	13%			99%	75%	

(lots of) Questions

- How can we explain $* d]_{\sigma}$?
 - Seems like phonotactics...
- How can we explain $/VdV \rightarrow [VtV]$ when the target language allows [VdV]?
 - Seems like the typical Markedness » Faithfulness effect
 - But this seems contrary to phonotactics...
 - How can the grammar capture what's permissible and at the same time perform unfaithful mappings?
- What explains the low accuracy on bi-morphemic /d/ relative to monomorphemic /d/?
 - Bi-morphemic /d/ alternates with [t]...
- What explains the low accuracy of bi-morphemic /t/ relative to monomorphemic /t/?
 - But neither bi-morphemic /t/ nor mono-morphemic /t/ alternates with [d]...
- What evidence is there for the role of phonotactics?

How can we make sense of all this?

Computational Modeling

- I will show that a computational model exhibits the same effects given data representative of the Dutch distribution
- The model provides a possible explanation of the experimental findings
- Next
 - The learning theory
 - Dutch simulation and results
 - Implications and discussion

The Learning Theory: Overview

- Learning is formalized as optimization in MLG (Maximum Likelihood Learning of Lexicons and Grammars; Jarosz 2006).
 - Learning is gradual *likelihood maximization*
 - Finding the grammar and lexicon *combination* that best fits the data
- Optimization in Two Stages:
 - Phonotactic Learning
 - No morphological awareness
 - Learning of legal, illegal, and preferred phonotactics
 - Morphophonemic Learning
 - Words are analyzed into component morphemes
 - Learning of morpheme-specific underlying forms occurs
 - Further gradual learning of the grammar to account for alternations

The Learning Theory: Stages

- Phonotactic Learning
 - Find the grammar that maximizes likelihood given a *fixed rich base*
 - The rich base is simply the space of possible underlying forms
 - Held constant no learning of URs is happening
 - This grammar encodes the biases/restrictions of the target language
- Morphophonemic Learning
 - Initialize with the phonotactic grammar...
 - Gradually converge on the grammar and lexicon combination that maximizes likelihood
 - Each morpheme begins with an unbiased (flat) distribution over all possible URs
 - Gradually, these distributions settle on the target URs
 - Further learning of the grammar to account for unfaithful mappings
 - Production hypothesized to begin at the onset of this stage
 - Production possible once morphemes get separate URs

12

• Consider:

- Data: $1 [rat]_1$ $1 [rade]_{1,3}$
- 3 [rat]₂

 $3 - [rate]_{2,3}$

• Constraints: Ident, NoSFV, NoVoi

Consider:

- Data: $1 [rat]_1$ $1 [rade]_{1,3}$ $3 - [rat]_{2}$
- Constraints: Ident, NoSFV, NoVoi
- Phonotactic Learning:
 - (0%) 25% - /rad/ [rad] - 0 25% - /rat/ (50%) [rat] - 4 (37.5%) [rate] - 3 25% - /rate/ (12.5%) 25% - /rade/ [rade] - 1

 $3 - [rate]_{2,3}$

Consider:

- Data: $1 [rat]_1$ $1 [rade]_{1,3}$ $3 [rat]_2$ $3 [rate]_{2,3}$
- Constraints: Ident, NoSFV, NoVoi
- Phonotactic Learning:
 - 25% /rad/ [rad] - 0 (0%)25% - /rat/ [rat] (50%) - 4
 - 25% /rate/ [rate] 3 25% /rade/ [rade] 1 (37.5%) 25% - /rate/ -
 - (12.5%)

Consider:

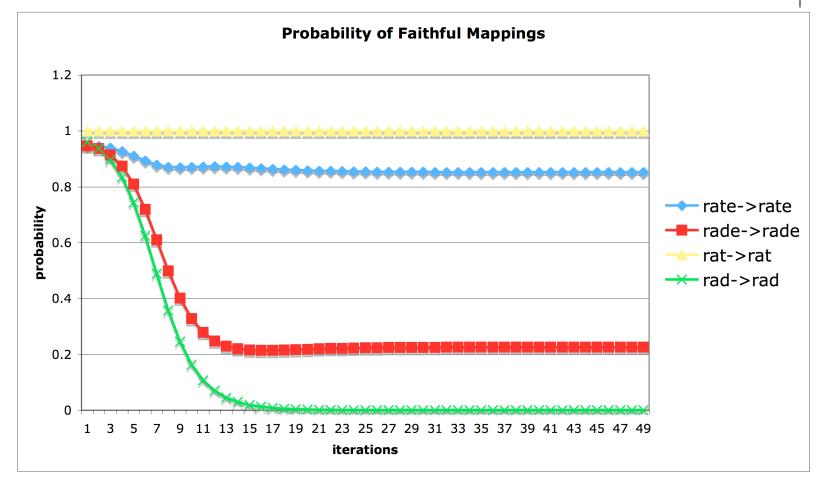
- Data: $1 [rat]_{1}$ $1 [rade]_{1,3}$ $3 [rat]_{2}$ $3 [rate]_{2,3}$
- Constraints: Ident, NoSFV, NoVoi
- Phonotactic Learning:
 - 25% /rad/ [rad] - 0 (0%)
 - 25% /rat/ [rat] - 4 (50%)
 - $25\% /rate/ \longrightarrow [rate] 3 (37.5\%)$ $25\% /rade/ \dots [rade] 1 (12.5\%)$
- Morphophonemic Learning:
 - $[rat]_1 \sim [rade]_{1,3}$ (/rate/ \rightarrow [rate]) \Rightarrow */rat/₁
 - $[rat]_2 \sim [rate]_{2,3}$ $Pr(/rate/\rightarrow [rate]) > Pr(/rade/\rightarrow [rate]) \Rightarrow /rat/_2 > /rad/_2$
 - Meanwhile... $/rad/_1 \Rightarrow$ Ident » NoVoic

Implementation

- MLG formally defines learning at an abstract level:
 - Grammar is a generative probability model
 - Lexicon is a generative probability model
 - Learning is optimization
- In the simulations reported here, I make the following simplifying assumptions:
 - A grammar is a list of rankings with associated probabilities
 - A lexicon is a list of underlying forms with associated probabilities
 - Optimization occurs via the Expectation Maximization algorithm (Dempster et al 1977)
- In current work, I am exploring alternative implementations
- But the focus here is on what explanation this theory might offer:
 - EM is gradual and provably convergent
 - Sufficient to illustrate the predictions of the theory

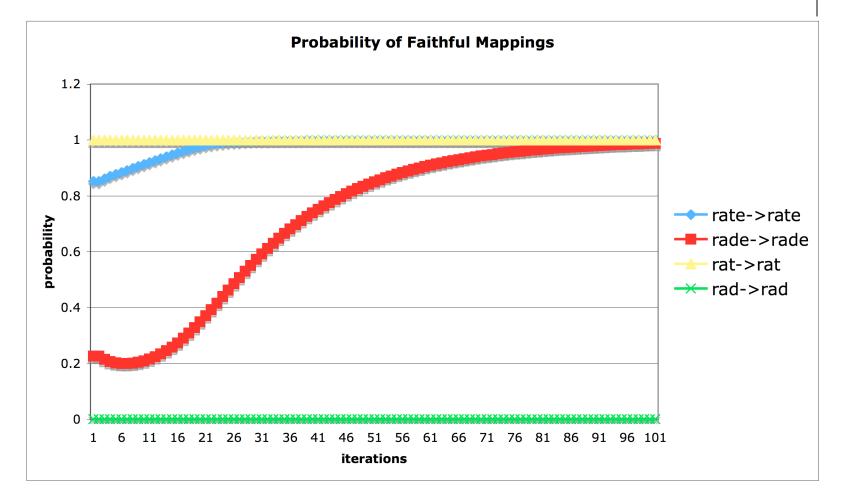
Input: data distribution

- Dutch data distribution provided to the model
- Frequencies below as reported by ZKF:
 - Overall: [t] 95.1%, [d] 4.9% overall
 - Intervocalically: [t] 85%, [d] 15%
 - Alternations: $/d/ \rightarrow [d] 0.5\%$ overall


/t/→[t]	/t/→[t]	/d/→[t]	/d/→[d]	monomorph. /t/	monomorph. /d/
(sg.)	(pl.)	(sg.)	(pl.)		
120	87	564	5	196	45
(11.8%)	(8.6%)	(55.5%)	(0.5%)	(19.3%)	(4.4%)
[rat ₁]	$[rat_1 + e_5]$	[rat ₂]	$[rad_2 + e_5]$	[rate ₃]	[rade ₄] ¹⁸

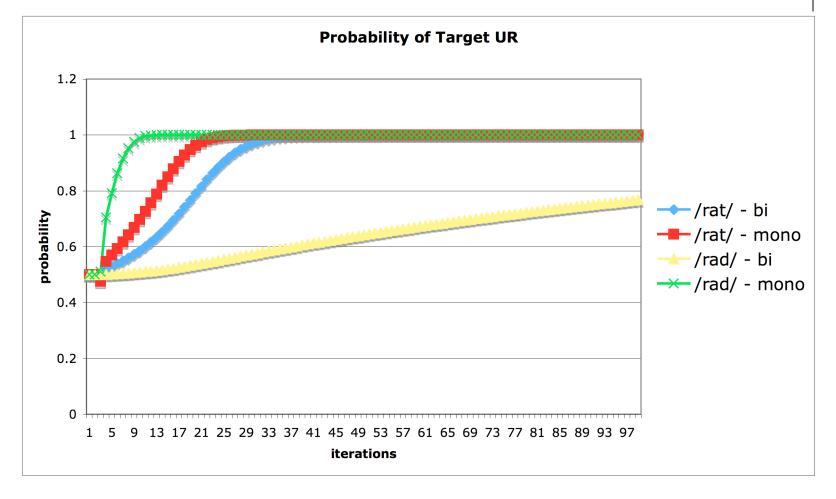
Input: constraints & base

- Simulation relies on the following constraints:
 - NoVoi no voiced obstruents
 - NoSFV no syllable-final voiced obstruents
 - *VTV no voiceless obstruents intervocalically
 - **Ident[vc]** no changes in voicing specification
 - Max no deletion
- Note:
 - Target grammar: NoSFV, Max » Ident[vc] » NoVoi, *VTV
 - Given these constraints, /t/ or /d/ are possible URs in either context
- Space of URs provided to the model:
 - /rat/
 - /rad/
 - /rate/
 - /rade/


Simulation: Phonotactics

Simulation: Phonotactics

- The learned phonotactic grammar:
 - Voiced obstruents *not permitted* in coda:
 - $Pr(/rad/ \rightarrow [rad]) = 0$
 - Both voiced and voiceless *permitted* intervocalically:
 - $Pr(/rade/ \rightarrow [rade]) > 0$
 - $Pr(/rate/ \rightarrow [rate]) > 0$
 - But *preference* for voiceless intervocalically:
 - $Pr(/rade/ \rightarrow [rate]) = 77.4\%$
 - *Voi probabilistically above Ident


Simulation: Morphophonemics

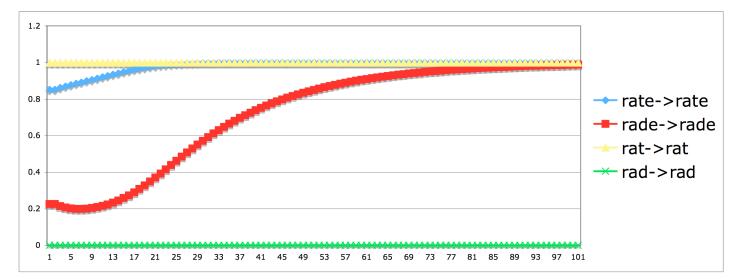
Simulation: Morphophonemics

Simulation: Production Accuracy

• <u>The model:</u>

	bi-mor	phemic	monomorphemic		
	/t/	/d/	/t/	/d/	
Iter. 112	87%	15%	90%	23%	
Iter. 126	96%	29%	99%	51%	

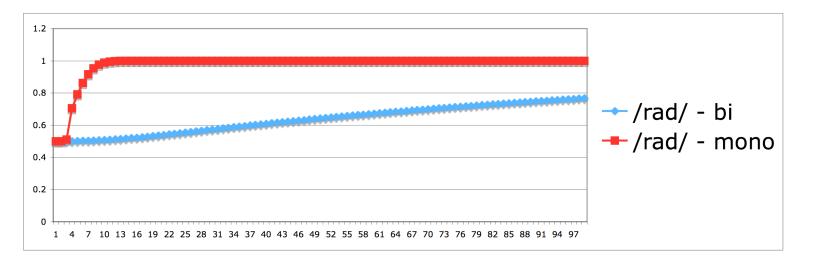
• <u>The experiment:</u>


	bi-mor	phemic	monomorphemic		
	/t/	/d/	/t/	/d/	
Age 2;6	83%	5%	100%	28%	
Age 3;6	97%	13%	99%	75%	

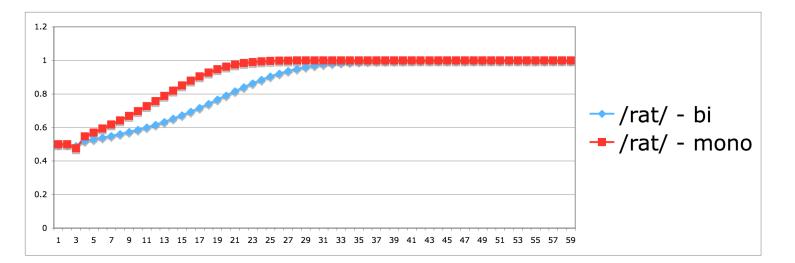
• Captured effects:

- No voiced syllable-final obstruents (not shown)
- [t] more accurate, especially early on
- Mono-morphemic /d/ more accurate than bi-morphemic /d/
- Mono-morphemic /t/ more accurate than bi-morphemic /t/
- Why do we see these effects in the model?

The Explanation: Phonotactics

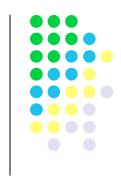

- Phonotactics & frequency sensitivity explains:
 - No voiced syllable-final obstruents
 - Phonotactic learning ensures rankings permitting d_{σ} are eliminated
 - This ensures /d/ never surfaces surfaces faithfully
 - [t] more accurate, especially early on
 - phonotactic grammar captures the language-specific bias against [VdV]
- These are global, *grammatical* effects

The Explanation: /d/


- Alternations, phonotactics & frequency explain:
 - Mono-morphemic /d/ more accurate than bi-morphemic /d/
 - Mono-morphemic /d/s occur intervocalically as [d] 100% of the time
 - Because of phonotactic knowledge intervocalic context provides evidence of /d/
 - Bi-morphemic /d/ occurs syllable-finally 99% of the time
 - Because of phonotactic knowledge, syllable-final context is equally consistent with /d/ and /t/
 - It is this *lexical delay* that results in lower accuracy for alternating /d/
 - Learner is unsure about the underlying voicing for alternating /d/ longer...
 - The difference in accuracy between the /d/s results from different URs
 - Relative frequency & informativeness of contexts in which a morpheme occurs

The Explanation: /t/

- Phonotactics and Frequency explain:
 - Mono-morphemic /t/ occurs in intervocalic context 100% of the time
 - Bi-morphemic /t/ occurs in syllable final position 58% of the time
 - Because of phonotactic knowledge, syllable final position is not informative
- Most direct evidence of phonotactic knowledge:
 - /t/ is always realized as [t]
 - Overall frequency of mono-morphemic /t/ is 19.3%
 - Overall frequency of bi-morphemic /t/ is 20.4%



Summary: General Predictions

- Effects of Phonotactics
 - Learning a setting for a feature in a contrastive context should be faster than in a neutralized context
 - Precisely because knowledge of phonotactics underdetermines the UR in neutralizing contexts
- Relative frequency & alternation effects
 - The rate of UR learning *for a given morpheme* depends on the proportion of surface realizations that are informative about URs
 - For Dutch: URs for stems with a higher relative proportion of plurals should be acquired more quickly
- Probabilistic phonotactics effects
 - To the extent allowable by the constraint set, the phonotactic grammar will reflect statistical biases in the language
 - These biases will be apparent in initial productions

Discussion



- Understanding the properties of the model provides a possible explanation of these experimental findings
- Additionally, manipulating the input to the model makes testable predictions about learners' behavior in other languages/domains
 - Acquisition data can guide the refinement of the model
 - This could guide the development of future experiments

Necessary Properties

- Crucial aspects of the data distribution:
 - Low frequency of [VdV]
 - The fact that bi-morphemic /t/s and /d/s occur in syllable final context
- Sensitivity to frequency
 - Relative frequency of alternants & their contexts affects rate of learning
 - Also, phonotactic biases are sensitive to statistical biases
- Lexical representations that are 'rich' even for non-alternating morphemes
 - If both /t/s started as /t/ no difference in accuracy would be expected
- Morphophonemic learning starts from a phonotactic grammar that:
 - Encodes language-specific phonotactic restrictions,
 - M >> F predicts initial production is sensitive only to *universal* markedness
 - Penalizes licit, marked forms
 - If we just had Ident >> *Voi, *VTV, initial productions would be perfect in contrastive contexts

Outstanding Questions

- Can we *derive* (i.e. explain) phonotactics ≼ alternations from some independently motivated criteria?
 - And of course this division is unlikely to be quite so perfect
- What is the role of learning the morphological associations?
 - In a sense, the model predicts phonotactics *hurts* learning URs
 - But phonotactics should be very helpful for learning this aspect of alternations
- What is the development of voicing alternations in languages with:
 - a higher proportion of intervocalic contexts
 - no/less preference for voicelessness overall

The End

• Thank You!

Selected References

- Jarosz, Gaja. 2006. Rich Lexicons and Restrictive Grammars - Maximum Likelihood Learning in Optimality Theory. PhD dissertation, Johns Hopkins University.
- Zamuner, Tania S., Annemarie Kerkhoff, & Paula Fikkert. In preparation. 'Children's knowledge of how phonotactics and morphology interact'.