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Outline

• Computational issues in the learning of phonologies

– learning rankings and underlying forms

– further structure required for plausibly efficient learning

• Output-Driven Maps

• Exploiting ODM structure in learning
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Learning Phonologies

• Must simultaneously learn the ranking and the lexicon of 

underlying forms (Tesar & Smolensky 1996; Hale & 

Reiss 1997).

• Exhaustively evaluating all possible lexicon-ranking 

combinations (Hale & Reiss 1997) is hopelessly 

intractable.
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Prior Work

• Jarosz (2006): likelihood maximization.

– Separately evaluates each possible UF for each morpheme (as 

well as each possible ranking).

• Apoussidou (2007): lexical constraints against possible 

underlying forms (also Boersma 2001).

– Separately evaluates each possible UF for each morpheme.
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Contrast Pair and Ranking

• Evaluate local lexica for a small morpheme set 

(Merchant & Tesar 2005/2008, Merchant 2008).

– Local lexicon: possible assignment of feature values to 

unset underlying features.

– Better than all possible UFs, but still exponential in the 

number of unset features.

• Both underlying feature setting and ranking 

information extraction are dependent upon evaluating 

all local lexica.
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Need Additional Structure

• These techniques are still implausibly slow.

– Processing all UFs for even a modest number of morphemes 

gets expensive very quickly.

• Faster learning will require additional posited structure in 

the space of possible grammars.

• Proposal: Output-Driven Maps
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Terminology

• A candidate is an input, an output, and a 
correspondence relation between them.
– An input for a word is constructed from the underlying forms 

(UFs) for the morphemes of the word.

– /p1a2k3a:4/ → [p1á2k3a4]

• A candidate has a set of disparities.
– Differences between input-output correspondents.

• A mapping is an optimal candidate.

• A phonological map is the set of optimal candidates.
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A System for Illustration

• Words: root + suffix

– Both roots and suffixes are monosyllabic.

• Each vowel has two features:

– Vowel length: long (+) or short (–)

– Main stress: stressed (+) or unstressed (–)

• Example surface words:

– páka  pá:ka  paká páka:  pa:ká:  pa:ká

– Each word has two morphemes

– Each word has exactly one main stress in the output.
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The Constraints

• Six Constraints

MainLeft main stress on the initial syllable

MainRight main stress on the final syllable

*V: no long vowels

WSP long vowels are stressed

FaithStress correspondents have equal stress value

FaithLength correspondents have equal length value

(McCarthy & Prince 1993, 1995; Prince 1990; Rosenthall 1994)
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Language A

Ranking: WSP ≫ FS ≫ ML ≫ MR ≫ FL ≫ *V:

Lexical stress (default initial), long vowels shorten in 

unstressed position.

Note: s1 /-ka/ and s2 /-ka:/ neutralize in all environments.

s2=/-ka:/pá:kapákapá:kapáka

s4=/-ká:/pá:kapákapaká:paká:

s3=/-ká/pá:kapákapakápaká

s1=/-ka/pá:kapákapá:kapáka

r4=/pá:/r3=/pá/r2=/pa:/r1=/pa/
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Output Restrictions

• Theoretical claim: most phonological requirements 

enforce output restrictions.

• Said another way, phonological disparities are driven by 

restrictions on the output.

• How can this be formally expressed?
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Output-Driven Maps
(Tesar 2008)

• A map is output-driven if:

– for every grammatical candidate A→X of the map:

– if candidate B →X (same output) has greater similarity than 

A→X,

– then B→X is also grammatical.

• Simplified:

– for every grammatical candidate A→X of the map:

– if input B is more similar to X than A is,

– then B also maps to X.
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Greater Similarity

• Candidate B→X has greater similarity than candidate 

A→X if every disparity in B→X has an identical 

corresponding disparity in A→X.

– The relation is only defined for pairs of candidates sharing the

same output.

(+/–stress  +/–length)

A→X páká → paká: [+ – + –] → [– – + +]

B→X paká → paká: [– – + –] → [– – + +]
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Relative Similarity (up = greater similarity)

A

B
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Relative Similarity (+/–stress  +/–length)

– – + +

+ – + + – + + + – – – + – – + –

– + – + – + + – – – – –+ – – ++ + + + + – + –

+ + – + + + + – + – – – – + – –

+ + – –
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(A Piece of) An Output-Driven Map

• páká: → páka 2 disparities

• páká → páka 1 disparity

• páka: → páka 1 disparity

• páka → páka 0 disparities (Identity Mapping)

• Output conditions force /páká:/ to accept 2 disparities to 
reach the “nearest” phonotactically valid output.

• Inputs with greater similarity to [páka] require only a strict 
subset of those disparities to reach [páka].

• Output-driven: simply removing some obstacles to an 
output ensures reaching that same output.
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A Non-Output-Driven Map

• páká: → páka 2 disparities

• páká → paká Different Output!

• páka: → páka 1 disparity

• páka → páka 0 disparities (Identity Mapping)



19

Learning Output-Driven Maps 

Bruce Tesar Linguistics / Center for Cognitive Science

The Identity Map Property

• The Identity Map Property

– All grammatical outputs “map to themselves”.

– Common assumption, especially with respect to phonotactic 

learning.

• All output-driven maps have the Identity Map Property.

– No input is more similar to an output X than X itself.

– If any input maps to X, then X maps to X.

• Consequence: maps with chain shifts are not output-

driven.
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Output-Driven Maps in Optimality Theory

• An OT system is guaranteed to define only output-driven 

maps if two main conditions are met:

– Gen must be correspondence uniform.

– All constraints of Con must be output-driven-preserving.

– These are sufficient conditions.

• Correspondence uniformity is fully consistent with a 

standard “freedom of analysis” view of Gen.
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Output-Driven-Preserving Constraints

• The details of output-driven-preserving (ODP) are 

technical, but require of a constraint C:

– if B→X has greater similarity than A→X,

– and B→Y has fewer violations of C than B→X,

– then A→Y must have fewer violations of C than A→X.

• Consequence: all markedness constraints are ODP.

• “Basic” IO faithfulness constraints are ODP.

– Max, Dep, Ident

– See Tesar (2008) for proofs of the (non)ODP status of a variety 

of constraints.
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Exploiting ODM Structure in Learning

• ODM structure can be exploited in the learning of both:

– underlying feature values

– ranking information

• The primary benefit: computational efficiency

– Converts exponential search to linear search
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Phonotactic Learning

• Phonotactic learning commonly uses underlying forms 

that are (effectively) identical to the observed output.

– Identity mappings for observed words

– Prince & Tesar (2004), Hayes (2004)

• The Identity Map property follows from ODM structure.

– Phonotactic learning can be done as before.
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Phonotactic Ranking Information (Lang. A)

r1s4

r1s3

r1s1

WLpaká: ~ paká

WWLpaká ~ páka

WLWpáka ~ paká

FLFS*V:MRMLWSP

Applying Biased Constraint Demotion:

WSP≫ FS ≫ {ML,MR} ≫ FL≫ *V:
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Learning Underlying Feature Values

• ODM: A→X entails B→X

• Contrapositive: NOT (B→X) entails NOT (A→X)

– If a given input cannot map to the output, then all inputs with 

lesser similarity (additional disparities) cannot map to that output.
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Testing Individual Disparities

• Observed output (r1s4): paká:

• What is the underlying length of suffix s4?

• paká→paká: disparity for s4 length only.

• If paká→paká: is inconsistent

– no other input with s4 set to short maps to paká:

– s4 can be set to long (+).
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paká→paká: is Inconsistent

*paká

LLERC   paká: ~ paká

***paká:

FLFS*V:MRMLWSP/paká/

paká→paká: is harmonically bound.
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Setting s4 to +long
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Exponential to Linear

• The learner only needs to test one input for each unset 

underlying feature.

– Set one underlying feature to mismatch the output, set the 

others to match the output.

• The number of inputs to be evaluated is linear in the 

number of unset features, rather than exponential (even 

at the outset of learning).

• Complication: the number of inputs to be evaluated 

increases for some multi-word sets (more on this later).
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Ranking Information with ODM

• Once a feature has been set, the value is fixed for any 

word containing that morpheme.

• Further ranking information can be obtained from forms 

in which a set feature is not faithfully preserved (Tesar 

2006b).
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Nonfaithful Features

• Observed output (r3s4): [páka]

• s4 has already been set to +long.

– Lexicon: r3 /?,?/ s4 /?,+/

• Minimal disparity mapping: páka: → páka

– NOT an identity mapping.
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Available Inputs for r3s4
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Ranking Info from r3s4

LWWERC

WLpaká: ~ paká

**páka:

LLWFusion

*páka

FLFS*V:MRMLWSP/páka:/

WSP≫ FL≫ *V:

Obtained despite incomplete input knowledge.
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Single Word Learning

LWW/páka:/ páka ~ páka:r3s4

r1s4

r1s3

r1s1

WLpaká: ~ paká

WWLpaká ~ páka

WLWpáka ~ paká

FLFS*V:MRMLWSP

WSP≫ FS ≫ {ML,MR} ≫ FL≫ *V:

r1 /?,–/ r2 /?,+/ r3 /?,–/ r4 /?,+/

s1 /?,?/ s2 /?,?/ s3 /?,–/ s4 /?,+/
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Multi-word Sets

• Processing multiple words simultaneously has value 

when a morpheme is shared between the words.

– Needed to obtain key lexical information (Tesar 2006b).

– The shared morpheme must have the same UF for all words in 

the set.

• Alternating feature within the set: no single underlying 

value will match the surface everywhere.

• All values of the alternating feature must be tried in 

combination with each other tested feature value.

– Exponential growth only with respect to unset features 

alternating within the words being processed.
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Contrast Pair (Tesar 2006a)

• r1s1 [páka] r1s3 [paká]

– r1 alternates in stress

• Lexicon: r1 /?,–/ s1 /?,?/ s3 /?,–/

• Testing the stress feature for s3 involves both:

– r1 /–,–/ s1 /–,–/ s3 /–,–/

– r1 /+,–/ s1 /–,–/ s3 /–,–/

• If both lexical hypotheses are inconsistent, we can set s3 

to be +stress.
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pa ká ká pa ka ka

r1s1: /?,– ?,?/ → [+,– –,–] r1s3: /?,– ?,–/ → [–,– +,–]

→ páka → paká

pa ka ká

pa ka: ká

pa ká: ká pa ka: ka
pa ká ka

pa ká: ka

pá ká ká pá ka ka

pá ka ká

pá ka: ká

pá ká: ká pá ka: ka
pá ká ka

pá ká: ka

(r1 s1 s3)

Contrast Pair r1s1 / r1s3
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Morphemic Contrast at Work

• Both s3 –stress hypotheses guaranteed to fail:

– pa ka ka pá ka ka (r1 s1 s3)

– s1 and s3 must differ underlyingly.

• Set s3 to be +stress.
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More Ranking Information: r3s3

• Learned: ML ≫ MR

• Now the other underlying stress features can be set.

LWERC

*paká loser

*páka winner

FLFS*V:MRMLWSP/páká/

• r3s3: páka

• Chosen because s3’s stress is unfaithfully mapped.
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Learned Grammar for Lang. A

Ranking: WSP ≫ FS ≫ ML ≫ MR ≫ FL ≫ *V:

Lexicon:

r1 /–,–/ r2 /–,+/ r3 /+,–/ r4 /+,+/

s1 /–,?/ s2 /–,?/ s3 /+,–/ s4 /+,+/

• s1 and s2 are homophonous.

• An unaccented suffix is never stressed, and its length is 

always neutralized.
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Unset, Not Underspecified

• Unset features: can be set to any value without affecting 

the morpheme’s behavior.

– NOT “essential” underspecification (Archangeli 1988; Kiparsky 

1982).

• “(non)contrastive” is a property of individual features in 

phonological context.

– Length is noncontrastive in s1 and s3, but contrastive for the 

other morphemes.
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On-line Learning, With Memory

• At a given time, the learner can process whatever forms 

they have reliably observed.

– Need to store some output forms in memory, in order to analyze 

them into morphemes.

• No need to wait until all words of a paradigm have been 

stored.

– No need for Initial Lexicon Construction (Tesar et al 2003).

– Contrast pairs can be formed if/when the relevant contrasting 

words have been stored.
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Contact with Acquisition

• This learning approach predicts dependencies.

– Learn length feature values for a few key morphemes.

– Then learn WSP≫ FL≫ *V:

– Then learn stress feature values for a few key morphemes.

– Then learn ML≫MR

• These dependencies should constrain order of 

acquisition.
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Conclusions

• Output-Driven Maps are a good next approximation to 
the structure of basic phonology.

• ODM structure makes much more efficient learning 
possible.
– Reduces from exponential to linear

– Both underlying forms and ranking information.

• Future:
– can ODM structure be expanded to include attested instances of 

non-OD phenomena, while remaining exploitable in learning?

– translating UF-ranking dependencies into predictions about 
acquisition data.
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