

Learning Phonological Grammars for Output-Driven Maps

Bruce Tesar Linguistics Dept. / Center for Cognitive Science Rutgers University, New Brunswick

DGfS, Osnabruck. March 4, 2009.

Acknowledgements

• Crystal Akers (Rutgers University)

Outline

- Computational issues in the learning of phonologies
 - learning rankings and underlying forms
 - further structure required for plausibly efficient learning
- Output-Driven Maps
- Exploiting ODM structure in learning

Learning Phonologies

- Must simultaneously learn the ranking and the lexicon of underlying forms (Tesar & Smolensky 1996; Hale & Reiss 1997).
- Exhaustively evaluating all possible lexicon-ranking combinations (Hale & Reiss 1997) is hopelessly intractable.

Prior Work

- Jarosz (2006): likelihood maximization.
 - Separately evaluates each possible UF for each morpheme (as well as each possible ranking).
- Apoussidou (2007): lexical constraints against possible underlying forms (also Boersma 2001).
 - Separately evaluates each possible UF for each morpheme.

Contrast Pair and Ranking

- Evaluate local lexica for a small morpheme set (Merchant & Tesar 2005/2008, Merchant 2008).
 - Local lexicon: possible assignment of feature values to unset underlying features.
 - Better than all possible UFs, but still exponential in the number of unset features.
- Both underlying feature setting and ranking information extraction are dependent upon evaluating all local lexica.

Need Additional Structure

- These techniques are still implausibly slow.
 - Processing all UFs for even a modest number of morphemes gets expensive very quickly.
- Faster learning will require additional posited structure in the space of possible grammars.
- Proposal: Output-Driven Maps

Terminology

- A **candidate** is an input, an output, and a correspondence relation between them.
 - An input for a word is constructed from the underlying forms (UFs) for the morphemes of the word.
 - $/p_1 a_2 k_3 a_4 / \to [p_1 a_2 k_3 a_4]$
- A candidate has a set of **disparities**.
 - Differences between input-output correspondents.
- A mapping is an optimal candidate.
- A phonological **map** is the set of optimal candidates.

A System for Illustration

- Words: root + suffix
 - Both roots and suffixes are monosyllabic.
- Each vowel has two features:
 - Vowel length: long (+) or short (-)
 - Main stress: stressed (+) or unstressed (-)
- Example surface words:
 - páka pá:ka paká páka: pa:ká: pa:ká
 - Each word has two morphemes
 - Each word has exactly one main stress in the output.

The Constraints

• Six Constraints

MainLeftmain stress on the initial syllableMainRightmain stress on the final syllable*V:no long vowelsWSPlong vowels are stressedFaithStresscorrespondents have equal stress valueFaithLengthcorrespondents have equal length value

(McCarthy & Prince 1993, 1995; Prince 1990; Rosenthall 1994)

Language A

r1=/ <mark>pa</mark> /	r2=/ <mark>pa:</mark> /	r3=/ <mark>pá</mark> /	r4=/ <mark>pá:</mark> /	
páka	pá:ka	pá <mark>ka</mark>	pá: <mark>ka</mark>	s1=/- <u>ka</u> /
páka	pá:ka	páka	pá: <mark>ka</mark>	s2=/- <mark>ka:</mark> /
paká	paká	páka	pá:ka	s3=/- <mark>ká</mark> /
paká:	paká:	páka	pá:ka	s4=/- <mark>ká:</mark> /

Ranking: WSP \gg FS \gg ML \gg MR \gg FL \gg *V:

Lexical stress (default initial), long vowels shorten in unstressed position.

Note: s1 /-*ka*/ and s2 /-*ka:*/ neutralize in all environments.

Output Restrictions

- **Theoretical claim**: most phonological requirements enforce output restrictions.
- Said another way, phonological disparities are driven by restrictions on the output.
- How can this be formally expressed?

Output-Driven Maps (Tesar 2008)

- A map is output-driven if:
 - for every grammatical candidate $A \rightarrow X$ of the map:
 - if candidate $B \rightarrow X$ (same output) has greater similarity than $A \rightarrow X$,
 - then $B \rightarrow X$ is also grammatical.
- Simplified:
 - for every grammatical candidate $A \rightarrow X$ of the map:
 - if input B is more similar to X than A is,
 - then B also maps to X.

Greater Similarity

- Candidate B→X has greater similarity than candidate A→X if every disparity in B→X has an identical corresponding disparity in A→X.
 - The relation is only defined for pairs of candidates sharing the same output.

 $\begin{array}{ll} \mathsf{A} \to \mathsf{X} & páká \to paká: & [+-\texttt{stress} +/-\texttt{length}) \\ \mathsf{B} \to \mathsf{X} & paká \to paká: & [--+-] \to [--++] \end{array}$

Relative Similarity (up = greater similarity)

Linguistics / Center for Cognitive Science

Relative Similarity (+/-stress +/-length)

(A Piece of) An Output-Driven Map

- páká: → páka
- páká → páka
- páka: → páka
- páka → páka

- 2 disparities
- 1 disparity
- 1 disparity
- 0 disparities (Identity Mapping)
- Output conditions force /páká:/ to accept 2 disparities to reach the "nearest" phonotactically valid output.
- Inputs with greater similarity to [*páka*] require only a strict subset of those disparities to reach [*páka*].
- Output-driven: simply removing some obstacles to an output ensures reaching that same output.

A Non-Output-Driven Map

- páká: → páka
- páká → paká
- páka: → páka
- páka → páka

2 disparities Different Output!

1 disparity

0 disparities (Identity Mapping)

The Identity Map Property

- The Identity Map Property
 - All grammatical outputs "map to themselves".
 - Common assumption, especially with respect to phonotactic learning.
- All output-driven maps have the Identity Map Property.
 - No input is more similar to an output X than X itself.
 - If any input maps to X, then X maps to X.
- Consequence: maps with chain shifts are not outputdriven.

Output-Driven Maps in Optimality Theory

- An OT system is guaranteed to define only output-driven maps if two main conditions are met:
 - Gen must be correspondence uniform.
 - All constraints of Con must be **output-driven-preserving**.
 - These are sufficient conditions.
- Correspondence uniformity is fully consistent with a standard "freedom of analysis" view of *Gen*.

Output-Driven-Preserving Constraints

- The details of output-driven-preserving (ODP) are technical, but require of a constraint C:
 - if $B \rightarrow X$ has greater similarity than $A \rightarrow X$,
 - and $B \rightarrow Y$ has fewer violations of C than $B \rightarrow X$,
 - then $A \rightarrow Y$ must have fewer violations of C than $A \rightarrow X$.
- Consequence: all markedness constraints are ODP.
- "Basic" IO faithfulness constraints are ODP.
 - Max, Dep, Ident
 - See Tesar (2008) for proofs of the (non)ODP status of a variety of constraints.

Exploiting ODM Structure in Learning

- ODM structure can be exploited in the learning of both:
 - underlying feature values
 - ranking information
- The primary benefit: computational efficiency
 - Converts exponential search to linear search

Phonotactic Learning

- Phonotactic learning commonly uses underlying forms that are (effectively) identical to the observed output.
 - Identity mappings for observed words
 - Prince & Tesar (2004), Hayes (2004)
- The Identity Map property follows from ODM structure.
 - Phonotactic learning can be done as before.

Phonotactic Ranking Information (Lang. A)

		WSP	ML	MR	*V:	FS	FL
r1s1	páka ~ paká		W	L		W	
r1s3	paká ~ páka		L	W		W	
r1s4	paká: ~ paká				L		W

Applying Biased Constraint Demotion: WSP \gg FS \gg {ML,MR} \gg FL \gg *V:

Learning Underlying Feature Values

- ODM: $A \rightarrow X$ entails $B \rightarrow X$
- Contrapositive: NOT ($B \rightarrow X$) entails NOT ($A \rightarrow X$)
 - If a given input cannot map to the output, then all inputs with lesser similarity (additional disparities) cannot map to that output.

Testing Individual Disparities

- Observed output (r1s4): *paká:*
- What is the underlying length of suffix s4?
- $paká \rightarrow paká$: disparity for s4 length only.
- If *paká→paká:* is inconsistent
 - no other input with s4 set to short maps to paká:
 - s4 can be set to long (+).

paká→paká: is Inconsistent

lpakál	WSP	ML	MR	*V:	FS	FL
paká:		*		*		*
paká		*				
ERC paká: ~ paká				L		L

 $paka \rightarrow paka$: is harmonically bound.

Setting s4 to +long

Exponential to Linear

- The learner only needs to test one input for each unset underlying feature.
 - Set one underlying feature to mismatch the output, set the others to match the output.
- The number of inputs to be evaluated is linear in the number of unset features, rather than exponential (even at the outset of learning).
- Complication: the number of inputs to be evaluated increases for some multi-word sets (more on this later).

Ranking Information with ODM

- Once a feature has been set, the value is fixed for any word containing that morpheme.
- Further ranking information can be obtained from forms in which a set feature is not faithfully preserved (Tesar 2006b).

Nonfaithful Features

- Observed output (r3s4): [páka]
- s4 has already been set to +long.
 - Lexicon: r3 /?,?/ s4 /?,+/
- Minimal disparity mapping: $p \dot{a} k a : \rightarrow p \dot{a} k a$
 - NOT an identity mapping.

Available Inputs for r3s4

Ranking Info from r3s4

/páka:/	WSP	ML	MR	*V:	FS	FL
páka						*
páka:	*			*		
ERC	W			W		L
paká: ~ paká				L		W
Fusion	W			L		L

WSP \gg FL \gg *V:

Obtained despite incomplete input knowledge.

Single Word Learning

		WSP	ML	MR	*V:	FS	FL
r1s1	páka ~ paká		W	L		W	
r1s3	paká ~ páka		L	W		W	
r1s4	paká: ~ paká				L		W
r3s4	/páka:/ páka ~ páka:	W			W		L

WSP \gg FS \gg {ML,MR} \gg FL \gg *V:

r1 /?,–/	r2 /?,+/	r3 /?,–/	r4 /?,+/
s1 /?,?/	s2 /?,?/	s3 /?,–/	s4 /?,+/

Linguistics / Center for Cognitive Science

Multi-word Sets

- Processing multiple words simultaneously has value when a morpheme is shared between the words.
 - Needed to obtain key lexical information (Tesar 2006b).
 - The shared morpheme must have the same UF for all words in the set.
- Alternating feature within the set: no single underlying value will match the surface everywhere.
- All values of the alternating feature must be tried in combination with each other tested feature value.
 - Exponential growth only with respect to unset features alternating within the words being processed.

Contrast Pair (Tesar 2006a)

- r1s1 [*páka*] r1s3 [*paká*]
 - r1 alternates in stress
- Lexicon: r1 /?,-/ s1 /?,?/ s3 /?,-/
- Testing the stress feature for s3 involves both:
 - r1 /-,-/ s1 /-,-/ s3 /-,-/
 - r1 /+,-/ s1 /-,-/ s3 /-,-/
- If both lexical hypotheses are inconsistent, we can set s3 to be +stress.

Rutgers

Linguistics / Center for Cognitive Science

Morphemic Contrast at Work

- Both s3 –stress hypotheses guaranteed to fail:
 - *pa ka k<u>a</u> pá ka k<u>a</u> (r1 s1 s3)*
 - s1 and s3 must differ underlyingly.
- Set s3 to be +stress.

More Ranking Information: r3s3

- r3s3: *páka*
- Chosen because s3's stress is unfaithfully mapped.

lpákál		WSP	ML	MR	*V:	FS	FL
páka	winner			*			
paká	loser		*				
ERC			W	L			

- Learned: $ML \gg MR$
- Now the other underlying stress features can be set.

Learned Grammar for Lang. A

Ranking: WSP \gg FS \gg ML \gg MR \gg FL \gg *V: Lexicon: r1 /-,-/ r2 /-,+/ r3 /+,-/ r4 /+,+/

- s1 /_,?/ s2 /_,?/ s3 /+,_/ s4 /+,+/
- s1 and s2 are homophonous.
- An unaccented suffix is never stressed, and its length is always neutralized.

Unset, Not Underspecified

- Unset features: can be set to any value without affecting the morpheme's behavior.
 - NOT "essential" underspecification (Archangeli 1988; Kiparsky 1982).
- "(non)contrastive" is a property of individual features in phonological context.
 - Length is noncontrastive in s1 and s3, but contrastive for the other morphemes.

On-line Learning, With Memory

- At a given time, the learner can process whatever forms they have reliably observed.
 - Need to store some output forms in memory, in order to analyze them into morphemes.
- No need to wait until all words of a paradigm have been stored.
 - No need for Initial Lexicon Construction (Tesar et al 2003).
 - Contrast pairs can be formed if/when the relevant contrasting words have been stored.

Contact with Acquisition

- This learning approach predicts dependencies.
 - Learn length feature values for a few key morphemes.
 - Then learn WSP \gg FL \gg *V:
 - Then learn stress feature values for a few key morphemes.
 - Then learn $ML \gg MR$
- These dependencies should constrain order of acquisition.

Conclusions

- Output-Driven Maps are a good next approximation to the structure of basic phonology.
- ODM structure makes much more efficient learning possible.
 - Reduces from exponential to linear
 - Both underlying forms and ranking information.
- Future:
 - can ODM structure be expanded to include attested instances of non-OD phenomena, while remaining exploitable in learning?
 - translating UF-ranking dependencies into predictions about acquisition data.

References

- Apoussidou, Diana. 2007. The Learnability of Metrical Phonology. PhD. dissertation, University of Amsterdam, Amsterdam.
- Archangeli, Diana. 1988. Aspects of underspecification theory. *Phonology* 5:183-207.
- Boersma, Paul. 2001. Phonology-semantics interaction in OT, and its acquisition. In *Papers in Experimental and Theoretical Linguistics*, ed. by Robert Kirchner, Wolf Wikeley, and Joe Pater, 24-35. Edmonton: University of Alberta. ROA-369.
- Hale, Mark, and Reiss, Charles. 1997. Grammar Optimization: The simultaneous acquisition of constraint ranking and a lexicon. Ms., Concordia University, Montreal. ROA-231.
- Hayes, Bruce. 2004. Phonological acquisition in Optimality Theory: The early stages. In *Constraints in Phonological Acquisition*, eds. René Kager, Joe Pater and Wim Zonneveld, 158-203. Cambridge: Cambridge University Press.
- Jarosz, Gaja. 2006. Rich Lexicons and Restrictive Grammars Maximum Likelihood Learning in Optimality Theory. PhD. dissertation, The Johns Hopkins University, Baltimore, MD. ROA-884.
- Kiparsky, Paul. 1982. Lexical phonology and morphology. In *Linguistics in the Morning Calm*, ed. I. S. Yang, 3-91. Seoul: Hanshin.
- McCarthy, John J., and Prince, Alan. 1993. Generalized alignment. In *Yearbook of Morphology*, ed. by Geert Booij and Jaap Van Marle, 79-154. Dordrecht: Kluwer.

McCarthy, John J., and Prince, Alan. 1995. Faithfulness and Reduplicative Identity. In *University of Massachusetts Occasional Papers 18: Papers in Optimality Theory*, ed. by Jill Beckman, Laura Walsh Dickey, and Suzanne Urbancyzk, 249-384. Amherst, MA: GLSA, University of Massachusetts.

- Merchant, Nazarré. 2008. Discovering underlying forms: Contrast pairs and ranking. PhD. dissertation, Rutgers University, New Brunswick. ROA-964.
- Merchant, Nazarré, and Tesar, Bruce. 2008. Learning underlying forms by searching restricted lexical subspaces. In *Proceedings of the Forty-First Conference of the Chicago Linguistics Society (2005), vol. II: The Panels*, 33-47. ROA-811.
- Prince, Alan. 1990. Quantitative consequences of rhythmic organization. In *CLS26-II: Papers from the Parasession on the Syllable in Phonetics and Phonology*, ed. by Karen Deaton, Manuela Noske, and Michael Ziolkowski, 355-398. Chicago, IL: Chicago Linguistics Society.
- Prince, Alan, and Tesar, Bruce. 2004. Learning phonotactic distributions. In *Constraints in Phonological Acquisition*, eds. René Kager, Joe Pater and Wim Zonneveld, 245-291. Cambridge: Cambridge University Press.
- Rosenthall, Sam. 1994. Vowel/glide alternation in a theory of constraint interaction. PhD. dissertation, University of Massachusetts, Amherst.
- Tesar, Bruce. 2006a. Faithful contrastive features in learning. *Cognitive Science* 30:863-903.
- Tesar, Bruce. 2006b. Learning from paradigmatic information. In *Proceedings of the 36th Meeting of the North East Linguistics Society*, ed. by Christopher Davis, Amy Rose Deal, and Youri Zabbal, 619-638. GLSA. ROA-795.

Bruce Tesar

Linguistics / Center for Cognitive Science

- Tesar, Bruce. 2008. Output-driven maps. Ms., Linguistics Dept., Rutgers University. ROA-956.
- Tesar, Bruce, Alderete, John, Horwood, Graham, Merchant, Nazarré, Nishitani, Koichi, and Prince, Alan. 2003. Surgery in language learning. In *Proceedings of the Twenty-Second West Coast Conference on Formal Linguistics*, ed. by G. Garding and M. Tsujimura, 477-490. Somerville, MA: Cascadilla Press. ROA-619.
- Tesar, Bruce, and Smolensky, Paul. 1996. Learnability in Optimality Theory (long version). Technical Report JHU-CogSci-96-3, The Johns Hopkins University, Baltimore, MD. ROA-156.