

Non-phonological factors of phonological variation A large scale wug-experiment for Hungarian vowel harmony

Tamás Biró and Mihály Füredi

Eötvös Loránd University

OCP 13 (Old World Conference in Phonology), 16 January 2016.

Vacillating stems in Hungarian

Hungarian [±back] vowel harmony:

asztal	[bstbl]	'table'	+ Dative -nAk =	asztal <mark>nak</mark> .
függöny	[fygːøɲ]	'curtain'	+ Dative –nAk =	függöny <mark>nek</mark> .
fotel	[fotɛl]	'armchair'	+ Dative –nAk =	fotel <mark>nak</mark> ~fotelnek.

Backness = probability *P* of B-suffix, influenced (at least) by:

- Stem's vowel pattern: vacillating stems typically back V⁺ + { ϵ , eː, i}⁺
- Stem's fine-grained structure of V and C qualities (e.g., Hayes et al., 2009)
- Stem's semantic-stylistic properties. (e.g. Forró, 2013)
- Suffix (case)
- Speaker's dialect (Blaho and Szeredi, 2013)
- Speech rate (Hetényi and Biró, Wednesday)

What else?

Vacillating stems in Hungarian

Hungarian [\pm back] vowel harmony:

asztal	[bstbl]	'table'	+ Dative -nAk =	asztal <mark>nak</mark> .
függöny	[fygːøɲ]	'curtain'	+ Dative –nAk =	függöny <mark>nek</mark> .
fotel	[fotɛl]	'armchair'	+ Dative –nAk =	fotelnak~fotelnek.

Backness = probability *P* of B-suffix, influenced (at least) by:

- Stem's vowel pattern: vacillating stems typically back V⁺ + { ϵ , er, i}⁺
- Stem's fine-grained structure of V and C qualities (e.g., Hayes et al., 2009)
- Stem's semantic-stylistic properties. (e.g. Forró, 2013)
- Suffix (case)
- Speaker's dialect (Blaho and Szeredi, 2013)
- Speech rate (Hetényi and Biró, Wednesday)

What else?

Vacillating stems in Hungarian

Hungarian [\pm back] vowel harmony:

asztal	[bstbl]	'table'	+ Dative -nAk =	asztal <mark>nak</mark> .
függöny	[fygːøɲ]	'curtain'	+ Dative –nAk =	függöny <mark>nek</mark> .
fotel	[fotɛl]	'armchair'	+ Dative –nAk =	fotelnak~fotelnek.

Backness = probability *P* of B-suffix, influenced (at least) by:

- Stem's vowel pattern: vacillating stems typically back V⁺ + { ϵ , er, i}⁺
- Stem's fine-grained structure of V and C qualities (e.g., Hayes et al., 2009)
- Stem's semantic-stylistic properties. (e.g. Forró, 2013)
- Suffix (case)
- Speaker's dialect (Blaho and Szeredi, 2013)
- Speech rate (Hetényi and Biró, Wednesday)

What else?

Overview

Overview

Wug-tests for Hungarian vowel harmony

Our starting point:

ot

- Hayes, B., & Londe, Z. (2006). Stochastic phonological knowledge. *Phonology*, 59–104.
- Hayes, B., Siptár, P., Zuraw, K., & Londe, Z. (2009). Natural and unnatural constraints in Hungarian vowel harmony. *Language*, 85(4), 822–863.

Women in the Middle Ages used *hádél* to wash clothing. Back then, <u>hádél</u> grew abundantly in the fields. It is very hard to find nowadays, but it is said that <u>hádélnak or hádélnek</u> had a wonderful fragrance. (Hayes and Londe, 2006:70)

Wug-tests for Hungarian vowel harmony

Wug-tests (Berko, 1958):

- Have native speakers generate inflected forms of novel stems.
- Demonstrate productive morpho-phonological rules/patterns.
- As with any experimental design, can there be experimental artefacts?

"Frames and instructions were composed with the goal of encouraging the subjects to treat the stems as long-forgotten but authentic words of Hungarian, rather than as recent loans." (Hayes and Londe, 2006:70)

- Intuition of some native speakers: old Hungarian words more likely to receive back suffixes than recent loans. Is it really so? (Cf. closed class of antiharmonic stems.)
- More generally, does the frame also influence the suffix choice?
- Are there other (non-phonological factors) affecting allomorphy?

Wug-tests for Hungarian vowel harmony

Wug-tests (Berko, 1958):

- Have native speakers generate inflected forms of novel stems.
- Demonstrate productive morpho-phonological rules/patterns.
- As with any experimental design, can there be experimental artefacts?

"Frames and instructions were composed with the goal of encouraging the subjects to treat the stems as long-forgotten but authentic words of Hungarian, rather than as recent loans." (Hayes and Londe, 2006:70)

- Intuition of some native speakers: old Hungarian words more likely to receive back suffixes than recent loans. Is it really so? (Cf. closed class of antiharmonic stems.)
- More generally, does the frame also influence the suffix choice?
- Are there other (non-phonological factors) affecting allomorphy?

Overview

Matched-pair design

• Reproducing Hayes & Londe, 2006 with different frames: contrasting old Hungarian to new foreign + observe further factors.

• Weather event, old Hungarian context:

Each year in the Middle Ages, the population of the Great Hungarian Plain prepared for the arrival of the *hádél*. The <u>hádél</u> involved a sudden fall in temperature and much precipitation. We have to ascribe the extinction of more species [to] <u>hádélnak or hádélnek</u>.

• Weather event, new foreign context:

Each year, the growing population of Antarctica prepares for the arrival of the *hádél*. The <u>hádél</u> involves a sudden fall in temperature and much precipitation. We have to ascribe the extinction of more species [to] <u>hádélnak or hádélnek</u>.

Matched-pair design

- Reproducing Hayes & Londe, 2006 with different frames: contrasting old Hungarian to new foreign + observe further factors.
- Weather event, old Hungarian context:

Each year in the Middle Ages, the population of the Great Hungarian Plain prepared for the arrival of the $h\acute{a}d\acute{e}l$. The <u>h\acute{a}d\acute{e}l</u> involved a sudden fall in temperature and much precipitation. We have to ascribe the extinction of more species [to] <u>h\acute{a}d\acute{e}lnak or h\acute{a}d\acute{e}lnek</u>.

• Weather event, new foreign context:

Each year, the growing population of Antarctica prepares for the arrival of the $h\dot{a}d\dot{e}l$. The <u>h</u> $\dot{a}d\dot{e}l$ involves a sudden fall in temperature and much precipitation. We have to ascribe the extinction of more species [to] <u>h</u> $\dot{a}d\dot{e}lnak$ or h $\dot{a}d\dot{e}lnek$.

Experimental material

- Reproducing Hayes & Londe, 2006 with different frames: contrasting old Hungarian to new foreign + observe further factors.
- Online questionnaire: http://birot.web.elte.hu/ragozas/.
- Number of participants: N = 2999 (frameset 1). N = 689 (frameset 2).
- - Minor adjustments: avoid phonemes unlikely in foreign words
 - Targets: 5 strongly vacillating (hádél, poribit, kolén, vuszék, vánél).
 - Fillers: 3 non-vacillating back (szandat. kánit. bortog).
 - (Vacillating vs. non-vacillating: according to the 2006 study.)

Experimental material

- Reproducing Hayes & Londe, 2006 with different frames: contrasting old Hungarian to new foreign + observe further factors.
- Online questionnaire: http://birot.web.elte.hu/ragozas/. Self-coded. Snowball launched on Facebook, as well as nyest.hu.
- Number of participants: N = 2999 (frameset 1), N = 689 (frameset 2).
- - Minor adjustments: avoid phonemes unlikely in foreign words
 - Targets: 5 strongly vacillating (hádél, poribit, kolén, vuszék, vánél).
 - Fillers: 3 non-vacillating back (szandat. kánit. bortog).
 - (Vacillating vs. non-vacillating: according to the 2006 study.)

Experimental material

- Reproducing Hayes & Londe, 2006 with different frames: contrasting old Hungarian to new foreign + observe further factors.
- Online questionnaire: http://birot.web.elte.hu/ragozas/. Self-coded. Snowball launched on Facebook, as well as nyest.hu.
- Number of participants: N = 2999 (frameset 1), N = 689 (frameset 2).
- Wug words: from earlier experiment
 - Minor adjustments: avoid phonemes unlikely in foreign words (e.g., [n]). All words with initial C (no need to adjust definite article).
 - Targets: 5 strongly vacillating (hádél. poribit. kolén. vuszék. vánél). 2 barely vacillating, dominantly back (pozin, monil).
 - Fillers: 3 non-vacillating back (szandat, kánit, bortog), 5 non-vacillating front (zefét, petlér, fánedeg, luteker, kálendel).
 - (Vacillating vs. non-vacillating: according to the 2006 study.)

Experimental material (cont'd)

• <u>Frames</u>: inspired by earlier experiment. In each frameset,

- Targets two *domains*: old Hungarian context (7 frames), and new foreign context (7 frames).
- Targets 6+1 *ontological categories* (2 frames each): human, animal, plant, artefact, naturally occurring object, natural force (weather events) + personal name.

Motivation: relevant categories in developmental psychology (e.g., Keil 1979) and the cognitive science of religion (Boyer 1994). Different ontological categories subject to different folk-theories, different inferences, different association networks.

- Fillers 11 frames non-specified for domain, various or unclear for ontological category.
- Similarly to Hayes and Londe (2006): type wug words twice, first in nominative case, then in dative case. Boring?

Matched-pair design

- "Proto-patterns", such as FBWFWBWWFWBWFW, where W = target wug word, F = front filler, B = back filler. (Always start with FB or BF.)
- "Patterns", such as FBNFHBCPFTBOFA, where N = personal name, H = human, C = weather condition, etc.
- A random back filler wug word for each B. A random front filler wug word for each F. A random target wug word for each N, H, etc.
- Even-numbered subjects: 4 new foreign domain frames, and 3 old Hungarian domain frames.
- Matched (odd-numbered) subject: same questionnaire, but mirrored for target frame domains.

Subject	filler frame 2	filler frame 7	old H pn	filler frame 5	new F hum	
2 <i>n</i>	fr filler ww 3	ba filler ww 1	target ww 2	fr filler ww 2	target ww 6	
Subject	filler frame 2	filler frame 7	new F pn	filler frame 5	old H hum	
2 <i>n</i> + 1	fr filler ww 3	ba filler ww 1	target ww 2	fr filler ww 2	target ww 6	

Matched-pair design

- Within Experiment 1 (or within Experiment 2), contrast
 - for given target wug word, and ontological category,
 - dative suffix allomorph in old Hungarian context vs.
 - dative suffix allomorph in new foreign context.
 - Subjects 2*n* vs. 2*n* + 1: only difference is domain, all other factors (ontological category, fillers, order, etc.) being the same.
- Between Experiment 1 and Experiment 2, contrast
 - for given target wug word, and ontological category and domain,
 - dative suffix allomorph in Experiment 1 vs.
 - dative suffix allomorph in Experiment 2.
 - Subjects $k^{(1)}$ vs. $k^{(2)}$: only difference is frame text, all other factors (ontological category, domain, fillers, order, etc.) being the same.

Overview

Wua-tests

Reproducing Hayes and Londe 2006

Overall backness of specific wug words (same ranks, larger values):

	Exp 1	Exp 2	Hayes & Londe (*)
hádél	0.45	0.41	0.27
poribit	0.31	0.28	0.34
kolén	0.43	0.44	0.36
vuszék	0.59	0.57	0.42
vánél	0.54	0.54	0.45
pozin	0.94	0.94	0.92
monil	0.95	0.94	0.92
			(NB: <i>mo[ŋ]il</i> !)

E.g., based on H&L, one might think *hádél* 'quite fronter' than the rest (and so,... [phonological theory]...). Reproduction shows it is not necessarily so.

^(*) http://www.linguistics.ucla.edu/people/hayes/HungarianVH/HayesLondeHungarianWugTestData.txt

Depends on domain? old Hungarian vs. new foreign

- Matched-pair design with binary categorical outcome: McNemar's χ² test (H₀: same probabilities in the two conditions).
- Bad news: No significant difference in overall data.
 - Experiment 1: $\chi^2 = 0.2258$, df= 1, p = .635.
 - Experiment 2: $\chi^2 = 2.7589$, df= 1, p = .097.
- Good news: mutually neutralising significant results.
 - Personal names: backness oldH < newF. (Experiment 1: p = .0011 ; Experiment 2: p = 0.024)
 - Human made artefacts: backness oldH > newF. (Experiment 1: p = .013; Experiment 2: p = 0.0016)
 - Naturally occurring objects: backness oldH > newF. (Experiment 1: p = .0006; Experiment 2: p = .058)
 - Humans, animals, plants, weather events: n.s.

Depends on domain? old Hungarian vs. new foreign

 Matched-pair design with binary categorical outcome: McNemar's χ² test (H₀: same probabilities in the two conditions).

• Bad news: No significant difference in overall data.

- Experiment 1: $\chi^2 = 0.2258$, df= 1, p = .635.
- Experiment 2: $\chi^2 = 2.7589$, df= 1, p = .097.
- Good news: mutually neutralising significant results.
 - Personal names: backness oldH < newF. (Experiment 1: p = .0011 ; Experiment 2: p = 0.024)
 - Human made artefacts: backness oldH > newF. (Experiment 1: p = .013; Experiment 2: p = 0.0016)
 - Naturally occurring objects: backness oldH > newF. (Experiment 1: p = .0006; Experiment 2: p = .058)
 - Humans, animals, plants, weather events: n.s.

Dependence on various factors: logistic regression

Backness: P(suffix = [npk] |...) = ?

E.g., backness of hádél in Experiment 1:

overall:	1360/3072 =	.443
personal name:	187/433 =	.432
old Hungarian personal name:	87/217 =	.401
new foreign personal name:	100/216 =	.463
artefacts:	161/440 =	.366
old Hungarian artefacts:	89/225 =	.396
new foreign artefacts:	72/215 =	.335
weather event:	217/445 =	.488
old Hungarian weather event:	96/224 =	.429
new foreign weather event:	121/221 =	.548

As the experiment proceeds...

nr: number of the item within questionnaire (NB: first two always fillers).

 $S \sim ww + PS + PPS + nr + frame : exp + ww : sem$

Coefficients for most levels of categorical variable nr are significant. (A non-significant model, p = .761, which can nonetheless be significantly improved by introducing *PS:nr* and *PPS:nr* interactions. Other models yield similar pictures.)

Further significant factors

- 1. The wug word.
- The wug word's pattern (e.g., Bé, Bii) in interaction terms, rather than the wug word itself: sometimes improves the alm model.
- Wug word and ontological domain interaction: E.g., vuszék as an artefact (but also as a natural object) more likely to get front suffix (p < .01).
- Priming: the suffix given by the subject for previous items (last two tested, both highly significant).
- Those finishing the test: more back responses than those not finishing it. (Otherwise, unfinished questionnaires not included in statistics).
- 4. **Sound symbolism:** negative weather events more often back suffix than positive weather events (newF: p = .046; oldH: p = .0005).

Non-significant factors

Since we had the information, why not test these:

- Time elapsed since the beginning of the questionnaire (worse predictor than *nr* of item).
- Gender of the subject.
- Time of day.

A note of caution: A factor that has been *n.s.* may still prove significant in a repeated experiment (with larger sample). Still, we expect the effect to be small.

Moreover, a factor that is significant here, can be due to type I error.

Overview

Conclusions

- Several native speaker's intuition: words for old Hungarian objects more likely to get [+back] suffix than new foreign objects.
 'Folk-historical linguistics'? This intuition seems to be <u>confirmed</u>. Interestingly, opposite direction effect for personal names.
- For sure: backness of a wug word depends on frame! Effect is <u>small</u>, but highly significant when measured on a large sample.
- Exactly which (phonological, syntactic, semantic) aspects of the frame influence allomorphy, remains to be established.
 Likely influence of ontological category.
 Likely sound symbolism: increased backness if negative connotation.
- Significant priming effect detected.

Thank you for your attention!

Tamás Biró:

tamas[dot]biro[at]btk[dot]elte[dot]hu

http://www.birot.hu/, http://birot.web.elte.hu/

