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Abstract

Simulated Annealing, a wide-spread technique for combinatorial optimisation, is employed to
find the optimal candidate in a candidate set, as defined inOptimality Theory(OT). Being a
heuristic techniques, simulated annealing does not guarantee to return thecorrect solution, and
yet, some result is always returned within a constant time. Similarly to language production, this
time framework can be diminished with the cost of diminishing correctness.We demonstrate
how simulated annealing can model linguistic performance, built upon a competence theory,
namely, OT. After having applied simulated annealing to OT, we attempt to reproduce empirical
observations on metrical stress in Dutch fast speech. Simulated annealing necessitates defining
a topologyon the candidate set, as well as an exact formulation of the constraint OUTPUT-
OUTPUT CORRESPONDENCE.

1 Introduction: OT and optimisation

Optimality Theory(OT; Prince and Smolensky (1003), aka Prince and Smolensky
(2004)) has been an extremely popular model in linguistics in the last decade. The
architecture of an OT grammar, as shown in Figure 1, is composed of two parts. Out
of the input (the underlying representationUR), the GEN module generates a set of
candidates (GEN(UR)), each of which is evaluated by the EVAL module, and the best
element is returned as the output (the surface representation SR).

EVAL is usually seen as a pipeline, in which theconstraintsfilter out the sub-
harmonic candidates. Each constraint assigns violation marks to the candidates in its
input, and candidates that have more marks than some other ones are out of the game.
Alternatively, EVAL can also be seen as a function assigninga harmony value to the
candidates, the most harmonic of which will surface in the language. ThisHarmony
functionhas a remarkable property: being worse on a higher ranked constraint can
never be compensated by a good behaviour on a lower ranked constraint. This phe-
nomenon, referred to asthe categorical ranking of the constraints, or as theStrict
Domination Hypothesis, follows from the filtering approach: whoever is filtered out
at an earlier stage never comes back.

The traditional way of representing the competing candidates is to use atableau,
such as the one in (1). The left column contains the elements of the candidate set,
that is,GEN(UR). For a given candidatewi, the number of violation marksCj(wi)—
in most cases a non-negative integer—assigned by constraintCj is given, and the
exclamation mark brings the attention to the point where a given candidate meets its
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Figure 1: The basic architecture of an Optimality Theoretic grammar

Waterloo. The☞ symbol points to the winning candidate.

(1)

/UR/ Cn Cn−1 ... Ck+1 Ck Ck−1 Ck−2 ...

☞w1 2 0 1 2 3 0
w2 2 0 1 3 ! 1 2
w3 3 ! 0 1 3 1 2

If the constraints are functions mapping from the candidatesetGEN(UR) to the set
of non-negative integers (N0), then the EVAL module can be seen as anEval function
that assigns a vector—aviolation profile, an (inverse)Harmony value, which is a
shorthand for a row in a tableau—to each of the candidates:

(2) E(w) =
(

Cn(w), Cn−1(w), ..., C1(w)
)

∈ N
n
0

together with anoptimisation algorithm. The role of the optimisation algorithm is to
find the optimal element of the candidate set, and to return itas the output (surface
representation, SR, that is the grammatical form1):

(3) SR(UR) = argminw∈Gen(UR)E(w)

Here, optimisation is with respect tolexicographic ordering, for this is the ordering
realising thecategorical ranking(strict hierarchy) of the constraints.Lexicographic
orderingof vectors is the way words are sorted in a dictionary (e.g.abacus, abolish,...,
apple,..., zebra): first compare the first element of the vectors, then, if theyare the
same, compare the second one, and so on. Formally speaking:

E(w1) > E(w2), if there existsk ∈ {n, n − 1, ..., 1} such that

1. Ck(w1) > Ck(w2), and

2. for all j ∈ {n, n − 1, ..., 1}, if j > k thenCj(w1) = Cj(w2).

ConstraintCk, which determines the relative ordering ofE(w1) andE(w2), will be
called thefatal constraint(the highest ranked constraint with uncancelled marks).

1The form appearing in the language is not always the output ofthe OT grammar itself, but a trivial function
F of it. For instance, parsing brackets may have to be removed. However, the inverse of the functionF is
not always functional, thus sometimes more outputs (parses) maydescribe the same observed phenomenon,
posing a challenge to learning algorithms (Tesar and Smolensky 2000).
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Furthermore, ifE(w1) < E(w2), than we shall say that candidatew1 is better(more
harmonic) than candidatew2 (w1 ≻ w2). A more detailed mathematical analysis is
presented in B́ıró (2005) and in B́ıró (forthcoming)

The computational challenge posed by Optimality Theory is to realise the optimi-
sation algorithm required by EVAL. Indeed, Eisner (2000) demonstrates that finding
the optimal candidate (generationin OT) is OptP-complete. In addition, the candidate
set is infinite in numerous linguistic models. Several solutions have been proposed,
although each of them is built upon certain presuppositions, and they also require large
computational resources. Finite state techniques (see references in B́ıró (2003)) not
only require GEN and constraints to be finite state, but work only with some further
restrictions. The presuppositions ofChart parsing(dynamic programming, e.g. Tesar
and Smolensky (2000), Kuhn (2000)) are more likely to be met by most linguistic
models, yet it also makes use of a relatively large memory.

If our goal is, however, to find an optimisation technique which is cognitively
adequate, we do not need an exact algorithm. Indeed, speech contains frequently
performance errors.

The optimisation algorithm should, under normal conditions, find the “correct”,
i.e. the grammatical output—the optimal element of the candidate set—with high
probability. Even more, the output is returned in constant time, since the partner in a
conversation is not a computer user watching the sandglass.Further, human speakers
sometimes speed up the computational algorithm, and the price paid is precision. We
propose to see (some) fast speech phenomena (performance errors) as decreased pre-
cision (erroneous outputs) of the optimisation algorithm in EVAL, due to the increased
speed.

This train of thought leads us straightforward to heuristicoptimisation techniques,
defined by Reeves (1995) as “a technique which seeks good (i.e. near-optimal) solu-
tions at a reasonable computational cost without being ableto guarantee either feasi-
bility or optimality, or even in many cases to state how closeto optimality a particular
feasible solution is.” In the present paper, we implement Optimality Theory by using
the simplest heuristic optimisation technique,simulated annealing.

We will see that simulated annealing meets all our criteria.Its computational re-
quirements are minimal, compared to most other methods, andit returns a “good
(i.e. near-optimal) solution” of even an NP-complete problem in limited time. This
time interval can be reduced by paying on precision. In particular, by observing
changes in the stress patterns in Dutch fast speech, we demonstrate how a proper
competence grammar can produce correct outputs under normal conditions, but starts
making human-like errors under time pressure. Thereby, we argue for the cognitive
adequateness of theSimulated Annealing Optimality Theory Algorithm(SA-OT).

2 Simulated Annealing: a heuristic optimisation technique

Simulated annealing, also called asBoltzmann Machines, is a wide-spread stochas-
tic technique for combinatorial optimisation (Kirkpatrick, Jr. and Vecchi 1983). It
performs a random walk in the search space, and differs fromgradient descentby
allowing uphill moves—thereby escaping local minima—with a probability that de-
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creases during the simulation. Only few have applied it in linguistics, for instance in
parsing (Howells 1988, Kempen and Vosse 1989, Selman and Hirst 1994). Simulated
annealing is also found in the pre-history of Optimality Theory (Smolensky 1986).

The idea originates in solid state physics. An interstitialdefect in a crystal lattice
corresponds to a local minimum in the energyE of the lattice. Although the per-
fect lattice would minimise the energy, the defect is stable, because any local change
increasesE. In order to reach the global minimum, one needs either to globally re-
structure the lattice within one step, or to be permitted to temporarily increase the
energy of the lattice.

Heating the lattice corresponds to the second option. The lattice is allowed “to bor-
row” some energy, that is, to transform provisionally thermic energy into the binding
energy of the lattice, thereby climbing the energy barrier separating the local mini-
mum from the global minimum. At temperatureT , the probability of a change that
increases the lattice’s energy by∆E is e

−∆E

kT , wherek = 1.38 × 10−23JK−1 is
Boltzmann’s constant. The higher the temperature, the bigger energy jumps∆E are
allowed.

Annealing a metal means heating it to a high temperature, andthen cooling it down
slowly. The lower the temperature, the lower energy hills the system is able to climb;
thus it gets stuck in some valley. At the end of the annealing,the system arrives at
the bottom of the valley reached. With a slower cooling schedule, the likelihood of
finding the valley including the global minimum is higher.

Now, the idea ofsimulated annealingis straightforward (cf. eg. Reeves 1995).
We search for the state of a system minimising the quantityE (Energy or Evaluation)
by performing a random walk in the search space. If the rule were to move always
downhill (gradient descent), we would quickly get stuck in local minima. This is
why we also allow moving upwards (“borrowing thermic energy”) with some chance,
which is higher in the beginning of the simulation, and whichthen diminishes.

For this purpose, a fictive “temperature”T is introduced. The random walk starts
from an initial statew0. At each step of the simulation, we randomly pick one of the
neighbouring states (w′) of the actual statew (cf. Fig. 2). Thus, atopologyon the
search space has to define the neighbours of a state (theneighbourhood structure),
as well as thea priori probability distributiondetermining which neighbour to pick.
Subsequently, we comparew′ to w, and the random walker moves tow′ with transi-
tion probabilityP (w → w′ | T ), whereT is the temperature at that moment of the
simulation. IfE(w) is the function to minimise, then:

(4) P (w → w′ | T ) =

{

1 if E(w′) ≤ E(w)

e−
E(w

′)−E(w)
T if E(w′) > E(w)

Moving downhill is always possible, and moving uphill depends on the difference in
E and on the actual temperatureT . At the beginning of the simulation,T is assigned a
high value, making any move very likely. The value ofT is then decreased gradually,
while even the smallest jump does not become highly improbable. When the temper-
ature reaches its lowest value, the algorithm returns the state into which the random
walker is “frozen” finally—this is a local minimum. Obviously, nothing guarantees
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Figure 2: A schematic view of the search space—in SA-OT, the candidate set with a topology
(neighbourhood structure)—in which simulated annealing realises a random walk.

finding the global minimum, but the slower thecooling schedule(the more iterations
performed), the higher the probability of finding it.

3 Simulated Annealing for Optimality Theory

How to implement simulated annealing to Optimality Theory?The search space is the
candidate set, defined by standard Optimality Theory. Yet, aneighbourhood structure
(a topology) should be added to it (Fig. 2). which determines the pickingof the next
candidatew′. We propose to consider two candidates neighbours if they differ only
minimally, that is, if abasic operationtransforms one into the other. The algorithm
gets stuck in local optima, candidates better than their neighbours. Thus, the definition
of the topology influences crucially which candidates are returned besides the global
optimum; these forms will be predicted to be the performanceerrors or the fast speech
forms.

Enriching a model with further concepts—adding a topology tostandard OT—
could diminish the strength of a model. Yet, we have here a larger set of observations:
not only the grammatical forms, but also speech errors and their frequencies. Stan-
dard OT predicts the grammatical form to be the globally optimal candidate, whereas
the neighbourhood structure added to it accounts for performance errors. It is in a
very non-trivial way that the interaction of the topology, the constraint hierarchy and
the cooling schedule determines which local optimum is returned with what probabil-
ity. Consequently, finding a simple, convincing—nonad hoc—topology reasonably
accounting for the observed data is not a self-evident task.

If the topology determines the horizontal structure of the landscape in which the
random walker roves, then the Harmony function to be optimised contributes its ver-
tical structure. Here again, traditional Optimality Theory provides only the first part
of the story. The transition probabilityP (w → w′ | T ) = 1, if w′ is better thanw
(w′ ≻ w, that is,E(w′) < E(w)). But how to define the transition probability to a
worse candidate, in function of the actual temperatureT?

We begin by understanding the meaning of “temperature” in simulated annealing.
According to equation (4),T defines the range ofE(w′) − E(w) above which uphill
moves are prohibited (P (w → w′ | T ) ≈ 0, if E(w′)−E(w) ≫ T ), and below which
they are allowed (P (w → w′ | T ) ≈ 1, if E(w′) − E(w) ≪ T ).

In turn, our agenda is the following: first we define the difference of two violation
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profiles (E(w′)−E(w)), then define temperature in an analogous way, and last adjust
the definition (4).

The difference of two violation profiles seen as vectors (cf.(2)) is simply:

(5) E(w′) − E(w) = (Cn(w′) − Cn(w), ..., C1(w
′) − C1(w))

Yet, what interests us when comparing two candidates is onlythe fatal constraint
(the highest ranked constraint with uncancelled violationmarks). The general struc-
ture of Optimality Theory teaches us to neglect the lower ranked constraints.2 There-
fore, we define themagnitudeof any vector(an, ..., a1) as

‖(an, ..., a1)‖ = 〈k, ak〉, wherek is the lowest element of{n, ..., 1} such
that∀j ∈ {n, ..., 1}: if j > k, thenaj = 0.
Moreover,‖(0, 0, ..., 0)‖ = 〈0, 0〉.

We shall use not the difference (5), but rather the magnitudeof the difference of the
violation profiles,‖E(w′) − E(w)‖ = 〈k,Ck(w′) − Ck(w)〉 in simulated annealing.
Take the following tableau to exemplify this idea:

Cn Cn−1 ... Ck+1 Ck Ck−1 Ck−2 ...

E(w′) 2 0 1 2 3 0
E(w) 2 0 1 3 1 2

E(w′) − E(w) 0 0 0 -1 2 -2

Here,‖E(w′) − E(w)‖ = 〈k,−1〉, sinceCk is the fatal constraint, the highest con-
straint with uncancelled marks. We may ignore constraints ranked belowCk.

In short, the difference (5) of two violation profiles could be reduced from ann-
tuple (n-dimensional vector) to a pair〈k,Ck(w′) − Ck(w)〉. The Strict Domination
Hypothesis does not allow reducing it to a single real number, however (B́ıró forth-
coming).

In the next step, we introduce temperature. As explained, the role of temperature
in simulated annealing is to gradually decrease the transition probability to a worse
state. Initially, we want to allow all transitions; then prohibit transitions increasing
the violation level of highly ranked constraints; then alsoprohibit the transitions that
would increase the violation marks assigned by lower rankedconstraints only, and so
forth. Finally, the random walker can only move to neighbours that are not worse.

At each moment, uphill jumps much larger thanT have a very low probability, and
jumps much smaller thanT are extremely likely. By equation (4),T is equal tothe
increase inE that has a likelihood of1/e. As the increase inE has been now defined
as a pair, so will have to be the temperatureT : a pair〈KT , t〉 ∈ Z × R

+.
The first elementKT of the pair is an integer, to be called thedomainof the

temperature. The second elementt must be a positive real number. IfCK is an
existing constraint, thenT = 〈K, t〉 can be interpreted as if the violation level of

2For a more detailed analysis of this definition, see Bı́ró (forthcoming) and B́ıró (2005).
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constraintCK were increased byt. Nonetheless, the domain of the temperature can
be different from the indices of existing constraints.

Finally, we define the transition probabilityP (w → w′ | T ). As the rule is to
assign a higher index to a higher ranked constraint, the firstcomponent ofT places
temperature somewhere relative to the constraint hierarchy. Lexicographic ordering
compares adequately some‖E(w′)−E(w)‖ = 〈k,Ck(w′) − Ck(w)〉 to T = 〈K, t〉.
This is why the following definition reproduces equation (4):3

At temperatureT = 〈KT , t〉, if ‖E(w′) − E(w)‖ = 〈k, d〉:

(6) P (w → w′) =











1 if d ≤ 0
1 if d > 0 andk < KT

e−d/t if d > 0 andk = KT

0 if d > 0 andk > KT

This corresponds to the followingrules of transition:

• If w′ is better thanw: movew → w′ !

• If w′ loses due to fatal constraintCk > KT : don’t move!

• If w′ loses due to fatal constraintCk < KT : move!

• If w′ loses due to the constraintCk = KT : move with probabilitye−d/t.

In the beginning of the simulation, the domainKT of the temperature will be higher
than the index of the highest ranked constraint; similarly,at the end of the simulation,
temperature will drop below the lowest ranked constraint. The most straightforward
way to proceed is to use a double loop diminishing temperature.

The pseudo-code ofOptimality Theory Simulated Annealing(OT-SA) can be pre-
sented finally (Fig. 3). The parameters of the algorithm are the initial candidate (w0)
from which the simulation is launched, as well as the parameters of the cooling sched-
ule: Kmax, Kmin, Kstep, tmax, tmin, tstep.

Typically, Kmaxis higher than the index of the highest ranked constraint, inorder
to introduce an initial phase to the simulation when the random walker may rove
unhindered in the search space, and increase even the violation marks assigned by the
highest ranked constraint. Similarly, the role ofKmin is to define the length of the
final phase of the simulation. By havingKmin (much) below the domain (the index)
of the lowest ranked constraint, the system is given enough time to “relax”, to reach
the closest local optimum, that is the bottom of the valley inwhich the system is stuck.
Without such a final phase, the system will return any candidate, not only local optima,
yielding an uninteresting model.

3As noted by an anonymous reviewer, a major difference between classical SA and SA-OT is that by equa-
tion (4), any increase inE has a small theoretical chance of being accepted in classicalSA. Yet, SA-OT
minimises not a real valued function, but a vector valued function for lexicographical order, due to the Strict
Domination Hypothesis. Thus, the vague statement in classical OT that “if ∆E ≫ T thenP ≈ 0” can and
has to be formulated here in a more exact way as “ifk > KT thenP = 0”. See B́ıró (forthcoming) for
further differences between classical SA and SA-OT.
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ALGORITHM: Simulated Annealing for Optimality Theory
Paramters: w_0, K_max, K_min, K_step, t_max, t_min, t_step
w <-- w_0

for K = K_max to K_min step K_step
for t = t_max to t_min step t_step

choose random w’ in neighbourhood(w)
calculate < C , d > = ||E(w’)-E(w)||
if d <= 0 then w <-- w’
else w <-- w’ with probability

P(C,d) = 1 , if C < K
= exp(-d/t) , if C = K
= 0 , if C > K

end-for
end-for

return w

Figure 3: The algorithm ofSimulated Annealing Optimality Theory(SA-OT).

Although other options are also possible, the way we shall proceed is placing ourn
constraints into the domainsK = 0, K = 1,..., K = n − 1. That is, the highest
ranked constraint receives indexn − 1, and the lowest one is associated with index0.
Furthermore,Kmax= n andKstep= 1.

The parameterstmax, tmin andtstepdrive the inner loop of the algorithm, that is,
the decreasing of the second componentt of temperatureT = 〈K, t〉. This component
plays a role only in the expressione−d/t, used if the temperature is in the domain of
the fatal constraint. Because the neighbouring candidatesw andw′ typically differ
only minimally—abasic operationtransformsw into w′—, their violation profiles
are also similar, thus the differenced in violating the fatal constraint is expected to be
low (usually |d| = 1, 2). Consequently,e−d/t vanishes ift ≫ 3, and so the default
values used will betmax= 3 andtmin = 0.

The most interesting parameter iststep, for it is inversely proportional to the num-
ber of iterations performed (if the other parameters are kept unchanged), and thereby
it directly controls the speed of the simulation, that is, its precision. Therefore, we will
tune this parameter. Other parameters also may change the number of iterations per-
formed, but their effect is more complex, so tuningtstepis the most straightforward
way to change the number of iterations. We also could introduce a new parameter for
the number of repetitions within the core of the inner cycle.

4 Dutch metrical stress

4.1 The empirical data

Schreuder and Gilbers (2004) analyse the influence of speechrate on stress assignment
in Dutch, based on laboratory experiments forcing the participants to produce fast
speech. For instance, in normal (slow, andante) speech, thecompound wordfototoes-
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tel (‘photo camera’) is assigned a primary stress on its first syllable and a secondary
stress on its third syllable (fótotòestel). However, in fast (allegro) speech, Schreuder
and Gilbers observed a stress shift: the secondary stress moved in a number of cases
from the third syllable to the fourth one.

The words used in their experiments belong to the following three groups (Types
1-3). No experiment has been performed with type 0 words. In the stress pattern of
a word form or a candidate, s always refers to a syllable with aprimary or secondary
stress, and u refers to an unstressed syllable hereafter.

Type 0: andante: susu, allegro: suus (OO-correspondence to: su+su)
fo.to.toe.stel ’camera’

Type 1: andante: susuu, allegro: suusu (OO-correspondence to: su+suu)
stu.die.toe.la.ge ’study grant’
weg.werp.aan.ste.ker ’disposable lighter’
ka.mer.voor.zit.ter ’chairman of Parliament’

Type 2: andante: usus allegro: suus (OO-correspondence to: usu+s)
per.fec.tio.nist ’perfectionist’
a.me.ri.kaan ’American’
pi.ra.te.rij ’piracy’

Type 3: andante: ssus allegro: suus (OO-correspondence to: s+su+s)
uit.ge.ve.rij ’publisher’
zuid.a.fri.kaans ’South African’
schier.mon.nik.oog name of in island

In slow (andante) speech, these words are pronounced in a wayreflecting their inner
structure. Types 0, 1 and 3 are compound words, and they keep the stress pattern
of their components unchanged (e.g.: fóto+t̀oestel or st́udie+t̀oelage). Additionally,
most of the examples in types 2 and 3 end in a suffix that must bear stress. Standard
literature on OT phonology uses constraint OUTPUT-OUTPUT CORRESPONDENCEto
account for these morphologically based phenomena, as we shall explain it soon.

On the other hand, the fast speech (allegro) forms all display the suus pattern,
(followed by an unstressed syllable in the five-syllable words of Type 1). This pattern
matches best the markedness constraints, reflecting what the easiest is to pronounce.
The markedness constraints used in the analysis advanced bySchreuder and Gilbers
(2004) originate from the literature on metrical stress, supposing that parts of the
syllables are parsed intometrical feet. These constraints are FOOT REPULSION(*ΣΣ)
punishing adjacent feet without an intervening unparsed syllable, as well as PARSE-σ,
punishing unparsed syllables.

Subsequently, Schreuder and Gilbers propose the re-ranking of the constraints
OUTPUT-OUTPUT CORRESPONDENCEand *ΣΣ above a certain speech rate, after
discarding the candidate(fó)to(tòestel)—a harmonic bound—from the candidate set.
Careful speech is faithful to the morphological structure,as in (7), whereas fast speech



22 Taḿas B́ıró

optimises for pronunciation ease is (8).

(7) Slow (andante) speech:
fototoestel OO-CORR. *ΣΣ PARSE-σ

☞(fóto)(tòestel) *
(fóto)toe(st̀el) *! *

(8) Fast (allegro) speech:
fototoestel *ΣΣ OO-CORR. PARSE-σ

(fóto)(tòestel) *!
☞(fóto)toe(st̀el) * *

Yet, this proposal raises few questions. First, fast speechis usually seen rather as a
performance phenomenon. If the competence (the knowledge of the language encoded
in the brain) of the speaker is not altered, why would one model it with a new gram-
mar? Second, if we still suppose a sudden change in the grammar at a certain speech
rate, how can we explain that the fast speech form appears only in some percentage
of cases? If the grammar is altered, then the new form shouldalwaysappear, which
is not the case. In fact, the difference between the two speech rates is rather a gradual
shift in the frequency of two forms, both of which appear in both andante and allegro
speech (Table 1 and Schreuder (2005)).

Stochastic Optimality Theory(Boersma and Hayes 2001) can model this phenom-
enon within one grammar. By adding a randomevaluation noiseto the ranking of the
constraints, Stochastic OT allows for the re-ranking of thetwo constraints proposed
by Schreuder and Gilbers (2004). If noise increases with speech rate, the probability
of re-ranking the two constraints also grows, without a categorical switch within the
grammar. It is unclear, however, why the evaluation noise should be higher in fast
speech. Even worse, Stochastic OT cannot account for the different grammatical form
/ fast speech form-rates for different words, if they are to be explained by the rerank-
ing of the same constraints. The rank of the constraints and the evaluation noise may
depend on the speech rate, but not on the specific input.

Third, this particular analysis is based on the re-ranking of two constraints, which
cannot take place in more than50% of the cases—leading to a false prediction of
the model. In the case of two constraints, the probability ofrerankig them converges
to 0.5, as the evaluation noise (compared to the difference of their ranks) grows to
infinity. However, a Stochastic Optimality Theoretic modelwith more constraints
could correctly predict the fast speech form appearing in more than half of the cases.
Which constraint should we then add to the model? An alternative would be to change
the (unperturbed) ranks of the constraints, instead of increasing the evaluation noise in
fast speech: why and how do the ranks of the different constraints change in function
of the speech rate?

The advantage of the model to be presented usingSimulated Annealing Optimality
Theorywill be manyfold. First, modelling fast speech by speeding up the algorithm is
more convincing than postulating the increase in the evaluation noise or changing the
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underlying competence model (the OT grammar). More importantly, SA-OT correctly
predicts which words are more likely to be pronounced erroneously. Last, the rate
of the fast-speech form may exceed50% in some cases without having to add new
constraints.

4.2 Gen and the topology of the search space

Let us apply simulated annealing to stress assignment. The input is a word composed
of a number of syllables. The set of candidates corresponding to this input is composed
of all possible correct parses of this input. A parse is correct if: it contains the same
number of syllable as the input; it contains at least one foot; feet do not overlap; a
syllable not parsed into any foot is unstressed; finally, each foot contains one or two
syllables, exactly one of which is stressed. Here, we ignorethe difference between
primary and secondary stress. For a four-syllable word input, possible parses include:
u[s]uu, [su]uu, [us]u[s], [s][s][s][s], etc. Brackets represent foot borders; u and s refer
to unstressed and stressed syllables, respectively.

Having defined the set of candidates, we now proceed to the topology of the search
space. Theneighboursof a candidate are the candidates reachable in onebasic step,
and abasic stepis performing exactly one of the following actions:

• Insert a monosyllabic foot: turn an unparsed u into [s].

• Remove a monosyllabic foot: turn [s] into an unparsed u.

• Move one foot border: enlarge a foot by taking an unparsed syllable into a foot,
or narrow a foot by taking an unstressed syllable out of a foot.

• Change the head syllable within a bisyllabic foot.

Defining the topology of the search space includes also determining the probability
measure according to which one of the neighbours is picked ateach step of the simu-
lation. For the sake of ease, we assign equal probability to each neighbour.

The graph in Figure 4 presents the topology of the search space for a three-syllable
input. (The candidate set of four-syllable words includes 43 candidates, and is too
complex to reproduce here.) The arcs of the graph connect neighbours, and the arrow
on an arc points towards the candidate which is more or equal harmonic, with respect
to the toy ranking *ΣΣ ≫ PARSE-σ.

The arrows already bring us from the “horizontal” to the “vertical” structure of
the landscape toured by the random walker. An arc on the graphwith only one arrow
points downhill, whereas an arc with two arrows represents ahorizontal move. An
arrow from candidatew to candidatew′ means that the move fromw to w′ is possible
with a transition probability of100% during the entire simulation.

Eyeballing the graph, we can point to some phenomena. Candidate [s][s][s] repre-
sents a summit, a local maximum. It is also the global maximum, but this fact cannot
be seen directly from the graph. The candidate [s]u[s] is a local minimum: the arrows
from all its neighbours point towards it. We also find valleysof candidates of equal
harmony, situated lower than their surroundings (for instance the one formed by u[su]
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[s][s][s]

[s][s]u

[s][su] [s][us]

[s]u[s][s]uu

[su][s][su]u [us][s]

[us]u

u[s][s]

u[s]u u[su] u[us]

uu[s]

Figure 4: Search space (candidate set, neighbourhood structure) for a three-syllable word.

and u[us]). Comparing the local minima, [s]u[s], u[su], u[us], [us]u and [su]u, proves
that all of them are global minima, as well. However, the graph itself would not help
in determining which of them is a global minimum.

4.3 The vertical structure of the landscape: the constraints

Besides the constraints∗ΣΣ and PARSE already mentioned, as well as besides
OUTPUT-OUTPUT CORRESPONDENCEto which we are coming back in the next sub-
section, two further constraints will be used. From the large family of alignment
constraints, we use the one requiring the left edge of the word matching the left edge
of some foot (ALIGN(WORD, FOOT, LEFT), or in short, ALIGN-LEFT). Addition-
ally, constraint TROCHAIC implements the tendency of Dutch to prefer trochaic feet.
In sum, here are the constraints we are using:

• ALIGN-LEFT: assign one violation mark if left edge of word does not align
with left edge of some foot.

• OUTPUT-OUTPUT CORRESPONDENCE: the stress pattern matches the expec-
tations from the morphological structure.

• ∗ΣΣ: one violation mark per adjacent feet borders.

• PARSE: one violation mark per unparsed syllable.

• TROCHAIC: one violation mark to each iambic foot ([us]).

Their ranking should make the grammatical form (the normal speech form) the
optimal one, hence faithfulness to the morphological structure should dominate
markedness—as it is the case in tableau (7). It is ranking∗ΣΣ over PARSE which
returns suus as the structure preferred by the markedness constraints. ALIGN-LEFT

has to be ranked higher than OOC to help suus be a local optimumeven for inputs,
such asperfectionist, whose morphological structure would require usus. Finally,
TROCHAIC is ranked low, and its only role is to distinguish between otherwise equal
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forms, such as [su]u[su] and [su]u[us] (in a word such asstudietoelage, whose mor-
phology requires susuu).

In short, without claiming that this is the only possible grammar describing the
data, we used the following hierarchy:

(9) ALIGN-LEFT ≫ OOC≫∗ ΣΣ ≫ PARSE≫ TROCHAIC

We identify constraint ALIGN-LEFT with the domain (index)K = 4, constraint
OOC withK = 3, ..., and finally constraint TROCHAIC with K = 0.

4.4 Output-Output Correspondence

In the present subsection, we define the constraint OUTPUT-OUTPUT CORRESPON-
DENCE (OOC). Originally, Burzio (2002)’s proposal, based on an analogy from
physics, required a sum overall elements of the lexicon. In practice, however, this
constraint compares a candidate with its closest neighbours, that is, with the indepen-
dent word forms of its morphological constituents. Used to account for phenomena
related to morphology, it is usually defined only in a very vague way.

As SA-OT necessitates an exact definition, we propose to define OOC in the fol-
lowing way: candidatew is compared to a stringσ of the same length, a stress pattern
derived from the stress patterns ofw’s immediate morphological constituents. Ifw
is the concatenation of a number of morphemes,σ is the concatenation of their stress
patterns. Phonological arguments support that a candidatehas to be compared to its
immediate morphological components, and not to deeper levels in its morphological
structure (e.g. Burzio (2002), Bı́ró (forthcoming)).

For instance, the stress pattern that parses ofindividualistare compared to isσ =
sususs: the stress pattern susus ofı̀ndiv̀ıduéel followed by the pattern s of the stress
attracting suffixist. The pattern suus ofı̀n.di.vi.d́u does not play a role.

After these preparations, we are ready to define the constraint OUTPUT-OUTPUT

CORRESPONDENCE. The number of violation marks assigned to a candidatew is the
number of mismatches with the corresponding stringσ, after a pairwise comparison
of the corresponding elements of the (equally long) strings:

(10) OOCσ(w) =
∑

i

∆(wi, σi)

wherewi andσi represent theith letter (now, theith syllable’s type) of the candidate

w and the comparison stringσ; and where∆(wi, σi) =

{

1 if wi 6= σi

0 if wi = σi

The definition of OOC is thus complete, but not satisfactory.The result is maybe
not exactly what we wish. Misplacing one stress should be a smaller difference than
missing a stress entirely, or having extra stresses. If the target string isσ = suus,
thenw1 = susu should be closer to it thanw2 = suuu orw3 = suss. Yet, definition
(10) will assign two violation marks tow1, because there is a mismatch in both the
third and the fourth syllable, whereas only one violation mark will be assigned tow2

and tow3. Candidatew1 violates constraint OOCσ on the same level as the “totally
misconceived” candidatew4 =ssss.
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fo.to.toe.stel uit.ge.ve.rij stu.die.toe.la.ge per.fec.tio.nist
‘camera’ ‘publisher’ ‘study grant’ ‘perfectionist’

OOC to: susu ssus susuu usus
fó.to.t̀oe.stel úit.gè.ve.r̀ıj stú.die.t̀oe.la.ge per.f́ec.tio.ǹıst

fast: 0.82 fast: 0.65/ 0.67 fast: 0.55/ 0.38 fast: 0.49/ 0.13
slow: 1.00 slow: 0.97 / 0.96 slow: 0.96/ 0.81 slow: 0.91/ 0.20

fó.to.toe.st̀el úit.ge.ve.r̀ıj stú.die.toe.l̀a.ge pér.fec.tio.ǹıst
fast: 0.18 fast: 0.35/ 0.33 fast: 0.45/ 0.62 fast: 0.39/ 0.87
slow: 0.00 slow: 0.03/ 0.04 slow: 0.04/ 0.19 slow: 0.07 / 0.80

Table 1: Simulated (in italics) and observed (in bold; Schreuder, 2005) frequencies. The simu-
lation usedTstep= 3 for fast speech andTstep= 0.1 for slow speech.

In turn, a modification of the constraint should assign additional violation marks to
the difference in the stressed syllables. Let‖ α ‖ denote the number of stresses (s) in
the stringα: ‖ α ‖=

∑

i ∆(αi, u). Then, OOC is re-defined as:

(11) OOCz,σ(w) =
∑

i

∆(wi, σi) + z ·
∣

∣

∣
‖ w ‖ − ‖ σ ‖

∣

∣

∣

This definition introduces a new parameterz, which determines the relative weight of
pointwise mismatchvs.difference in the global number of stresses.

4.5 Simulation results

After so much preparation, we can run the simulation. The algorithm of Simulated
Annealing Optimality Theoryhas been given in Figure 3. The hierarchy (9) and fur-
ther considerations mentioned earlier suggest using the following cooling schedule:
Kmax = 5 (one layer above the top constraint),Kstep = 1, tmax = 3, tmin = 0.
ParameterKmin was chosen in the function oftstep: Kmin = −2 is low enough for
tstep= 0.1 andKmin = −100 suffices fortstep= 3.

The simulation has been run with differenttstep values, ranging between0.03
and3. For each parameter setting, we have run the simulation 600 times using each
candidate as the initial point of the random walk. Hence, thesimulation was run 25800
times for four-syllable inputs (43 candidates), and 71400 times for five-syllable inputs
(119 candidates).

The results appear in Table 1, together with the outcome of Maartje Schreuder’s
laboratory experiments (Schreuder 2005). TakingTstep= 3 as a fast speech model,
andTstep= 0.1 as a slow speech model, the match between experiment and simula-
tion is surprisingly good for the words belonging to the typeof uitgeverij. The quan-
titative match is worse for other types of words, yet the simulation correctly predicts
which types are more likely to be produced erroneously. Furthermore, the results—the
49% of per.f́ec.tio.ǹıst in fast speech—show that unlike Stochastic OT with the present
underlying OT model, SA-OT can return the fast speech form with a frequency above
50% (the difference is significant).
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In order to appreciate the results, one has to realise that not only did the model re-
produce the grammatical forms, but it also correctly predicted which among the 43 or
119 candidates is the alternative fast speech form. In fact,in the case ofperfectionist,
a third form has also been returned (2% in slow speech,12% in fast speech), namely
[s][su]u (pérfèctionist)—by usingz = 1 in the definition (11) of OOC. Different val-
ues forz returned the non-attested [s][su]u form even more frequently. This difficulty
underlines the non-triviality of the present results.

5 Summary

The present paper has implemented a heuristic technique, simulated annealing, to Op-
timality Theory. The standard algorithm had to be slightly modified in order to use
it to find the optimal candidate of the candidate set. Simulated annealing does not
guarantee maximal precision, and this “drawback” could model the lack of precision
in human speech: faster production yields more performanceerrors. Despite quanti-
tative mismatches so-far, the approach seems to be promising.

Simulated annealing required the introduction of some new concepts in Optimality
Theory: atopology(aneighbourhood structure) on the candidate set, thedifferenceof
two violation profiles, temperature, as well as a more precise definition of OUTPUT-
OUTPUT CORRESPONDENCE.

We propose to seeSimulated Annealing Optimality Theory(SA-OT) as a model
for (part of) the linguistic performance. If traditional Optimality Theory represents
linguistic competence (that is, the static knowledge of thelanguage encoded in one’s
brain), then simulated annealing models the dynamic computations involved in pro-
ducing utterances. The arguments for why simulated annealing can be an adequate
model of (part of) the performance included the fact that it does not require com-
plex computing capacities even in the case of NP-complete problems; that it returns a
“nearly good” solution in limited time; and that this time interval can be reduced (just
like speech can be speeded up) by paying in precision. The last fact was demonstrated
on the case of Dutch stress assignment in fast speech.

The reader is welcome to try out the demo of SA-OT and the implementation of
the model introduced for Dutch stress at http://www.let.rug.nl/ birot/sa-ot/.
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Bı́ró, T.(2005), How to define Simulated Annealing for Optimality Theory?,Proc.
Formal Grammar 10 and MOL 9, Edinburgh.
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