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Abstract

Simulated Annealinga wide-spread technique for combinatorial optimisation, is employed to
find the optimal candidate in a candidate set, as defing€dpitimality Theory(OT). Being a
heuristic techniques, simulated annealing does not guarantee to reteorrtbet solution, and
yet, some result is always returned within a constant time. Similarly to layggar@duction, this
time framework can be diminished with the cost of diminishing correctndf&sdemonstrate
how simulated annealing can model linguistic performance, built upormgetence theory,
namely, OT. After having applied simulated annealing to OT, we attempt todape empirical
observations on metrical stress in Dutch fast speech. Simulated amneadiessitates defining

a topologyon the candidate set, as well as an exact formulation of the constraime@-
OuTPUT CORRESPONDENCE

1 Introduction: OT and optimisation

Optimality Theory(OT; Prince and Smolensky (1003), aka Prince and Smolensky
(2004)) has been an extremely popular model in linguistickhé last decade. The
architecture of an OT grammar, as shown in Figure 1, is coegpo$two parts. Out
of the input (the underlying representatioi®), the GEN module generates a set of
candidatesGEN(UR)), each of which is evaluated by the EVAL module, and the best
element is returned as the output (the surface represem&.

EVAL is usually seen as a pipeline, in which thenstraintsfilter out the sub-
harmonic candidates. Each constraint assigns violatiahgrta the candidates in its
input, and candidates that have more marks than some otberana out of the game.
Alternatively, EVAL can also be seen as a function assigaitgrmony value to the
candidates, the most harmonic of which will surface in theyleage. ThidHarmony
functionhas a remarkable property: being worse on a higher rankestregmt can
never be compensated by a good behaviour on a lower ranketraion. This phe-
nomenon, referred to abe categorical ranking of the constraintsr as theStrict
Domination Hypothesjdollows from the filtering approach: whoever is filtered out
at an earlier stage never comes back.

The traditional way of representing the competing candislé to use éableay
such as the one in (1). The left column contains the elemdrtseocandidate set,
that is, GEN(UR). For a given candidate;, the number of violation marks; (w;)—
in most cases a non-negative integer—assigned by constraiig given, and the
exclamation mark brings the attention to the point wherevargcandidate meets its
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Figure 1: The basic architecture of an Optimality Theoretic grammar

Waterloo. Thell symbol points to the winning candidate.
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If the constraints are functions mapping from the candidetésSEN(UR) to the set
of non-negative integersNg), then the EVAL module can be seen asal function
that assigns a vector—aolation profile an (inverse)Harmony value which is a
shorthand for a row in a tableau—to each of the candidates:

2) E(U}) = (Cn(w),Cn_l(w), ,Cl(UJ)) S Ng

together with aroptimisation algorithm The role of the optimisation algorithm is to
find the optimal element of the candidate set, and to retuas the output (surface
representation, SR, that is the grammatical fgrm

3) SRUR) = argmin, .genuRr £(w)

Here, optimisation is with respect texicographic orderingfor this is the ordering
realising thecategorical ranking(strict hierarchy) of the constraintd.exicographic
orderingof vectors is the way words are sorted in a dictionary (atiacusabolish...,

apple..., zebrg: first compare the first element of the vectors, then, if they the
same, compare the second one, and so on. Formally speaking:

E(wy) > E(ws), if there existsk € {n,n — 1, ..., 1} such that

1. C’k(wl) > Ck-(wg), and
2. forallj € {n,n—1,...,1},if j > kthenC;(w,) = C;(w2).

ConstraintCy, which determines the relative ordering Bfw;) and E(w,), will be
called thefatal constraint(the highest ranked constraint with uncancelled marks).

1The form appearing in the language is not always the outpilieo®T grammar itself, but a trivial function

F of it. For instance, parsing brackets may have to be removedetrr, the inverse of the functiafl is

not always functional, thus sometimes more outputs (parsesyiesayibe the same observed phenomenon,
posing a challenge to learning algorithms (Tesar and SmoJe2360).
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Furthermore, ifE(w,) < E(w-), than we shall say that candidate is better(more
harmoniq than candidatevs (w; > ws). A more detailed mathematical analysis is
presented in B6 (2005) and in &6 (forthcoming)

The computational challenge posed by Optimality Theorg isetlise the optimi-
sation algorithm required by EVAL. Indeed, Eisner (2000ndastrates that finding
the optimal candidataénerationin OT) is OptP-complete. In addition, the candidate
set is infinite in numerous linguistic models. Several sohg have been proposed,
although each of them is built upon certain presuppositiand they also require large
computational resources. Finite state techniques (seecrgfes in B6 (2003)) not
only require GEN and constraints to be finite state, but waily avith some further
restrictions. The presuppositions@hart parsing(dynamic programminge.g. Tesar
and Smolensky (2000), Kuhn (2000)) are more likely to be nyetost linguistic
models, yet it also makes use of a relatively large memory.

If our goal is, however, to find an optimisation technique athis cognitively
adequate, we do not need an exact algorithm. Indeed, speethirs frequently
performance errors.

The optimisation algorithm should, under normal condgiofind the “correct”,
i.e. the grammatical output—the optimal element of the adetdi set—with high
probability. Even more, the output is returned in constanét since the partner in a
conversation is not a computer user watching the sanddrasther, human speakers
sometimes speed up the computational algorithm, and the p&id is precision. We
propose to see (some) fast speech phenomena (performaocs) as decreased pre-
cision (erroneous outputs) of the optimisation algorithrEV/AL, due to the increased
speed.

This train of thought leads us straightforward to heurisptimisation techniques,
defined by Reeves (1995) as fechnique which seeks good (i.e. near-optimal) solu-
tions at a reasonable computational cost without being tabdgiarantee either feasi-
bility or optimality, or even in many cases to state how cltwseptimality a particular
feasible solution i8.In the present paper, we implement Optimality Theory byngsi
the simplest heuristic optimisation technigaenulated annealing

We will see that simulated annealing meets all our criteltie computational re-
qguirements are minimal, compared to most other methods,itamedurns a “good
(i.e. near-optimal) solution” of even an NP-complete peoblin limited time. This
time interval can be reduced by paying on precision. In paldr, by observing
changes in the stress patterns in Dutch fast speech, we dém@tenhow a proper
competence grammar can produce correct outputs under hoonditions, but starts
making human-like errors under time pressure. Thereby, rpeeafor the cognitive
adequateness of tfg@imulated Annealing Optimality Theory Algorit{®A-OT).

2 Simulated Annealing: a heuristic optimisation technique

Simulated annealingalso called a8oltzmann Machingds a wide-spread stochas-
tic technique for combinatorial optimisation (KirkpakicJr. and Vecchi 1983). It
performs a random walk in the search space, and differs fyradient descenby
allowing uphill moves—thereby escaping local minima—withralyability that de-
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creases during the simulation. Only few have applied itriguiistics, for instance in
parsing (Howells 1988, Kempen and Vosse 1989, Selman arstl £864). Simulated
annealing is also found in the pre-history of Optimality ®he(Smolensky 1986).

The idea originates in solid state physics. An interstidieflect in a crystal lattice
corresponds to a local minimum in the energyof the lattice. Although the per-
fect lattice would minimise the energy, the defect is stabézause any local change
increaseds. In order to reach the global minimum, one needs either tbaily re-
structure the lattice within one step, or to be permittedetmgorarily increase the
energy of the lattice.

Heating the lattice corresponds to the second option. Ttiedas allowed “to bor-
row” some energy, that is, to transform provisionally therenergy into the binding
energy of the lattice, thereby climbing the energy barrepeasating the local mini-
mum from the global minimum. At temperatufé the probability of a change that
increases the lattice’s energy BYE is e 71, wherek = 1.38 x 10~23JK 1 is
Boltzmann’s constant. The higher the temperature, thedoiggergy jumpg\ E are
allowed.

Annealing a metal means heating it to a high temperaturetreamicooling it down
slowly. The lower the temperature, the lower energy hilisghistem is able to climb;
thus it gets stuck in some valley. At the end of the annealing,system arrives at
the bottom of the valley reached. With a slower cooling scifeecthe likelihood of
finding the valley including the global minimum is higher.

Now, the idea ofsimulated annealings straightforward (cf. eg. Reeves 1995).
We search for the state of a system minimising the quadtifiznergy or Evaluation)
by performing a random walk in the search space. If the rulewe move always
downhill (gradient descent we would quickly get stuck in local minima. This is
why we also allow moving upwards (“borrowing thermic enéjgyith some chance,
which is higher in the beginning of the simulation, and whilcln diminishes.

For this purpose, a fictive “temperaturé”is introduced. The random walk starts
from an initial statawy. At each step of the simulation, we randomly pick one of the
neighbouring statesa() of the actual statey (cf. Fig. 2). Thus, aopologyon the
search space has to define the neighbours of a stateétbbbourhood structuje
as well as thea priori probability distributiondetermining which neighbour to pick.
Subsequently, we compat€ to w, and the random walker moves 6 with transi-
tion probability P(w — w’ | T), whereT is the temperature at that moment of the
simulation. If E(w) is the function to minimise, then:

if BE(w') < E(w)

1
4 P "IT) = Ew')—B(w
( ) (w —w ‘ ) {6 ( )T (w) if E(w/) > E(w)

Moving downhill is always possible, and moving uphill degsron the difference in
E and on the actual temperatufe At the beginning of the simulatiofi; is assigned a
high value, making any move very likely. The valuelofs then decreased gradually,
while even the smallest jump does not become highly imprgbabhen the temper-
ature reaches its lowest value, the algorithm returns #ite §ito which the random
walker is “frozen” finally—this is a local minimum. Obviouslpothing guarantees
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Figure 2: A schematic view of the search space—in SA-OT, the candidbtth a topology
(neighbourhood structure)—in which simulated annealing realises amanalk.

finding the global minimum, but the slower theoling scheduléthe more iterations
performed), the higher the probability of finding it.

3 Simulated Annealing for Optimality Theory

How to implement simulated annealing to Optimality Theofyiz search space is the
candidate set, defined by standard Optimality Theory. Yegighbourhood structure
(atopology should be added to it (Fig. 2). which determines the pickifithe next
candidatew’. We propose to consider two candidates neighbours if thiggrdinly
minimally, that is, if abasic operatiortransforms one into the other. The algorithm
gets stuck in local optima, candidates better than theghiiurs. Thus, the definition
of the topology influences crucially which candidates atarreed besides the global
optimum; these forms will be predicted to be the performaarcers or the fast speech
forms.

Enriching a model with further concepts—adding a topologytendard OT—
could diminish the strength of a model. Yet, we have heregelsset of observations:
not only the grammatical forms, but also speech errors agid ftequencies. Stan-
dard OT predicts the grammatical form to be the globallyropticandidate, whereas
the neighbourhood structure added to it accounts for padace errors. Itis in a
very non-trivial way that the interaction of the topolodyetconstraint hierarchy and
the cooling schedule determines which local optimum isrretd with what probabil-
ity. Consequently, finding a simple, convincing—nat hoe—topology reasonably
accounting for the observed data is not a self-evident task.

If the topology determines the horizontal structure of @wediscape in which the
random walker roves, then the Harmony function to be opthisontributes its ver-
tical structure. Here again, traditional Optimality Theg@rovides only the first part
of the story. The transition probabilitf(w — w’ | T) = 1, if w’ is better thanv
(w' = w, thatis,E(w') < E(w)). But how to define the transition probability to a
worse candidate, in function of the actual temperaitffe

We begin by understanding the meaning of “temperature”rutted annealing.
According to equation (4)" defines the range df(w’) — E(w) above which uphill
moves are prohibited{(w — w' | T) =~ 0, if E(w’)— E(w) > T), and below which
they are allowedR(w — w' | T) = 1, if E(w') — E(w) < T).

In turn, our agenda is the following: first we define the ddfieze of two violation
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profiles (£ (w') — E(w)), then define temperature in an analogous way, and lasttadjus
the definition (4).
The difference of two violation profiles seen as vectors (&) is simply:

(5) E(U}/) - E(w) = (Cn(w/) - Cn(w)v ) Cl (w/) - Cl (’LU))

Yet, what interests us when comparing two candidates is thielfatal constraint
(the highest ranked constraint with uncancelled violatitarks). The general struc-
ture of Optimality Theory teaches us to neglect the lowekearconstraints. There-
fore, we define thenagnitudeof any vector(a,,, ...,a1) as

l(an, ...,a1)|| = (k, ax), wherek is the lowest element dfn, ..., 1} such
thatVj € {n,...,1}:if j > k, thena; = 0.
Moreover,|[(0,0, ...,0)|| = (0, 0).

We shall use not the difference (5), but rather the magnitfdbe difference of the
violation profiles,| E(w’) — E(w)|| = (k, Cx(w") — Cx(w)) in simulated annealing.
Take the following tableau to exemplify this idea:

| [Ca [ ot [ [ Cent [ Ce [ Coa [Coa [
E(w) 2] 0 1 2 3 0
E(w) 2 0 1 3 1 2
(@) B [0] 0 | [ 0 [ 2] 2 [ 2|

Here,||E(w’) — E(w)| = (k, —1), sinceC}, is the fatal constraint, the highest con-
straint with uncancelled marks. We may ignore constrasnt&ed belowC,.

In short, the difference (5) of two violation profiles could teduced from an-
tuple (:-dimensional vector) to a paik, Cx(w’) — C(w)). The Strict Domination
Hypothesis does not allow reducing it to a single real numbewever (Bro forth-
coming).

In the next step, we introduce temperature. As explainedrdle of temperature
in simulated annealing is to gradually decrease the tiangirobability to a worse
state. Initially, we want to allow all transitions; then pibit transitions increasing
the violation level of highly ranked constraints; then gigsohibit the transitions that
would increase the violation marks assigned by lower ramketraints only, and so
forth. Finally, the random walker can only move to neighisativat are not worse.

At each moment, uphill jumps much larger tHAave a very low probability, and
jumps much smaller thai are extremely likely. By equation (4, is equal tothe
increase in¥ that has a likelihood of /e. As the increase iy has been now defined
as a pair, so will have to be the temperatiitea pair(Kr,t) € Z x R*.

The first elementKr of the pair is an integer, to be called tdemainof the
temperature. The second elemeénnust be a positive real number. dfx is an
existing constraint, thel = (K, t) can be interpreted as if the violation level of

2For a more detailed analysis of this definition, séeRforthcoming) and Bo6 (2005).
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constraintC'x were increased by. Nonetheless, the domain of the temperature can
be different from the indices of existing constraints.

Finally, we define the transition probabilit(w — w’ | T'). As the rule is to
assign a higher index to a higher ranked constraint, thedinstponent ofl” places
temperature somewhere relative to the constraint hieyarcaxicographic ordering
compares adequately somE(w’) — E(w)| = (k, Cx(w') — Cr(w)) to T = (K, ).
This is why the following definition reproduces equation{4)

At temperaturd’ = (K, t), if ||E(w') — E(w)|| = (k,d):

ifd<0

if d>0andk < Kt
—d/t if d > 0andk = Kp

if d>0andk > Kr

®  Pw—u)=

O D =

This corresponds to the followingiles of transition
e If w' is better thany: movew — w’!
e If w’ loses due to fatal constraif, > K+: don’t move!
¢ If w' loses due to fatal constraifit, < Kr: move!

e If w’ loses due to the constrai@}, = K7: move with probabilitye =%/,

In the beginning of the simulation, the domdify- of the temperature will be higher
than the index of the highest ranked constraint; similatyhe end of the simulation,
temperature will drop below the lowest ranked constrairite Thost straightforward
way to proceed is to use a double loop diminishing tempegatur

The pseudo-code @ptimality Theory Simulated Annealif@T-SA) can be pre-
sented finally (Fig. 3). The parameters of the algorithm hednitial candidate)
from which the simulation is launched, as well as the paramseif the cooling sched-
ule: Kmax Kmin, Kstep tmax tmin tstep

Typically, Kmaxis higher than the index of the highest ranked constrairdgydter
to introduce an initial phase to the simulation when the camdvalker may rove
unhindered in the search space, and increase even theéanatadrks assigned by the
highest ranked constraint. Similarly, the role i§f, is to define the length of the
final phase of the simulation. By havirg,i (much) below the domain (the index)
of the lowest ranked constraint, the system is given enough to “relax”, to reach
the closest local optimum, that is the bottom of the vallewyinich the system is stuck.
Without such a final phase, the system will return any candjawet only local optima,
yielding an uninteresting model.

3As noted by an anonymous reviewer, a major difference betwlassical SA and SA-OT is that by equa-
tion (4), any increase iz has a small theoretical chance of being accepted in classkaYet, SA-OT
minimises not a real valued function, but a vector valued fondor lexicographical order, due to the Strict
Domination Hypothesis. Thus, the vague statement in cld€3icthat “if AE > T thenP =~ 0" can and
has to be formulated here in a more exact way a& “i# K1 thenP = 0". See Hro (forthcoming) for
further differences between classical SA and SA-OT.
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ALGORI THM Si nul ated Annealing for Optinmality Theory
Paranters: w0, Kmx, Knmn, Kstep, t_mx, t_nn, t_step
w<-- wo
for K=K mx to K mn step K step
for t =t _max tot_mn step t_step
choose random w in nei ghbour hood(w)

calculate < C, d > =||EBW)-EwW]|
if d<=0then w<-- W
el se w<-- W with probability
P(Cd) =1 , if C<K
= exp(-d/t) , if C=K
=0 , if C>K
end- f or
end-f or
return w

Figure 3: The algorithm a8imulated Annealing Optimality Theof$A-OT).

Although other options are also possible, the way we shaltgrd is placing oun
constraints into the domains = 0, K = 1,..., K = n — 1. That is, the highest
ranked constraint receives index- 1, and the lowest one is associated with in@ex
Furthermore Kmax = n and Kstep= 1.

The parametermax tmin @andistepdrive the inner loop of the algorithm, that is,
the decreasing of the second comporniafttemperaturd” = (K, t). This component
plays a role only in the expressien®/?, used if the temperature is in the domain of
the fatal constraint. Because the neighbouring candidatasdw’ typically differ
only minimally—abasic operationtransformsw into w’—, their violation profiles
are also similar, thus the differendén violating the fatal constraint is expected to be
low (usually|d| = 1,2). Consequentlyz—%/* vanishes ift > 3, and so the default
values used will bémax = 3 andt;,jn = 0.

The most interesting parametetigep for it is inversely proportional to the num-
ber of iterations performed (if the other parameters aré Uephanged), and thereby
it directly controls the speed of the simulation, that is pitecision. Therefore, we will
tune this parameter. Other parameters also may change tthigenwf iterations per-
formed, but their effect is more complex, so tunigepis the most straightforward
way to change the number of iterations. We also could intedunew parameter for
the number of repetitions within the core of the inner cycle.

4 Dutch metrical stress

41 Theempirical data

Schreuder and Gilbers (2004) analyse the influence of spatxhn stress assignment
in Dutch, based on laboratory experiments forcing the gigeits to produce fast
speech. For instance, in normal (slow, andante) speechpthpound wordototoes-
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tel (‘photo camera’) is assigned a primary stress on its firdablg and a secondary
stress on its third syllablgdtotdeste). However, in fast (allegro) speech, Schreuder
and Gilbers observed a stress shift: the secondary stregsdnoa number of cases
from the third syllable to the fourth one.

The words used in their experiments belong to the followhmgé groups (Types
1-3). No experiment has been performed with type 0 wordshénstress pattern of
a word form or a candidate, s always refers to a syllable wjghiraary or secondary
stress, and u refers to an unstressed syllable hereafter.

Type 0: andante: susu, allegro: suus (OO-correspondence to: su+su
fo.to.toe.stel 'camera’

Type 1. andante: susuu, allegro: suusu (OO-correspondence teusy+
stu.die.toe.la.ge 'study grant’
weg.werp.aan.ste.ker 'disposable lighter’
ka.mer.voor.zit.ter ‘chairman of Parliament’

Type 2: andante: usus allegro: suus (OO-correspondence to: usu+s)
per.fec.tio.nist 'perfectionist’
a.me.rikaan 'American’
pi.ra.te.rij 'piracy’

Type 3: andante: ssus allegro: suus (OO-correspondence to: g+su+s
uit.ge.ve.rij ‘publisher’
zuid.a.fri.kaans 'South African’
schier.mon.nik.oog name of in island

In slow (andante) speech, these words are pronounced in aeflagting their inner
structure. Types 0, 1 and 3 are compound words, and they keeptrtess pattern
of their components unchanged (e.ghtof+Destel or didie+belage). Additionally,
most of the examples in types 2 and 3 end in a suffix that mustdtesss. Standard
literature on OT phonology uses constraint ™®UT-OUTPUT CORRESPONDENCHO
account for these morphologically based phenomena, asalleesblain it soon.

On the other hand, the fast speech (allegro) forms all disfhla suus pattern,
(followed by an unstressed syllable in the five-syllabledgoof Type 1). This pattern
matches best the markedness constraints, reflecting winatttiest is to pronounce.
The markedness constraints used in the analysis advancgdhoguder and Gilbers
(2004) originate from the literature on metrical stresgpmsing that parts of the
syllables are parsed intoetrical feet These constraints ared®T REPULSION(*XX)
punishing adjacent feet without an intervening unparsédlsg, as well as RRSE-o,
punishing unparsed syllables.

Subsequently, Schreuder and Gilbers propose the re-gamiithe constraints
OuTPUT-OUTPUT CORRESPONDENCEANd *XY above a certain speech rate, after
discarding the candidatgb)to(tbestel}—a harmonic bound—from the candidate set.
Careful speech is faithful to the morphological structaiein (7), whereas fast speech
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optimises for pronunciation ease is (8).

) Slow (andante) speech:
| fototoestel ]| OO-CoRR. [ *3X [ PARSEC
[J (foto)(destel) *
(foto)toe(skl) || *! *
(8) Fast (allegro) speech:

| fototoestel ]| *$¥ [ OO-CoRR. | PARSEC
(foto)(testel) || *!
[T (foto)toe(st) * *

Yet, this proposal raises few questions. First, fast spéeeoSually seen rather as a
performance phenomenon. If the competence (the knowlefdbe tanguage encoded
in the brain) of the speaker is not altered, why would one rhibagith a new gram-
mar? Second, if we still suppose a sudden change in the graatraaertain speech
rate, how can we explain that the fast speech form appeaysrosbme percentage
of cases? If the grammar is altered, then the new form shaluldysappear, which
is not the case. In fact, the difference between the two $pextes is rather a gradual
shift in the frequency of two forms, both of which appear irttbandante and allegro
speech (Table 1 and Schreuder (2005)).

Stochastic Optimality Theoroersma and Hayes 2001) can model this phenom-
enon within one grammar. By adding a randewaluation noiseo the ranking of the
constraints, Stochastic OT allows for the re-ranking oftthie constraints proposed
by Schreuder and Gilbers (2004). If noise increases witkedpeate, the probability
of re-ranking the two constraints also grows, without a gatieal switch within the
grammar. It is unclear, however, why the evaluation noismikhbe higher in fast
speech. Even worse, Stochastic OT cannot account for teeetit grammatical form
/ fast speech form-rates for different words, if they areg¢ekplained by the rerank-
ing of the same constraints. The rank of the constraints lamévaluation noise may
depend on the speech rate, but not on the specific input.

Third, this particular analysis is based on the re-rankihigvo constraints, which
cannot take place in more th&0% of the cases—leading to a false prediction of
the model. In the case of two constraints, the probabilityecdnkig them converges
to 0.5, as the evaluation noise (compared to the difference of theks) grows to
infinity. However, a Stochastic Optimality Theoretic modéth more constraints
could correctly predict the fast speech form appearing inenioan half of the cases.
Which constraint should we then add to the model? An alteraatbuld be to change
the (unperturbed) ranks of the constraints, instead oéaging the evaluation noise in
fast speech: why and how do the ranks of the different cangsrahange in function
of the speech rate?

The advantage of the model to be presented uSinwulated Annealing Optimality
Theorywill be manyfold. First, modelling fast speech by speedipghe algorithm is
more convincing than postulating the increase in the etialnaoise or changing the
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underlying competence model (the OT grammar). More impdistaSA-OT correctly
predicts which words are more likely to be pronounced ewasly. Last, the rate
of the fast-speech form may exce&@ in some cases without having to add new
constraints.

4.2  Gen and thetopology of the search space

Let us apply simulated annealing to stress assignment.nfhu is a word composed
of anumber of syllables. The set of candidates correspgridithis input is composed
of all possible correct parses of this input. A parse is atrife it contains the same
number of syllable as the input; it contains at least one; fiedt do not overlap; a
syllable not parsed into any foot is unstressed; finallyhdaot contains one or two
syllables, exactly one of which is stressed. Here, we igtloeedifference between
primary and secondary stress. For a four-syllable wordtimmssible parses include:
u[s]uu, [su]uu, [us]u[s], [s][s][s][s], etc. Brackets megent foot borders; u and s refer
to unstressed and stressed syllables, respectively.

Having defined the set of candidates, we now proceed to tiodagyp of the search
space. Theeighboursof a candidate are the candidates reachable irbase step
and abasic steps performing exactly one of the following actions:

e Insert a monosyllabic foot: turn an unparsed u into [s].
e Remove a monosyllabic foot: turn [s] into an unparsed u.

e Move one foot border: enlarge a foot by taking an unparsdeltsglinto a foot,
or narrow a foot by taking an unstressed syllable out of a foot

e Change the head syllable within a bisyllabic foot.

Defining the topology of the search space includes also mé@terg the probability
measure according to which one of the neighbours is picked@t step of the simu-
lation. For the sake of ease, we assign equal probabilitpeb eeighbour.

The graph in Figure 4 presents the topology of the searcledpaa three-syllable
input. (The candidate set of four-syllable words includ8scdndidates, and is too
complex to reproduce here.) The arcs of the graph conneghibeurs, and the arrow
on an arc points towards the candidate which is more or eqraidnic, with respect
to the toy ranking £% > PARSE-o.

The arrows already bring us from the “horizontal” to the “@al” structure of
the landscape toured by the random walker. An arc on the grétphonly one arrow
points downhill, whereas an arc with two arrows represertsrizontal move. An
arrow from candidate to candidates’ means that the move fromto w’ is possible
with a transition probability 0100% during the entire simulation.

Eyeballing the graph, we can point to some phenomena. Catedisl[s][s] repre-
sents a summit, a local maximum. It is also the global maxintwnhthis fact cannot
be seen directly from the graph. The candidate [s]u[s] iallminimum: the arrows
from all its neighbours point towards it. We also find vallefsandidates of equal
harmony, situated lower than their surroundings (for insgethe one formed by u[su]
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ufs

u[suk ufus]

[s][sul——+[s][us]

[us]u

[su]lu—T{su][s

Figure 4: Search space (candidate set, neighbourhood structueethi@e-syllable word.

and u[us]). Comparing the local minima, [s]u[s], u[su], sfjus]u and [su]u, proves
that all of them are global minima, as well. However, the gragpelf would not help
in determining which of them is a global minimum.

4.3 Thevertical structure of thelandscape: the constraints

Besides the constraints©Y and RRSE already mentioned, as well as besides
OuTPUT-OUTPUT CORRESPONDENCHO Which we are coming back in the next sub-
section, two further constraints will be used. From the dafgmily of alignment
constraints we use the one requiring the left edge of the word matchiadett edge

of some foot (AIGN(WORD, FOOT, LEFT), or in short, AIGN-LEFT). Addition-
ally, constraint ROCHAIC implements the tendency of Dutch to prefer trochaic feet.
In sum, here are the constraints we are using:

e ALIGN-LEFT: assign one violation mark if left edge of word does not align
with left edge of some foot.

e OUTPUT-OUTPUT CORRESPONDENCE the stress pattern matches the expec-
tations from the morphological structure.

e *X30: one violation mark per adjacent feet borders.
e PARSE one violation mark per unparsed syllable.

e TROCHAIC: one violation mark to each iambic foot ([us]).

Their ranking should make the grammatical form (the nornpdesh form) the
optimal one, hence faithfulness to the morphological $tmgc should dominate
markedness—as it is the case in tableau (7). It is rankiig over RRRSE which
returns suus as the structure preferred by the markednast@ots. AIGN-LEFT
has to be ranked higher than OOC to help suus be a local optievem for inputs,
such asperfectionist whose morphological structure would require usus. Hmall
TROCHAIC is ranked low, and its only role is to distinguish betweereottise equal
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forms, such as [su]u[su] and [su]u[us] (in a word suclstaslietoelagewhose mor-
phology requires susuu).

In short, without claiming that this is the only possible mraar describing the
data, we used the following hierarchy:

9) ALIGN-LEFT>> OOC >»* ¥¥ > PARSE > TROCHAIC

We identify constraint AIGN-LEFT with the domain (index)X = 4, constraint
OOC withK = 3, ..., and finally constraint RocHAIC with K = 0.

4.4  Output-Output Correspondence

In the present subsection, we define the constrainmt Y T-OUTPUT CORRESPON
DENCE (OOC). Originally, Burzio (2002)’s proposal, based on amlagy from
physics, required a sum ovall elements of the lexicon. In practice, however, this
constraint compares a candidate with its closest neigishthat is, with the indepen-
dent word forms of its morphological constituents. Useddcoant for phenomena
related to morphology, it is usually defined only in a verywagvay.

As SA-OT necessitates an exact definition, we propose toel€f@C in the fol-
lowing way: candidatev is compared to a string of the same length, a stress pattern
derived from the stress patterns % immediate morphological constituents. uf
is the concatenation of a number of morphenaseis, the concatenation of their stress
patterns. Phonological arguments support that a candidetéo be compared to its
immediate morphological components, and not to deepelsl@véts morphological
structure (e.g. Burzio (2002),ib (forthcoming)).

For instance, the stress pattern that parsésdifidualistare compared to is =
sususs: the stress pattern susumdfviduéel followed by the pattern s of the stress
attracting suffixist. The pattern suus dh.di.vi.di does not play a role.

After these preparations, we are ready to define the constaiTPUT-OUTPUT
CORRESPONDENCE The number of violation marks assigned to a candidaigthe
number of mismatches with the corresponding sten@fter a pairwise comparison
of the corresponding elements of the (equally long) strings

(10) 00G, (w) = ZA(wi,Ji)

wherew, ando; represent théth letter (now, theth syllable’s type) of the candidate
1 if w; 75 g;
0 if W; = 05

The definition of OOC is thus complete, but not satisfactditye result is maybe
not exactly what we wish. Misplacing one stress should be alendifference than
missing a stress entirely, or having extra stresses. Ifahget string iss = suus,
thenw; = susu should be closer to it thar, = suuu orws = suss. Yet, definition
(10) will assign two violation marks ta;, because there is a mismatch in both the
third and the fourth syllable, whereas only one violatiorrknaill be assigned tav,
and tows. Candidatew; violates constraint OOgLon the same level as the “totally
misconceived” candidate, =ssss.

w and the comparison string and whereA (w;, 0;) =
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fo.to.toe.stel uit.ge.ve.rij stu.die.toe.la.ge| per.fec.tio.nist
‘camera’ ‘publisher’ ‘study grant’ ‘perfectionist’
OOC to: susu Ssus susuu usus
f6.to.De.stel it.ge.ve.ij sti.die.be.la.ge | per.fec.tio.rist
fast:0.82 fast:0.65/0.67 | fast:0.55/0.38 | fast:0.49/0.13
slow: 1.00 | slow:0.97/0.96 | slow:0.96/0.81 | slow:0.91/0.20
f6.to.toe.s tit.ge.ve.ij stl.die.toed.ge | pér.fec.tio.nst
fast:0.18 fast:0.35/0.33 | fast:0.45/0.62 | fast:0.39/0.87
slow: 0.00 | slow:0.03/0.04 | slow:0.04/0.19 | slow: 0.07/0.80

Table 1: Simulated (in italics) and observed (in bold; Schreuder, 208§)uéncies. The simu-
lation usedl'step= 3 for fast speech andistep= 0.1 for slow speech.

In turn, a modification of the constraint should assign adidél violation marks to
the difference in the stressed syllables. |Let || denote the number of stresses (s) in
the stringa: || « |= Y, A(a;, u). Then, OOC is re-defined as:

(11)  00C.(w) =) Alwio)+z-||w|~|a]

This definition introduces a new parametevhich determines the relative weight of
pointwise mismatchs. difference in the global number of stresses.

45  Simulation results

After so much preparation, we can run the simulation. Therétlyn of Simulated
Annealing Optimality Theorhas been given in Figure 3. The hierarchy (9) and fur-
ther considerations mentioned earlier suggest using tl@viog cooling schedule:
Kmax = 5 (one layer above the top constraingstep = 1, tmax = 3, tmjn = 0.
Parametef{yj, was chosen in the function ¢teg Kmin = —2 is low enough for
tstep= 0.1 and Kyjn = —100 suffices fortstep= 3.

The simulation has been run with differefitep values, ranging betweeh03
and3. For each parameter setting, we have run the simulationif@stusing each
candidate as the initial point of the random walk. Hencesthwrilation was run 25800
times for four-syllable inputs (43 candidates), and 714@@$ for five-syllable inputs
(119 candidates).

The results appear in Table 1, together with the outcome @ri{aSchreuder’s
laboratory experiments (Schreuder 2005). TaKikgep= 3 as a fast speech model,
andTstep= 0.1 as a slow speech model, the match between experiment antasimu
tion is surprisingly good for the words belonging to the tyeiitgeverij The quan-
titative match is worse for other types of words, yet the $ation correctly predicts
which types are more likely to be produced erroneously.Heunhore, the results—the
49% of per.fec.tio.nistin fast speech—show that unlike Stochastic OT with the ptesen
underlying OT model, SA-OT can return the fast speech forth wifrequency above
50% (the difference is significant).
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In order to appreciate the results, one has to realise thatnydid the model re-
produce the grammatical forms, but it also correctly pregiavhich among the 43 or
119 candidates is the alternative fast speech form. Inifate case operfectionist
a third form has also been return&¥{ in slow speech] 2% in fast speech), namely
[s][su]u (pérfectionis)—by usingz = 1 in the definition (11) of OOC. Different val-
ues forz returned the non-attested [s][su]u form even more fredueniis difficulty
underlines the non-triviality of the present results.

5 Summary

The present paper has implemented a heuristic techniquelatied annealing, to Op-
timality Theory. The standard algorithm had to be slightlgdified in order to use
it to find the optimal candidate of the candidate set. Sinedlatnnealing does not
guarantee maximal precision, and this “drawback” could ehdlge lack of precision
in human speech: faster production yields more performances. Despite quanti-
tative mismatches so-far, the approach seems to be prgnisin

Simulated annealing required the introduction of some raveepts in Optimality
Theory: atopology(aneighbourhood structujen the candidate set, thifferenceof
two violation profiles, temperature, as well as a more pesdifinition of QTPUT-
OuTPUT CORRESPONDENCE

We propose to seBimulated Annealing Optimality Theo(8A-OT) as a model
for (part of) the linguistic performance. If traditional @pality Theory represents
linguistic competence (that is, the static knowledge ofléimguage encoded in one’s
brain), then simulated annealing models the dynamic coatiouts involved in pro-
ducing utterances. The arguments for why simulated amggakn be an adequate
model of (part of) the performance included the fact thatoésl not require com-
plex computing capacities even in the case of NP-completel@ms; that it returns a
“nearly good” solution in limited time; and that this timeténval can be reduced (just
like speech can be speeded up) by paying in precision. Thiattsvas demonstrated
on the case of Dutch stress assignment in fast speech.

The reader is welcome to try out the demo of SA-OT and the implgation of
the model introduced for Dutch stress at http://www.lg.nlf birot/sa-ot/.
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