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How to Define Simulated Annealing

for Optimality Theory?

Tamás B́ıró †

Abstract
Optimality Theory (OT) requires an algorithm optimising the Harmony

function on the set of candidates. Simulated annealing, a well-known heuris-
tic technique for combinatorial optimisation, has been argued to be an em-
pirically adequate solution to this problem. In order to generalise simulated
annealing to a non-real valued Harmony function, two representations of a
violation profile are proposed: using polynomials and ordinal numbers.

Keywords Optimality Theory, heuristic combinatorial opti-

mization, simulated annealing, ordinal numbers, polynomials

1.1 Optimality Theory and optimisation

A grammar in Optimality Theory (Prince and Smolensky (2004), aka
Prince and Smolensky, 1993) consists of two modules, Gen and Eval.
The input—the underlying representation UR—is mapped by Gen onto
a set of candidates Gen(UR), which reflects language typology. For each
language, the language-specific Eval chooses the element (or elements)
appearing as the surface form.

Eval is usually perceived as a pipeline, in which constraints filter out
sub-harmonic candidates. Each constraint assigns violation marks to
the candidates in its input, and all candidates with more marks than
some other ones are out of the game. Nonetheless, Eval can also be seen
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as a function assessing the candidates for Harmony: the most harmonic
one will surface in the language.

A constraint Ci is a function mapping from the candidate set to the
set of non-negative integers. The (universal) constraints are ranked into
a (language-specific) hierarchy: CN ≫ CN−1 ≫ ... ≫ C0. Eval assigns
a vector (a violation profile, a Harmony value) to each candidate w:

H(w) =
(

CN (w), CN−1(w), ..., C0(w)
)
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. Law of trichotomy: for any two candidates w1 and w2, exactly
one of the following three statements holds:

1.H(w1) ≺ H(w2) (that is, w1 ≺ w2);
2.H(w1) ≻ H(w2) (that is, w1 ≻ w2);
3.H(w1) = H(w2) (that is, w1 ≃ w2).

. The existence of a most optimal subset: Let S be a set of
candidates. Then, S has a unique subset S0 ⊆ S such that

1.if w1 ∈ S0 and w2 ∈ S0, then H(w1) = H(w2);
2.if w1 ∈ S0 and w3 ∈ S \ S0, then w1 ≻ w3.

Optimality Theory poses the following computational challenge:
what algorithm realises the optimisation required by Eval? Eisner
(2000) demonstrates that finding the optimal candidate is OptP-
complete. In addition, numerous linguistic models use an infinite candi-
date set. Several solutions have been proposed, although each of them is
built on certain presuppositions, and they require large computational
resources. Finite state techniques (e.g. Ellison (1994), Frank and Satta
(1998), Karttunen (1998), Gerdemann and van Noord (2000), B́ıró
(2003)) not only require Gen and the constraints to be finite state,
but work only with some further restrictions. Chart parsing (dynamic
programming, e.g. Tesar and Smolensky (2000), Kuhn (2000)) has as-
sumptions met by most linguistic models, but also requires a relatively
large memory. Similar applies to genetic algorithms (Turkel, 1994).

A cognitively adequate optimisation algorithm, however, does not
have to be exact. Speech is full or errors, and (a part of) the perfor-
mance errors could be the result of the optimisation process returning
erroneous outputs. Yet, a cognitively adequate algorithm should always
return some response within constant time, since the conversation part-
ners are not computer users used to watch the sandglass.

This train of thought leads to heuristic optimisation techniques, de-
fined by Reeves (1995) as “a technique which seeks good (i.e. near-
optimal) solutions at a reasonable computational cost without being
able to guarantee either feasibility or optimality, or even in many cases
to state how close to optimality a particular feasible solution is.” In this
paper, we implement Optimality Theory by using the simplest heuristic
optimisation technique, simulated annealing, and introduce the Simu-
lated Annealing for Optimality Theory algorithm (SA-OT).

The SA-OT algorithm will, under normal conditions, find the “cor-
rect”, i.e. the grammatical output—the optimal element of the candi-
date set—with high probability, within constant time, using only a very
restricted memory. Human speakers sometimes speed up the computa-
tional algorithm, and the price is paid in precision: we propose to see
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(some) fast speech phenomena as decreased precision of Eval due to
the increased speed. Similarly, by speeding up SA-OT, the chance of
finding suboptimal, yet “good (i.e. near-optimal) solutions” increases.
The models of fast speech phenomena thus constructed support the
cognitive adequateness of SA-OT (Bı́ró, 2005, forthcoming).

1.2 Heuristic Optimisation with Simulated Annealing

Simulated annealing, also referred to as Boltzmann Machines or as
stochastic gradient ascent, is a wide-spread stochastic technique for
combinatorial optimisation (e.g. Reeves (1995)). Only few have ap-
plied simulated annealing in linguistics, most of them for parsing (e.g.
Selman and Hirst (1985), Howells (1988), Kempen and Vosse (1989),
Selman and Hirst (1994)). It may also be found in the pre-history of
Optimality Theory (Smolensky, 1986) and in later work on Harmonic
grammar—including Maximum Entropy models of Optimality Theory
(Jäger, 2003)—, though usually related to grammar learning. To our
best knowledge, it has never been applied within the standard OT
paradigm, especially for finding the optimal candidate.

Simulated Annealing searches for the state of a system minimising
the cost function E (Energy or Evaluation) by performing a random
walk in the search space. If the rule were to move always downhill
(gradient descent), then the system would very easily be stuck in local
minima. Therefore, we also allow moving upwards with some chance,
which is higher in the beginning of the simulation, and which then
diminishes. The control parameter T determining the likelihood of up-
hill moves is called “temperature”, because the idea proposed indepen-
dently by Kirkpatrick et al. (1983) and by Černy (1985) originates in
statistical physics (Metropolis et al., 1953).

The random walk is launched from an initial state w0. At each time
step, a random neighbour state (w′) of the actual state w is picked.
We need, thus, to have a topology on the search space that defines the
neighbours of a state (the neighbourhood structure), as well as the a
priori probability distribution determining the choice of a neighbour in
each step. Subsequently, we compare w′ to w, and the random walker
moves from w to w′ with probability P (w → w′ | T ), where T is the
“temperature” at that moment of the simulation. A random number r
is generated between 0 and 1, and if r < P (w → w′ | T ), the random
walker moves. If E(w) is the cost function to minimise, then:

P (w → w′ | T ) =

{

1 if E(w′) ≤ E(w)

e−
E(w′)−E(w)

T if E(w′) > E(w)
(1.3)
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Moving downhill is always possible, and moving uphill depends on
the difference in E and on the temperature T . At the beginning of the
simulation, T is assigned a high value, making any move very likely. The
value of T is then decreased gradually, while even the smallest jump
does not become highly improbable. When the temperature has reached
its lowest value, the algorithm returns the state—a local minimum—
into which the random walker is “frozen”. Obviously, nothing guaran-
tees finding the global minimum, but the slower the cooling schedule
(the more iterations performed), the higher the probability to find it.

1.3 Simulated Annealing for OT: the basic idea

How to combine simulated annealing with Optimality Theory? The
search space is the candidate set, as defined by standard OT. Yet, a
neighbourhood structure (a topology) should be added—an unknown
concept in standard OT literature—in order to determine how to pick
the next candidate. We propose to consider two candidates as neigh-
bours if they differ only minimally: if a basic operation transforms one
into the other. What a basic operation is depends on the problem, but
should be a naturally fitting choice. It is the neighbourhood structure
that determines which candidates are local optima, which may be re-
turned as erroneous outputs. Thus, the definition of the topology is
crucial to account for speech errors.

If the topology determines the horizontal structure of the landscape
in which the random walker roves, the Harmony function adds its ver-
tical structure. Here again, standard Optimality Theory provides only
the first part of the story. The transition probability P (w → w′ | T ) = 1
if w′ is better than w (i.e., H(w′) ≻ H(w)). But how to define the tran-
sition probability to a worse candidate, in function of the temperature
T ? How to adopt Eq. (1.3)? What is H(w′)−H(w), let alone its expo-
nent? And what should temperature look like?

Equation (1.3) provides the meaning of temperature: T defines the
range of E(w′)−E(w) above which no uphill jump is practically possible
(P (w → w′ | T ) ≈ 0, if E(w′) − E(w) ≫ T ), and below which uphill
moves are allowed (P (w → w′ | T ) ≈ 1, if E(w′)−E(w) ≪ T ). In turn,
we first have to define the difference H(w′) − H(w) of two violation
profiles, then introduce temperature for OT in an analogous way. Last,
we can adjust Eq. (1.3) and formulate the SA-OT algorithm.

Two approaches—two representations of the violation profile—are
proposed in order to carry out this agenda. Both may have its adher-
ents and its opponents. And yet, both approaches lead to the same
algorithm.
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1.4 Violation profiles as polynomials

As mentioned, a crucial feature of Optimality Theory is strict domina-
tion: a candidate suboptimal for a higher ranked constraint can never
win, even if it satisfies the lower ranked constraints best. Prince and
Smolensky (2004) present why the Harmony function H(w) satisfying
strict domination cannot be realised with a real-valued function.

Suppose first that an upper bound q > 0 exists on the number of
violation marks a constraint can assign to a candidate. The possible
levels of violation are 0, 1, ..., q − 1. Then, the following real-valued
Energy function E(w) realises the Harmony H(w) known from (1.1):

E(w) = CN (w) · qN + CN−1(w) · qN−1 + ... + C1(w) · q + C0(w) (1.4)

E(w) realising H(w) means that for all w1 and w2, E(w1) ≤ E(w2)
if and only if H(w1) � H(w2). In other words, optimising the Harmony
function is equivalent to minimising the Energy function. Observe that
E(w) with a lower q does not necessarily realise H(w).

However, nothing in general guarantees that such an upper bound
exists: Eq. (1.4) with a given q is only an approximation. Then, let us
represent the violation profiles as polynomials of q ∈ R

+:

E(w)[q] = CN (w) ·qN +CN−1(w) ·qN−1 + ...+C1(w) ·q +C0(w) (1.5)

and consider the behaviour of E(w)[q] as q goes to infinity! Yet, E(w)[q]
also goes to infinity as q grows boundless: lim E(w)[q] = +∞.

The trick is to perform an operation first, or to check the behaviour of
the energy function first, and only subsequently bring q to the infinity.
By performing continuous operations, it makes sense to change the
order of the operation and of the limit to infinity.

First, let us compare two violation profiles seen as polynomials. The
following definition—comparing the limits—is meaningless: w1 ≻ w2 iff
limq→∞ E(w1)[q] < limq→∞ E(w2)[q]. We can, however, consider the
limit of the comparison, instead of the comparison of the limits:

Definition 2 E(w1) ≺ E(w2) if and only if
either limq→+∞ (E(w2)[q] − E(w1)[q]) > 0,
or limq→+∞ (E(w2)[q] − E(w1)[q]) = +∞.

Furthermore, E(w1) = E(w2) iff E(w1)[q] = E(w2)[q] for all q ∈ R
+.

Energy-polynomials with this definition of ≺ realise the Harmony
function: E(w1) � E(w2) if and only if H(w1) � H(w2). For a proof,
see the Appendix and Bı́ró (forthcoming). Consequently, the polynomial
representation of the Harmony function is well-founded.
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Can we now use energy polynomials to apply simulated annealing
to Optimality Theory? As explained, the role of temperature in simu-
lated annealing is to define a magnitude above which counter-optimal
transitions are improbable, and below which they are very probable.
Thus, temperature must have the same type (dimension, form) as the
function to optimise. If, in our case, the energy function takes different
polynomials as values, then T should be also polynomial-like:

T [q] = 〈KT , t〉 [q] = t · qKT (1.6)

Temperature T = 〈KT , t〉 looks as if it were a violation profile that
has incurred t marks from a constraint—supposing that some constraint
has KT as index. But temperature can be more general: we only require
t ∈ R

+, whereas KT may take any real number as value.
The last step is to define the transition probability of moving from

candidate w to a neighbour w′. If w′ � w, the probability is 1. Oth-
erwise, we repeat the trick: first perform the operations proposed by
(1.3), and only afterwards take the q → +∞ limit:

P
(

w → w′
∣

∣ T [q]
)

= lim
q→+∞

e−
E(w′)[q]−E(w)[q]

T [q] (1.7)

Observe that if Ck is the fatal constraint when comparing w and w′,
then the dominant summand in the expression E(w′)[q] − E(w)[q] is
[

Ck(w′) − Ck(w)
]

qk. Thus, (1.7) and (1.6) yield the following

Rules of moving from w to w′ at temperature T = 〈KT , t〉:

.If w′ is better than w: move! P (w → w′|T ) = 1

.If w′ loses due to fatal constraint Ck:
If k > KT : don’t move! P (w → w′|T ) = 0
If k < KT : move! P (w → w′|T ) = 1

If k = KT : move with probability P = e−(Ck(w′)−Ck(w))/t.

Note that the last expression requires t > 0, as in thermodynamics.
Gradually dropping T can be done by diminishing KT in a loop with an
embedded loop that reduces t. Thus, the height of the allowed counter-
optimal jumps also diminish—similarly to usual simulated annealing.

1.5 Violation profiles as ordinal numbers

Instead of considering the limit q → +∞ of real-valued weights in poly-
nomials, why not take infinite weights? In set theory, the well ordered
set {0, 1, 2, ..., q − 1} defines the integer q. When the possible levels of
violation formed this set, we could use weight q. In the general case, the
possible levels of violation of the constraints form the set {0, 1, 2, ...}:
this well ordered set is called ω, the first limit ordinal (Suppes, 1972).
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Arithmetic can be defined on ordinal numbers, including comparison,
addition and multiplication. These latter operations are associative, but
not commutative. Therefore, we can introduce a new representation of
the Harmony function H(w):

E(w) = ωNCN (w) + ... + ωC1(w) + C0(w) =

0
∑

i=N

ωiCi(w) (1.8)

Because ω is the upper limit of the natural numbers, ωin < ωi+1

for any finite n. Thus, the definition of E(w) in (1.8) with the usual
relation < from ordinal arithmetic also realises the Harmony function:
E(w1) ≤ E(w2) if and only if H(w1) � H(w2). The very definition of
limit ordinals excludes ganging up effects.

We need now the difference of two E values as defined in (1.8).
Instead of subtraction, we introduce an operation ∆(a, b) on the ordinal

numbers of form
∑0

i=N ωiai, such that a = b + ∆(a, b):

Definition 3 If a =
∑0

i=N ωiai and b =
∑0

i=N ωibi and a > b, let be

∆(a, b) =
∑0

i=N ωiδi, where δi =

{

ai − bi if ∀j.(i < j ≤ N): aj = bj

ai otherwise

For candidates w and w′, the co-efficient of the highest non-zero term
in ∆

(

E(w′), E(w)
)

is the difference of the violation levels of the fatal
constraint. The lower summands vanish compared to the highest term,
so we can neglect them in a new definition:

Definition 4 If a =
∑0

i=N ωiai and b =
∑0

i=N ωibi, and a > b, let be

∆′(a, b) =
∑0

i=N ωiδ′i, where δ′i =

{

ai − bi if ∀j.(i < j ≤ N) : aj = bj

0 otherwise

Observe that for candidates w and w′, if Ck is the fatal constraint
why w ≻ w′, then ∆′

(

E(w′), E(w)
)

= ωk
[

Ck(w′) − Ck(w)
]

.
Next, we introduce the following conventions, where a, b, i and j are

positive integers, and x, y and z are ordinal numbers (remember that
ω means “infinity”):

e−
ωia

ωjb := e−ωi−j a
b :=











1 if i < j

e−
a
b if i = j

0 if i > j

(1.9)

Temperature has to have the same form as the difference of two
violation profiles ∆′(E(w′), E(w)), so we propose

T = 〈KT , t〉 = ωKT t (1.10)
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ALGORITHM: Simulated Annealing for Optimality Theory (SA-OT)

Paramters: w_init, K_max, K_min, K_step, t_max, t_min, t_step

w := w_init

for K = K_max to K_min step K_step

for t = t_max to t_min step t_step

choose random w’ in Neighbourhood(w)

w := w’ with probability P( w --> w’ | T=<K,t> )

as defined in the ‘‘Rules of moving’’

end-for

end-for

return w

FIGURE 1 The algorithm of Simulated Annealing Optimality Theory.

Now, all tools are ready to define probability P (w → w′ | T ), closely
following Eq. (1.3). If E(w) ≥ E(w′) then P (w → w′ | T ) = 1, else

P (w → w′ | T ) = e−
∆′(E(w′),E(w))

T (1.11)

Some readers may prefer the way leading to Eq. (1.7), while others
the one to (1.11). Yet, the interpretation of both of them yields the same
Rules of moving, those in section 1.4. Both trains of thought introduce
temperature as a pair T = 〈KT , t〉. Diminishing it requires a double
loop: the inner one reduces t, and the outer one KT .

1.6 Conclusion: SA-OT

The pseudo-code of the Optimality Theory Simulated Annealing al-
gorithm (OT-SA) can be finally presented (Figure 1).

Out of the parameters of the algorithm, Kmax is usually higher than
the index of the highest ranked constraint, in order to introduce an ini-
tial phase when the random walker may rove unhindered in the search
space. Similarly, Kmin defines the length of the final phase of the simula-
tion, giving enough time to “relax”, to reach the closest local optimum.
Otherwise, SA-OT would return any candidate, not only local optima,
resulting in an uninteresting model. Typically, Kstep = 1.

Parameters tmax, tmin and tstep drive t in the inner loop, affecting
only the exponential in the last case (k = KT ) of the Rules of moving.
As w and w′ differ only minimally, in a basic operation, their viola-
tion profiles are also similar: |Ck(w′) − Ck(w)| ≤ 2 usually, motivating
tmax = 3 and tmin = 0. Parameter tstep is the most interesting one, and
can vary along more orders of magnitude: by being inversely propor-
tional to the number of iterations performed, it directly controls the
speed of the simulation, that is, its precision.
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In practice, the algorithm is surprisingly successful in modelling, be-
sides other, fast speech phenomena in Dutch metrical stress assignment
(Bı́ró, 2005). In SA-OT, the frequency of the different forms can be fine-
tuned by varying the parameters (especially tstep). It can also predict
different frequencies for the same phenomenon in different inputs (Bı́ró,
forthcoming), if the search space has a different structure: indeed, the
topology of the search space is an important novel concept in SA-OT.

To sum up, Simulated Annealing for Optimality Theory (SA-OT)
is a promising algorithm to find the optimal element of the candidate
set. In the present paper, we have argued that it is both cognitively
plausible and mathematically well-founded, whereas further work has
shown that it can account for real phenomena.

1.7 Appendix: Energy-polynomials realise H(w)

Here, we sketch how to prove that energy-polynomials—with Definition
2 of ≺ in section 1.4—realise the Harmony function: E(w1) � E(w2)
if and only if H(w1) � H(w2). For a more detailed proof, see Bı́ró
(forthcoming). First, we have to demonstrate:

Theorem 2 Law of trichotomy for energy polynomials: for
any w1 and w2 ∈ GEN(UR), exactly one of the following statements
holds: either E(w1) ≺ E(w2), or E(w1) ≻ E(w2), or E(w1) = E(w2).

For a proof, note that the polynomial P [q] = E(w1)[q] − E(w2)[q]
may have maximally N roots, the greatest of which be qN . Unless
E(w1)[q] = E(w2)[q] for all q’s, P [q] is either constantly positive or
constantly negative for q > qN . Subsequently, we need:

Lemma 3 If H(w1) ≻ H(w2), then E(w1) ≺ E(w2).

Proof. Let Ck be the fatal constraint due to which H(w1) ≻ H(w2)
(Def. 1). If k = 0 then E(w2)[q]−E(w1)[q] = C0(w2)−C0(w1) > 0 for
all q. By definition, then, E(w1) ≺ E(w2).

If, however, k > 0, then let c be such that c > Ci(w1) and c > Ci(w2)
for all i < k. Further, let q0 = max( 2c

Ck(w2)−Ck(w1) , 2). For all q > q0:

E(w2)[q] − E(w1)[q] =

N
∑

i=0

[Ci(w2) − Ci(w1)]q
i =

= [Ck(w2) − Ck(w1)]q
k +

k−1
∑

i=0

[Ci(w2) − Ci(w1)]q
i (1.12)

because Ck is the fatal constraint. As q > q0 ≥ 2c
Ck(w2)−Ck(w1)

, in

the first summand we use Ck(w2) − Ck(w1) > 2c/q. For the second
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component, we employ the fact that Ci(w2) − Ci(w1) > −c for all
i < k, as well as the sum of a geometrical series. Consequently,

E(w2)[q] − E(w1)[q] >
2c

q
qk − c

qk − 1

q − 1
= c

qk − 2qk−1 + 1

q − 1
> 0 (1.13)

because q > q0 ≥ 2. In sum, either k = 0 or k > 0, we have shown
that there exists a q0 such that for all q > q0: E(w2)[q]−E(w1)[q] > 0.
Because this difference is a polynomial, we obtain one of the two cases
required by Definition 2 of E(w1) ≺ E(w2). ⊔⊓

Finally, the following four statements can be simply demonstrated by
using the definitions, the previous lemma and the laws of trichotomy:

Theorem 4 Energy-polynomials realise the Harmony function:

. E(w1) = E(w2), if and only if H(w1) = H(w2);

. E(w1) ≺ E(w2), if and only if H(w1) ≻ H(w2).
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