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Abstract

Simulated Annealing, a wide-spread technique for combinatorial optimisation, is employed
to find the optimal candidate in a candidate set, as defined in Optimality Theory (OT). Being
a heuristic technique, simulated annealing does not guarantee to return the correct solution,
and yet, some result is always returned within a constant time. Similarly to language pro-
duction, this time framework can be diminished with the cost of diminishing correctness.
We demonstrate how simulated annealing can model linguistic performance, built upon a
competence theory, namely, OT. After having applied simulated annealing to OT, we at-
tempt to reproduce empirical observations on metrical stress in Dutch fast speech. Simu-
lated annealing necessitates defining a topology on the candidate set, as well as an exact
formulation of the constraint OUTPUT-OUTPUT CORRESPONDENCE.

1 Introduction: OT and optimisation

Optimality Theory (OT; Prince and Smolensky (1993), aka Prince and Smolensky
(2004)) has been an extremely popular model in linguistics in the last decade. The
architecture of an OT grammar, as shown in Figure 1, is composed of two parts.
Out of the input (the underlying representation UR), the GEN module generates
a set of candidates (GEN(UR)), each of which is evaluated by the EVAL module,
and the best element is returned as the output (the surface representation SR).

EVAL is usually seen as a pipeline, in which the constraints filter out the sub-
harmonic candidates. Each constraint assigns violation marks to the candidates in
its input, and candidates that have more marks than some other ones are out of the
game. Alternatively, EVAL can also be seen as a function assigning a harmony
value to the candidates, the most harmonic of which will surface in the language.
This Harmony function has a remarkable property: being worse on a higher ranked
constraint can never be compensated for a good behaviour on a lower ranked con-
straint. This phenomenon, referred to as the categorical ranking of the constraints,
or as the Strict Domination Hypothesis, follows from the filtering approach: who-
ever is filtered out at an earlier stage never comes back.

The traditional way of representing the competing candidates is to use a
tableau, such as the one in (1). The left column contains the elements of the can-
didate set, that is, GEN(UR). For a given candidate wi, the number of violation
marks Cj(wi)—in most cases a non-negative integer—assigned by constraint Cj
is given, and the exclamation mark brings the attention to the point where a given
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Figure 1: The basic architecture of an Optimality Theoretic grammar

candidate meets its Waterloo. The + symbol points to the winning candidate.

(1)

/UR/ Cn Cn−1 ... Ck+1 Ck Ck−1 Ck−2 ...
+w1 2 0 1 2 3 0
w2 2 0 1 3 ! 1 2
w3 3 ! 0 1 3 1 2

If the constraints are functions mapping from the candidate set GEN(UR) to the
set of non-negative integers (N0), then the EVAL module can be seen as an Eval
function that assigns a vector—a violation profile, an (inverse) Harmony value,
which is a shorthand for a row in a tableau—to each of the candidates:

(2) E(w) =
(
Cn(w), Cn−1(w), ..., C1(w)

)
∈ Nn0

together with an optimisation algorithm. The role of the optimisation algorithm
is to find the optimal element of the candidate set, and to return it as the output
(surface representation, SR, that is the grammatical form1):

(3) SR(UR) = argminw∈Gen(UR)E(w)

Here, optimisation is with respect to lexicographic ordering, for this is the or-
dering realising the categorical ranking (strict hierarchy) of the constraints. Lex-
icographic ordering of vectors is the way words are sorted in a dictionary (e.g.
abacus, abolish,..., apple,..., zebra): first compare the first element of the vectors,
then, if they are the same, compare the second one, and so on. Formally speaking:

E(w1) > E(w2), if there exists k ∈ {n, n− 1, ..., 1} such that

1. Ck(w1) > Ck(w2), and

2. for all j ∈ {n, n− 1, ..., 1}, if j > k then Cj(w1) = Cj(w2).

Constraint Ck , which determines the relative ordering of E(w1) and E(w2),
will be called the fatal constraint (the highest ranked constraint with uncancelled

1The form appearing in the language is not always the output of the OT grammar itself, but a trivial
function F of it. For instance, parsing brackets may have to be removed. However, the inverse of
the function F is not always functional, thus sometimes more outputs (parses) may describe the same
observed phenomenon, posing a challenge to learning algorithms (Tesar and Smolensky 2000).
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marks). Furthermore, if E(w1) < E(w2), then we shall say that candidate w1 is
better (more harmonic) than candidatew2 (w1 � w2). A more detailed mathemat-
ical analysis is presented in Bı́ró (2005) and in Bı́ró (forthcoming)

The computational challenge posed by Optimality Theory is to realise the op-
timisation algorithm required by EVAL. Indeed, Eisner (2000) demonstrates that
finding the optimal candidate (generation in OT) is OptP-complete. In addition,
the candidate set is infinite in numerous linguistic models. Several solutions have
been proposed, although each of them is built upon certain presuppositions, and
they also require large computational resources. Finite state techniques (see refer-
ences in Bı́ró (2003)) not only require GEN and constraints to be finite state, but
work only with some further restrictions. The presuppositions of Chart parsing
(dynamic programming, e.g. Tesar and Smolensky (2000), Kuhn (2000)) are more
likely to be met by most linguistic models, yet it also makes use of a relatively
large memory.

If our goal is, however, to find an optimisation technique which is cognitively
adequate, we do not need an exact algorithm. Indeed, speech frequently contains
performance errors.

The optimisation algorithm should, under normal conditions, find the “cor-
rect”, i.e. the grammatical output—the optimal element of the candidate set—with
high probability. Even more, the output is returned in constant time, since the
partner in a conversation is not a computer user watching the sandglass. Further,
human speakers sometimes speed up the computational algorithm, and the price
paid is precision. We propose to see (some) fast speech phenomena (performance
errors) as decreased precision (erroneous outputs) of the optimisation algorithm in
EVAL, due to the increased speed.

This train of thought leads us straightforward to heuristic optimisation tech-
niques, defined by Reeves (1995) as “a technique which seeks good (i.e. near-
optimal) solutions at a reasonable computational cost without being able to guar-
antee either feasibility or optimality, or even in many cases to state how close to
optimality a particular feasible solution is.” In the present paper, we implement
Optimality Theory by using the simplest heuristic optimisation technique, simu-
lated annealing.

We will see that simulated annealing meets all our criteria. Its computational
requirements are minimal, compared to most other methods, and it returns a “good
(i.e. near-optimal) solution” of even an NP-complete problem in limited time. This
time interval can be reduced by paying on precision. In particular, by observing
changes in the stress patterns in Dutch fast speech, we demonstrate how a proper
competence grammar can produce correct outputs under normal conditions, but
starts making human-like errors under time pressure. Thereby, we argue for the
cognitive adequateness of the Simulated Annealing Optimality Theory Algorithm
(SA-OT).
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2 Simulated Annealing: a heuristic optimisation technique

Simulated annealing, also called Boltzmann Machines, is a wide-spread stochas-
tic technique for combinatorial optimisation (Kirkpatrick, Jr. and Vecchi 1983).
It performs a random walk in the search space, and differs from gradient de-
scent by allowing uphill moves—thereby escaping local minima—with a proba-
bility that decreases during the simulation. Only few have applied it in linguis-
tics, for instance in parsing (Howells 1988, Kempen and Vosse 1989, Selman and
Hirst 1994). Simulated annealing is also found in the pre-history of Optimality
Theory (Smolensky 1986).

The idea originates in solid state physics. An interstitial defect in a crystal
lattice corresponds to a local minimum in the energy E of the lattice. Although
the perfect lattice would minimise the energy, the defect is stable, because any
local change increases E. In order to reach the global minimum, one needs either
to globally restructure the lattice within one step, or to be permitted to temporarily
increase the energy of the lattice.

Heating the lattice corresponds to the second option. The lattice is allowed
“to borrow” some energy, that is, to transform provisionally thermic energy into
the binding energy of the lattice, thereby climbing the energy barrier separat-
ing the local minimum from the global minimum. At temperature T , the prob-
ability of a change that increases the lattice’s energy by ∆E is e

−∆E
kT , where

k = 1.38 × 10−23JK−1 is Boltzmann’s constant. The higher the temperature,
the bigger energy jumps ∆E are allowed.

Annealing a metal means heating it to a high temperature, and then cooling it
down slowly. The lower the temperature, the lower energy hills the system is able
to climb; thus it gets stuck in some valley. At the end of the annealing, the system
arrives at the bottom of the valley reached. With a slower cooling schedule, the
likelihood of finding the valley including the global minimum is higher.

Now, the idea of simulated annealing is straightforward (cf. eg. Reeves 1995).
We search for the state of a system minimising the quantity E (Energy or Evalua-
tion) by performing a random walk in the search space. If the rule were to move
always downhill (gradient descent), we would quickly get stuck in local minima.
This is why we also allow moving upwards (“borrowing thermic energy”) with
some chance, which is higher in the beginning of the simulation, and which then
diminishes.

For this purpose, a fictive “temperature” T is introduced. The random walk
starts from an initial state w0. At each step of the simulation, we randomly pick
one of the neighbouring states (w′) of the actual state w (cf. Fig. 2). Thus, a topol-
ogy on the search space has to define the neighbours of a state (the neighbourhood
structure), as well as the a priori probability distribution determining which neigh-
bour to pick. Subsequently, we compare w′ to w, and the random walker moves to
w′ with transition probability P (w → w′ | T ), where T is the temperature at that
moment of the simulation. If E(w) is the function to minimise, then:

(4) P (w → w′ | T ) =

{
1 if E(w′) ≤ E(w)

e−
E(w′)−E(w)

T if E(w′) > E(w)
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Figure 2: A schematic view of the search space—in SA-OT, the candidate set with a topol-
ogy (neighbourhood structure)—in which simulated annealing realises a random walk.

Moving downhill is always possible, and moving uphill depends on the differ-
ence in E and on the actual temperature T . At the beginning of the simulation,
T is assigned a high value, making any move very likely. The value of T is then
decreased gradually, while even the smallest jump does not become highly im-
probable. When the temperature reaches its lowest value, the algorithm returns
the state into which the random walker is “frozen” finally—this is a local mini-
mum. Obviously, nothing guarantees finding the global minimum, but the slower
the cooling schedule (the more iterations performed), the higher the probability of
finding it.

3 Simulated Annealing for Optimality Theory

How to implement simulated annealing to Optimality Theory? The search space
is the candidate set, defined by standard Optimality Theory. Yet, a neighbourhood
structure (a topology) should be added to it (Fig. 2). which determines the pick-
ing of the next candidate w′. We propose to consider two candidates neighbours
if they differ only minimally, that is, if a basic operation transforms one into the
other. The algorithm gets stuck in local optima, candidates better than their neigh-
bours. Thus, the definition of the topology influences crucially which candidates
are returned besides the global optimum; these forms will be predicted to be the
performance errors or the fast speech forms.

Enriching a model with further concepts—adding a topology to standard OT—
could diminish the strength of a model. Yet, we have here a larger set of observa-
tions: not only the grammatical forms, but also speech errors and their frequencies.
Standard OT predicts the grammatical form to be the globally optimal candidate,
whereas the neighbourhood structure added to it accounts for performance errors.
It is in a very non-trivial way that the interaction of the topology, the constraint
hierarchy and the cooling schedule determines which local optimum is returned
with what probability. Consequently, finding a simple, convincing—non ad hoc—
topology reasonably accounting for the observed data is not a self-evident task.

If the topology determines the horizontal structure of the landscape in which
the random walker roves, then the Harmony function to be optimised contributes
its vertical structure. Here again, traditional Optimality Theory provides only the
first part of the story. The transition probability P (w → w′ | T ) = 1, if w′ is
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better than w (w′ � w, that is, E(w′) < E(w)). But how to define the transition
probability to a worse candidate, in function of the actual temperature T ?

We begin by understanding the meaning of “temperature” in simulated anneal-
ing. According to equation (4), T defines the range ofE(w′)−E(w) above which
uphill moves are prohibited (P (w → w′ | T ) ≈ 0, if E(w′) − E(w) � T ), and
below which they are allowed (P (w → w′ | T ) ≈ 1, if E(w′)−E(w)� T ).

In turn, our agenda is the following: first we define the difference of two vio-
lation profiles (E(w′)−E(w)), then define temperature in an analogous way, and
last adjust the definition (4).

The difference of two violation profiles seen as vectors (cf. (2)) is simply:

(5) E(w′)−E(w) = (Cn(w′)− Cn(w), ..., C1(w′)− C1(w))

Yet, what interests us when comparing two candidates is only the fatal con-
straint (the highest ranked constraint with uncancelled violation marks). The gen-
eral structure of Optimality Theory teaches us to neglect the lower ranked con-
straints.2 Therefore, we define the magnitude of any vector (an, ..., a1) as

‖(an, ..., a1)‖ = 〈k, ak〉, where k is the lowest element of {n, ..., 1}
such that ∀j ∈ {n, ..., 1}: if j > k, then aj = 0.
Moreover, ‖(0, 0, ..., 0)‖ = 〈0, 0〉.

We shall use not the difference (5), but rather the magnitude of the difference
of the violation profiles, ‖E(w′) − E(w)‖ = 〈k, Ck(w′)− Ck(w)〉 in simulated
annealing. Take the following tableau to exemplify this idea:

Cn Cn−1 ... Ck+1 Ck Ck−1 Ck−2 ...
E(w′) 2 0 1 2 3 0
E(w) 2 0 1 3 1 2
E(w′)−E(w) 0 0 0 -1 2 -2

Here, ‖E(w′) − E(w)‖ = 〈k,−1〉, since Ck is the fatal constraint, the highest
constraint with uncancelled marks. We may ignore constraints ranked below Ck .

In short, the difference (5) of two violation profiles could be reduced from an
n-tuple (n-dimensional vector) to a pair 〈k, Ck(w′)− Ck(w)〉. The Strict Dom-
ination Hypothesis does not allow reducing it to a single real number, however
(Bı́ró forthcoming).

In the next step, we introduce temperature. As explained, the role of temper-
ature in simulated annealing is to gradually decrease the transition probability to
a worse state. Initially, we want to allow all transitions; then prohibit transitions
increasing the violation level of highly ranked constraints; then also prohibit the
transitions that would increase the violation marks assigned by lower ranked con-
straints only, and so forth. Finally, the random walker can only move to neighbours
that are not worse.
2For a more detailed analysis of this definition, see Bı́ró (forthcoming) and Bı́ró (2005).
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At each moment, uphill jumps much larger than T have a very low probability,
and jumps much smaller than T are extremely likely. By equation (4), T is equal
to the increase inE that has a likelihood of 1/e. As the increase inE has been now
defined as a pair, so will have to be the temperature T : a pair 〈KT , t〉 ∈ Z× R+.

The first element KT of the pair is an integer, to be called the domain of the
temperature. The second element t must be a positive real number. If CK is an
existing constraint, then T = 〈K, t〉 can be interpreted as if the violation level of
constraint CK were increased by t. Nonetheless, the domain of the temperature
can be different from the indices of existing constraints.

Finally, we define the transition probability P (w → w′ | T ). As the rule is
to assign a higher index to a higher ranked constraint, the first component of T
places temperature somewhere relative to the constraint hierarchy. Lexicographic
ordering compares adequately some ‖E(w′)−E(w)‖ = 〈k, Ck(w′)− Ck(w)〉 to
T = 〈K, t〉. This is why the following definition reproduces equation (4):3

At temperature T = 〈KT , t〉, if ‖E(w′)−E(w)‖ = 〈k, d〉:

(6) P (w → w′) =





1 if d ≤ 0
1 if d > 0 and k < KT

e−d/t if d > 0 and k = KT

0 if d > 0 and k > KT

This corresponds to the following rules of transition:

• If w′ is better than w: move w → w′ !

• If w′ loses due to fatal constraint Ck > KT : don’t move!

• If w′ loses due to fatal constraint Ck < KT : move!

• If w′ loses due to the constraint Ck = KT : move with probability e−d/t.

In the beginning of the simulation, the domain KT of the temperature will be
higher than the index of the highest ranked constraint; similarly, at the end of the
simulation, temperature will drop below the lowest ranked constraint. The most
straightforward way to proceed is to use a double loop diminishing temperature.

The pseudo-code of Optimality Theory Simulated Annealing (OT-SA) can be
presented finally (Fig. 3). The parameters of the algorithm are the initial candi-
date (w0) from which the simulation is launched, as well as the parameters of the
cooling schedule: Kmax, Kmin, Kstep, tmax, tmin, tstep.

Typically, Kmax is higher than the index of the highest ranked constraint, in
order to introduce an initial phase to the simulation when the random walker may
3As noted by an anonymous reviewer, a major difference between classical SA and SA-OT is that by
equation (4), any increase in E has a small theoretical chance of being accepted in classical SA. Yet,
SA-OT minimises not a real valued function, but a vector valued function for lexicographical order,
due to the Strict Domination Hypothesis. Thus, the vague statement in classical OT that “if ∆E � T
then P ≈ 0” can and has to be formulated here in a more exact way as “if k > KT then P = 0”. See
Bı́ró (forthcoming) for further differences between classical SA and SA-OT.
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ALGORITHM: Simulated Annealing for Optimality Theory
Paramters: w_0, K_max, K_min, K_step, t_max, t_min, t_step
w <-- w_0

for K = K_max to K_min step K_step
for t = t_max to t_min step t_step

choose random w’ in neighbourhood(w)
calculate < C , d > = ||E(w’)-E(w)||
if d <= 0 then w <-- w’
else w <-- w’ with probability

P(C,d) = 1 , if C < K
= exp(-d/t) , if C = K
= 0 , if C > K

end-for
end-for

return w

Figure 3: The algorithm of Simulated Annealing Optimality Theory (SA-OT).

rove unhindered in the search space, and increase even the violation marks as-
signed by the highest ranked constraint. Similarly, the role of Kmin is to define
the length of the final phase of the simulation. By having Kmin (much) below
the domain (the index) of the lowest ranked constraint, the system is given enough
time to “relax”, to reach the closest local optimum, that is the bottom of the valley
in which the system is stuck. Without such a final phase, the system will return
any candidate, not only local optima, yielding an uninteresting model.

Although other options are also possible, the way we shall proceed is placing
our n constraints into the domains K = 0, K = 1,..., K = n − 1. That is, the
highest ranked constraint receives index n − 1, and the lowest one is associated
with index 0. Furthermore,Kmax = n and Kstep = 1.

The parameters tmax, tmin and tstep drive the inner loop of the algorithm, that
is, the decreasing of the second component t of temperature T = 〈K, t〉. This
component plays a role only in the expression e−d/t, used if the temperature is
in the domain of the fatal constraint. Because the neighbouring candidates w and
w′ typically differ only minimally—a basic operation transforms w into w′—,
their violation profiles are also similar, thus the difference d in violating the fatal
constraint is expected to be low (usually |d| = 1, 2). Consequently, e−d/t vanishes
if t� 3, and so the default values used will be tmax = 3 and tmin = 0.

The most interesting parameter is tstep, for it is inversely proportional to the
number of iterations performed (if the other parameters are kept unchanged), and
thereby it directly controls the speed of the simulation, that is, its precision. There-
fore, we will tune this parameter. Other parameters also may change the number of
iterations performed, but their effect is more complex, so tuning tstep is the most
straightforward way to change the number of iterations. We also could introduce
a new parameter for the number of repetitions within the core of the inner cycle.
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4 Dutch metrical stress

4.1 The empirical data

Schreuder and Gilbers (2004) analyse the influence of speech rate on stress assign-
ment in Dutch, based on laboratory experiments forcing the participants to produce
fast speech. For instance, in normal (slow, andante) speech, the compound word
fototoestel (‘photo camera’) is assigned a primary stress on its first syllable and
a secondary stress on its third syllable (fótotòestel). However, in fast (allegro)
speech, Schreuder and Gilbers observed a stress shift: the secondary stress moved
in a number of cases from the third syllable to the fourth one.

The words used in their experiments belong to the following three groups
(Types 1-3). No experiment has been performed with type 0 words. In the stress
pattern of a word form or a candidate, s always refers to a syllable with a primary
or secondary stress, and u refers to an unstressed syllable hereafter.

Type 0: andante: susu, allegro: suus (OO-correspondence to: su+su)
fo.to.toe.stel ’camera’

Type 1: andante: susuu, allegro: suusu (OO-correspondence to: su+suu)
stu.die.toe.la.ge ’study grant’
weg.werp.aan.ste.ker ’disposable lighter’
ka.mer.voor.zit.ter ’chairman of Parliament’

Type 2: andante: usus allegro: suus (OO-correspondence to: usu+s)
per.fec.tio.nist ’perfectionist’
a.me.ri.kaan ’American’
pi.ra.te.rij ’piracy’

Type 3: andante: ssus allegro: suus (OO-correspondence to: s+su+s)
uit.ge.ve.rij ’publisher’
zuid.a.fri.kaans ’South African’
schier.mon.nik.oog name of an island

In slow (andante) speech, these words are pronounced in a way reflecting their
inner structure. Types 0, 1 and 3 are compound words, and they keep the stress
pattern of their components unchanged (e.g.: fóto+tòestel or stúdie+tòelage). Ad-
ditionally, most of the examples in types 2 and 3 end in a suffix that must bear
stress. Standard literature on OT phonology uses constraint OUTPUT-OUTPUT
CORRESPONDENCE to account for these morphologically based phenomena, as
we shall explain it soon.

On the other hand, the fast speech (allegro) forms all display the suus pattern,
(followed by an unstressed syllable in the five-syllable words of Type 1). This pat-
tern matches best the markedness constraints, reflecting what the easiest is to pro-
nounce. The markedness constraints used in the analysis advanced by Schreuder
and Gilbers (2004) originate from the literature on metrical stress, supposing that
parts of the syllables are parsed into metrical feet. These constraints are FOOT RE-
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PULSION (*ΣΣ) punishing adjacent feet without an intervening unparsed syllable,
as well as PARSE-σ, punishing unparsed syllables.

Subsequently, Schreuder and Gilbers propose the re-ranking of the constraints
OUTPUT-OUTPUT CORRESPONDENCE and *ΣΣ above a certain speech rate, after
discarding the candidate (fó)to(tòestel)—a harmonic bound—from the candidate
set. Careful speech is faithful to the morphological structure, as in (7), whereas
fast speech optimises for pronunciation ease is (8).

(7) Slow (andante) speech:
fototoestel OO-CORR. *ΣΣ PARSE-σ

+(fóto)(tòestel) *
(fóto)toe(stèl) *! *

(8) Fast (allegro) speech:
fototoestel *ΣΣ OO-CORR. PARSE-σ
(fóto)(tòestel) *!

+(fóto)toe(stèl) * *

Yet, this proposal raises a few questions. First, fast speech is usually seen rather
as a performance phenomenon. If the competence (the knowledge of the language
encoded in the brain) of the speaker is not altered, why would one model it with
a new grammar? Second, if we still suppose a sudden change in the grammar at
a certain speech rate, how can we explain that the fast speech form appears only
in some percentage of cases? If the grammar is altered, then the new form should
always appear, which is not the case. In fact, the difference between the two speech
rates is rather a gradual shift in the frequency of two forms, both of which appear
in both andante and allegro speech (Table 1 and Schreuder (2005)).

Stochastic Optimality Theory (Boersma and Hayes 2001) can model this phe-
nomenon within one grammar. By adding a random evaluation noise to the ranking
of the constraints, Stochastic OT allows for the re-ranking of the two constraints
proposed by Schreuder and Gilbers (2004). If noise increases with speech rate,
the probability of re-ranking the two constraints also grows, without a categorical
switch within the grammar. It is unclear, however, why the evaluation noise should
be higher in fast speech. Even worse, Stochastic OT cannot account for the differ-
ent grammatical form / fast speech form-rates for different words, if they are to be
explained by the reranking of the same constraints. The rank of the constraints and
the evaluation noise may depend on the speech rate, but not on the specific input.

Third, this particular analysis is based on the re-ranking of two constraints,
which cannot take place in more than 50% of the cases—leading to a false pre-
diction of the model. In the case of two constraints, the probability of rerankig
them converges to 0.5, as the evaluation noise (compared to the difference of their
ranks) grows to infinity. However, a Stochastic Optimality Theoretic model with
more constraints could correctly predict the fast speech form appearing in more
than half of the cases. Which constraint should we then add to the model? An
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alternative would be to change the (unperturbed) ranks of the constraints, instead
of increasing the evaluation noise in fast speech: why and how do the ranks of the
different constraints change in function of the speech rate?

The advantage of the model to be presented using Simulated Annealing Opti-
mality Theory will be manifold. First, modelling fast speech by speeding up the
algorithm is more convincing than postulating the increase in the evaluation noise
or changing the underlying competence model (the OT grammar). More impor-
tantly, SA-OT correctly predicts which words are more likely to be pronounced
erroneously. Last, the rate of the fast-speech form may exceed 50% in some cases
without having to add new constraints.

4.2 Gen and the topology of the search space

Let us apply simulated annealing to stress assignment. The input is a word com-
posed of a number of syllables. The set of candidates corresponding to this input is
composed of all possible correct parses of this input. A parse is correct if: it con-
tains the same number of syllables as the input; it contains at least one foot; feet
do not overlap; a syllable not parsed into any foot is unstressed; finally, each foot
contains one or two syllables, exactly one of which is stressed. Here, we ignore the
difference between primary and secondary stress. For a four-syllable word input,
possible parses include: u[s]uu, [su]uu, [us]u[s], [s][s][s][s], etc. Brackets repre-
sent foot borders; u and s refer to unstressed and stressed syllables, respectively.

Having defined the set of candidates, we now proceed to the topology of the
search space. The neighbours of a candidate are the candidates reachable in one
basic step, and a basic step is performing exactly one of the following actions:

• Insert a monosyllabic foot: turn an unparsed u into [s].

• Remove a monosyllabic foot: turn [s] into an unparsed u.

• Move one foot border: enlarge a foot by taking an unparsed syllable into a
foot, or narrow a foot by taking an unstressed syllable out of a foot.

• Change the head syllable within a bisyllabic foot.

Defining the topology of the search space includes also determining the prob-
ability measure according to which one of the neighbours is picked at each step of
the simulation. For the sake of ease, we assign equal probability to each neighbour.

The graph in Figure 4 presents the topology of the search space for a three-
syllable input. (The candidate set of four-syllable words includes 43 candidates,
and is too complex to reproduce here.) The arcs of the graph connect neighbours,
and the arrow on an arc points towards the candidate which is more or equal har-
monic, with respect to the toy ranking *ΣΣ� PARSE-σ.

The arrows already bring us from the “horizontal” to the “vertical” structure
of the landscape toured by the random walker. An arc on the graph with only
one arrow points downhill, whereas an arc with two arrows represents a horizontal
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[s][s][s]

[s][s]u

[s][su] [s][us]

[s]u[s][s]uu

[su][s][su]u [us][s]

[us]u

u[s][s]

u[s]u u[su] u[us]

uu[s]

Figure 4: Search space (candidate set, neighbourhood structure) for a three-syllable word.

move. An arrow from candidate w to candidate w′ means that the move from w to
w′ is possible with a transition probability of 100% during the entire simulation.

Eyeballing the graph, we can point to some phenomena. Candidate [s][s][s]
represents a summit, a local maximum. It is also the global maximum, but this
fact cannot be seen directly from the graph. The candidate [s]u[s] is a local mini-
mum: the arrows from all its neighbours point towards it. We also find valleys of
candidates of equal harmony, situated lower than their surroundings (for instance
the one formed by u[su] and u[us]). Comparing the local minima, [s]u[s], u[su],
u[us], [us]u and [su]u, proves that all of them are global minima, as well. However,
the graph itself would not help in determining which of them is a global minimum.

4.3 The vertical structure of the landscape: the constraints

Besides the constraints ∗ΣΣ and PARSE already mentioned, as well as besides
OUTPUT-OUTPUT CORRESPONDENCE to which we are coming back in the next
subsection, two further constraints will be used. From the large family of align-
ment constraints, we use the one requiring the left edge of the word matching the
left edge of some foot (ALIGN(WORD, FOOT, LEFT), or in short, ALIGN-LEFT).
Additionally, constraint TROCHAIC implements the tendency of Dutch to prefer
trochaic feet. In sum, here are the constraints we are using:

• ALIGN-LEFT: assign one violation mark if left edge of word does not align
with left edge of some foot.

• OUTPUT-OUTPUT CORRESPONDENCE: the stress pattern matches the ex-
pectations from the morphological structure.

• ∗ΣΣ: one violation mark per adjacent feet borders.

• PARSE: one violation mark per unparsed syllable.

• TROCHAIC: one violation mark to each iambic foot ([us]).

Their ranking should make the grammatical form (the normal speech form) the
optimal one, hence faithfulness to the morphological structure should dominate
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markedness—as it is the case in tableau (7). It is ranking ∗ΣΣ over PARSE which
returns suus as the structure preferred by the markedness constraints. ALIGN-
LEFT has to be ranked higher than OOC to help suus be a local optimum even for
inputs, such as perfectionist, whose morphological structure would require usus.
Finally, TROCHAIC is ranked low, and its only role is to distinguish between other-
wise equal forms, such as [su]u[su] and [su]u[us] (in a word such as studietoelage,
whose morphology requires susuu).

In short, without claiming that this is the only possible grammar describing the
data, we used the following hierarchy:

(9) ALIGN-LEFT� OOC �∗ ΣΣ� PARSE � TROCHAIC

We identify constraint ALIGN-LEFT with the domain (index) K = 4, con-
straint OOC with K = 3, ..., and finally constraint TROCHAIC with K = 0.

4.4 Output-Output Correspondence

In the present subsection, we define the constraint OUTPUT-OUTPUT CORRE-
SPONDENCE (OOC). Originally, Burzio (2002)’s proposal, based on an analogy
from physics, required a sum over all elements of the lexicon. In practice, how-
ever, this constraint compares a candidate with its closest neighbours, that is, with
the independent word forms of its morphological constituents. Used to account for
phenomena related to morphology, it is usually defined only in a very vague way.

As SA-OT necessitates an exact definition, we propose to define OOC in the
following way: candidate w is compared to a string σ of the same length, a
stress pattern derived from the stress patterns of w’s immediate morphological
constituents. If w is the concatenation of a number of morphemes, σ is the con-
catenation of their stress patterns. Phonological arguments support that a candidate
has to be compared to its immediate morphological components, and not to deeper
levels in its morphological structure (e.g. Burzio (2002), Bı́ró (forthcoming)).

For instance, the stress pattern that parses of individualist are compared to is
σ = sususs: the stress pattern susus of ı̀ndivı̀duéel followed by the pattern s of the
stress attracting suffix ist. The pattern suus of ı̀n.di.vi.dú does not play a role.

After these preparations, we are ready to define the constraint OUTPUT-
OUTPUT CORRESPONDENCE. The number of violation marks assigned to a can-
didate w is the number of mismatches with the corresponding string σ, after a
pairwise comparison of the corresponding elements of the (equally long) strings:

(10) OOCσ(w) =
∑

i

∆(wi, σi)

where wi and σi represent the ith letter (now, the ith syllable’s type) of the candi-

date w and the comparison string σ; and where ∆(wi, σi) =

{
1 if wi 6= σi
0 if wi = σi

The definition of OOC is thus complete, but not satisfactory. The result is
maybe not exactly what we wish. Misplacing one stress should be a smaller differ-
ence than missing a stress entirely, or having extra stresses. If the target string is
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fo.to.toe.stel uit.ge.ve.rij stu.die.toe.la.ge per.fec.tio.nist
‘camera’ ‘publisher’ ‘study grant’ ‘perfectionist’

OOC to: susu ssus susuu usus
fó.to.tòe.stel úit.gè.ve.rı̀j stú.die.tòe.la.ge per.féc.tio.nı̀st

fast: 0.82 fast: 0.65 / 0.67 fast: 0.55 / 0.38 fast: 0.49 / 0.13
slow: 1.00 slow: 0.97 / 0.96 slow: 0.96 / 0.81 slow: 0.91 / 0.20

fó.to.toe.stèl úit.ge.ve.rı̀j stú.die.toe.là.ge pér.fec.tio.nı̀st
fast: 0.18 fast: 0.35 / 0.33 fast: 0.45 / 0.62 fast: 0.39 / 0.87
slow: 0.00 slow: 0.03 / 0.04 slow: 0.04 / 0.19 slow: 0.07 / 0.80

Table 1: Simulated (in italics) and observed (in bold; Schreuder, 2005) frequencies. The
simulation used Tstep = 3 for fast speech and Tstep = 0.1 for slow speech.

σ = suus, thenw1 = susu should be closer to it thanw2 = suuu orw3 = suss. Yet,
definition (10) will assign two violation marks to w1, because there is a mismatch
in both the third and the fourth syllable, whereas only one violation mark will be
assigned to w2 and to w3. Candidate w1 violates constraint OOCσ on the same
level as the “totally misconceived” candidate w4 =ssss.

In turn, a modification of the constraint should assign additional violation
marks to the difference in the stressed syllables. Let ‖ α ‖ denote the number
of stresses (s) in the string α: ‖ α ‖= ∑

i ∆(αi, u). Then, OOC is re-defined as:

(11) OOCz,σ(w) =
∑

i

∆(wi, σi) + z ·
∣∣∣ ‖ w ‖ − ‖ σ ‖

∣∣∣

This definition introduces a new parameter z, which determines the relative
weight of pointwise mismatch vs. difference in the global number of stresses.

4.5 Simulation results

After so much preparation, we can run the simulation. The algorithm of Simu-
lated Annealing Optimality Theory has been given in Figure 3. The hierarchy (9)
and further considerations mentioned earlier suggest using the following cooling
schedule: Kmax = 5 (one layer above the top constraint), Kstep = 1, tmax = 3,
tmin = 0. Parameter Kmin was chosen in the function of tstep: Kmin = −2 is
low enough for tstep = 0.1 and Kmin = −100 suffices for tstep = 3.

The simulation has been run with different tstep values, ranging between 0.03
and 3. For each parameter setting, we have run the simulation 600 times using
each candidate as the initial point of the random walk. Hence, the simulation was
run 25800 times for four-syllable inputs (43 candidates), and 71400 times for five-
syllable inputs (119 candidates).

The results appear in Table 1, together with the outcome of Maartje Schreuder’s
laboratory experiments (Schreuder 2005). Taking Tstep = 3 as a fast speech
model, and Tstep = 0.1 as a slow speech model, the match between experiment
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and simulation is surprisingly good for the words belonging to the type of uitgev-
erij. The quantitative match is worse for other types of words, yet the simulation
correctly predicts which types are more likely to be produced erroneously. Fur-
thermore, the results—the 49% of per.féc.tio.nı̀st in fast speech—show that unlike
Stochastic OT with the present underlying OT model, SA-OT can return the fast
speech form with a frequency above 50% (the difference is significant).

In order to appreciate the results, one has to realise that not only did the model
reproduce the grammatical forms, but it also correctly predicted which among the
43 or 119 candidates is the alternative fast speech form. In fact, in the case of
perfectionist, a third form has also been returned (2% in slow speech, 12% in fast
speech), namely [s][su]u (pérfèctionist)—by using z = 1 in the definition (11)
of OOC. Different values for z returned the non-attested [s][su]u form even more
frequently. This difficulty underlines the non-triviality of the present results.

5 Summary

The present paper has implemented a heuristic technique, simulated annealing, to
Optimality Theory. The standard algorithm had to be slightly modified in order
to use it to find the optimal candidate of the candidate set. Simulated annealing
does not guarantee maximal precision, and this “drawback” could model the lack
of precision in human speech: faster production yields more performance errors.
Despite quantitative mismatches so-far, the approach seems to be promising.

Simulated annealing required the introduction of some new concepts in Opti-
mality Theory: a topology (a neighbourhood structure) on the candidate set, the
difference of two violation profiles, temperature, as well as a more precise defini-
tion of OUTPUT-OUTPUT CORRESPONDENCE.

We propose to see Simulated Annealing Optimality Theory (SA-OT) as a model
for (part of) the linguistic performance. If traditional Optimality Theory represents
linguistic competence (that is, the static knowledge of the language encoded in
one’s brain), then simulated annealing models the dynamic computations involved
in producing utterances. The arguments for why simulated annealing can be an
adequate model of (part of) the performance included the fact that it does not
require complex computing capacities even in the case of NP-complete problems;
that it returns a “nearly good” solution in limited time; and that this time interval
can be reduced (just like speech can be speeded up) by paying in precision. The
last fact was demonstrated on the case of Dutch stress assignment in fast speech.

The reader is welcome to try out the demo of SA-OT and the implementation
of the model introduced for Dutch stress at http://www.let.rug.nl/ birot/sa-ot/.
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