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Preface

Finding the right words... it is especially hard when one writes his or her first
(and usually only) doctoral thesis. Finding the right topic might be even harder.

Originally, the goal was to write a dissertation on finite-state implementa-
tions of Optimality Theory (OT), possibly with some aspects on learning in OT.
The noteworthy results of this research line can be found in B́ıró (2003) and in
B́ıró (2005c), besides a few unpublished papers or research reports.

Meanwhile, I remembered that I had written a seminar paper in phonology
(B́ıró, 1997) many years earlier to Péter Rebrus, the first person who introduced
me to OT, in which I proposed to combine OT with simulated annealing, a
technique I had learned about in a course on spin glasses with Imre Kondor as
a student of physics. I was told then that Optimality Theory had been born
exactly from simulated annealing and connectionism, even if you do not find any
overt trace of it in most of contemporary OT literature. To be sure, my original
seminar paper was very superficial, and it was during my Ph. D. research that
I started to think more about the issue. I received a further impetus by reading
the article of Jäger (2002) on bidirectional finite-state OT, which reminded me
of the passion I used to have towards different types of “infinite numbers”.

Then, a discussion with Balázs and Kriszta Szendrői introduced the polyno-
mials into the picture, while Maartje Schreuder and Dicky Gilbers supplied me
with several phonological phenomena to work on. So the plan became to present
in the thesis the combination of simulated annealing with Optimality Theory
as an alternative to finite-state approaches to OT. But the topic grew larger
and larger, and finally finite-state approaches were omitted from the disserta-
tion altogether. And yet, the fact that many readers have found my arguments
often less convincing, and certain decisions quite ad hoc, shows that the work is
not finished yet: a more forceful framework and more compelling details have
to be worked out in order to account convincingly for the observed phenomena.
It is to be hoped that the present thesis is only the first, and not the last word
pronounced on SA-OT.

Hearty thanks go to Gosse Bouma, my supervisor, Gertjan van Noord, who
practically acted as a co-supervisor, and John Nerbonne, my promotor. The
frequent discussions with them improved the content of my work, even if I
not always listened to their advice. Indeed, you must be in a motivating en-
vironment in order to be fruitful, and they unquestionably provided me with
such an environment on the highest level. Part of this environment were my
colleagues, my roommates, who also helped me significantly (including solving
technical problems): Gerlof Bouma, Francisco Borges and Robbert Prins. On
a larger level, each member of the Alfa-Informatica Department, the Center
for Language and Cognition Groningen (CLCG), the School of Behavioral and
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Cognitive Neurosciences (BCN), ESSLLI and LOT have also contributed to this
work, thanks to informal discussions, the reading groups, fascinating summer
and winter courses or financial support. The research reported in this thesis
has been primarily financed by the University of Groningen’s program for High
Performance Computing and Visualization (2000), which I gratefully recognise.

As already mentioned, I am enormously thankful to Maartje Schreuder and
Dicky Gilbers, whose empirical work on stress assignment in Dutch fast speech
served as the first concrete example for SA-OT, and our further discussions
in the subsequent almost two years have also been extremely fruitful for both
Maartje (see the fruits in Schreuder, 2006) and me. Similarly has my disserta-
tion profited from my cooperation with Judit Gervain, as I could use the results
of her experiments. It is, however, not possible to emphasise sufficiently that I
am alone to be blamed for all flaws (to be found especially in the phonological
analyses) of the present thesis, which are often the result of not accepting their
advice. Chronologically last, but far not least, I have to express my gratitude to
the members of the reading committee—Adam Albright, Paul Boersma, Ger-
hard Jäger and Jan Koster—not only because I am proud of having them as
my readers, but also because their critical remarks were very constructive in the
last phase.

As language and style is an important aspect of any text, I am very much
indebted to Angela Ashworth and Ruben Comadina Granson for their courses
on academic writing in English and English for presentation—I dare to say, a
must to any Ph. D. student who is non-native in English. The list of those who
have shaped my way of thinking—such as my high school maths teachers, my
professors in physics, linguistics and Judaic studies—and those who helped me in
any other way in preparing this thesis is open ended, and any enumeration would
unquestionably leave out somebody. Special thanks goes to the audience of each
of my presentations, because without their questions my trains of thought would
have been even less understandable.

Finally, here is a (certainly not complete) list in randomised order of those
people who made my stay in the Netherlands pleasant: the secretaries of Cluster
Nederlands, Pieter and Gezin Oegema (my landlord and landlady), the Czachesz
family (István, Gyöngyi and Vica), the Hungarian and pseudo-Hungarian people
in Groningen (Mónika Zempléni, Gábor Imre and Anikó Pausch, Andrea Szent-
györgyi1 and Mihalis Kavaratzis, Szilárd Csiszár, István Back, Anikó Szpenatyi
and Pieter, Janka Salát, András Káldi, etc.), the whole Folkingestraat com-
munity (Bep, Anette, Rami, Gershom, etc.), Bea Nink, Volker Nannen, Piroska
Lendvai, Stefan van der Poel, Ela Polek, Géza Xeravits, Sophia Katrenko, Wout
van Bekkum, Farah Berri, Paul and Liesbeth Gabriner.

My paranymphs, Lonneke van der Plas and Gerlof Bouma, helped me out in
the final stages before the defence whenever I needed, for which I am especially
grateful. Yet, the largest credit goes to my parents and to my family for all of
the last 30 years: Péter, Márta, köszönök szépen mindent nektek!

1She is the cousin of the stepbrother of my sister’s husband.
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Chapter 1

Introduction

1.1 Introduction to Optimality Theory

1.1.1 Optimality Theory for my grandma

The history of Optimality Theory (OT) goes back to 1993 (Prince and Smolensky
(2004), also referred to as Prince and Smolensky (1993) or Prince and Smolensky
(2002)), and is the linguistic implementation of a very simple idea:1

Imagine you drive into a major intersection. You have a number of possibil-
ities of what to do, such as putting on the brakes, halting, turning left, right,
etc. Let us call these possibilities candidates. You also have a number of factors
determining your choice: traffic lights, signs, road marks, hand movements of
a policeman, the position and the speed of your own car and of other cars, the
presence of pedestrians. But also your own destination. These are constraints
on the possibilities, since they filter out some of them. For instance, you are
not going to turn left if it is prohibited by a traffic sign. Sometimes, constraints
contradict each other: you have a green light, yet a policeman forces you to stop.
The traffic code prescribes the ranking (the hierarchy) of the constraints: the
sign given by a policeman overrules the traffic light, and the traffic light precedes
traffic signs. Paradoxically enough, the ultimate goal of traffic—that is, reaching
your own destination—is ranked the lowest: this constraint is applied only if
more than one options (candidates) have survived the other filters. Otherwise,
if you do not have any other option, you will turn left, even if you would like to
reach a destination on your right.2

To rephrase, we have a given set of constraints (Con-1, Con-2,..., Con-i),
which are ranked in a certain order. If Con-1 is the strongest, and Con-i is
the weakest, we shall write:

Con-1� Con-2� ...� Con-i (1.1)

We also have a set of candidates : A, B,... Each of the constraints evaluates

1For a short introduction to Optimality Theory, its background and its application for
beginners, see among many others Gilbers and de Hoop (1998). The application of OT to
traffic rules can be found for instance in Gilbers and Schreuder (2000) and Boersma (2004a),
and I first heard it from Dicky Gilbers in 2001.

2This phenomenon is well-known to anybody who has ever driven in the city centre of
Groningen.
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2 Chapter 1. Introduction

each of the candidates. In the simplest example, a candidate either satisfies (the
action is allowed) or violates the constraint (the given action is prohibited). The
traditional way of representing such a situation is to use a tableau:

Con-1 Con-2 ... Con-i

A *! ...
+B ... *
C *! * ... *
D *! ...

(1.2)

Here, a star (*) means that this candidate violates that constraint. As can be
seen, candidates A and C violate the highest ranked constraint Con-1, so they
are immediately out of the game. It does not help that candidate A satisfies all
other constraints, unlike the competing candidates. The exclamation mark (!)
shows where a candidate meets its Waterloo. Only two candidates survive the
first constraint, B and D, the second of which is defeated at Con-2. In turn,
candidate B wins—the hand symbol + points to the winner—even though it
violates lower ranked constraints. (If you have no other opportunity, you turn
left, even if you do not want to.)

Observe that constraints are violable: the winner candidate does not have
to satisfy all constraints, but has to satisfy them better than its competitors.
If all candidates violate a certain constraint, all will survive. Hence the name
Optimality Theory : we search for the optimal candidate, that is, the best can-
didate of the candidate set. Remember this last sentence, as it summarises my
whole dissertation.

1.1.2 Optimality Theory as a scientific model

How can such a model serve scientific purposes? Most (empirical) scientific
activities can be decomposed into the following three steps:

1. Collecting data

2. Systematising data (which includes some abstraction process)

3. Creating a model that describes the systematised data set

The data collection can be ad hoc (you catch all butterflies you can), or
planned and controlled, motivated by some a priori theories or hypotheses.
In the first case, systematisation already requires much intellectual work, as
proven by the history of biological taxonomy or pre-Mendeleevian chemistry.
Once a discipline has established a theory (a paradigm), data are collected in a
systematic way in order to corroborate or falsify the given model.

The third step is the creation of a model that describes (“explains”) the
data, that is, the typology obtained by the abstraction in the previous step. I
claim that this third step is what makes science more than a knowledge base
that can be found in whatever human activity (the knowledge required by a
certain profession, stamp collection, knowing the currency of each country in
the world,...). Namely, if a scholar or a community of scholars (working in a
given Kuhnian paradigm) accepts a model describing the data set at hand as
convincing, then they have the feeling that they have a deeper understanding of
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the observed phenomenon. I wish I could explain what makes a model “convin-
cing”, “explanatory” or “providing a deeper understanding” to a community of
researchers.

In linguistics, field work and language description correspond to data collec-
tion, whether it be the descriptive linguistics of a well-known modern language,
of a classical language, or of an “exotic” language. Describing a language in-
volves describing its sound repertoire, its verbal system, its word order, its stress
pattern, and so forth. We shall immediately use the example of word stress.

In the second step, language typologies can be set up. Suppose, for instance,
that the languages of the world can be organised into the following three cat-
egories according to their (main) stress pattern:

• Stress on the first syllable:

According to Hayes (1995): e.g. Hungarian, Central Norwegian Lap-
pish, Mansi (Finno-Ugric languages), Czech (Indo-European), Ono (New
Guinea), Debu (Loyalty Islands), Diyari (South Australia). Gordon (2002)
lists 57: e.g. Danish, Afrikaans, Latvian (Indo-European), Nenets (Ur-
alic), Arawak, Arabela, Chitimacha.

• Stress on the last syllable:

According to Baković (1998): e.g. Uzbek, Yavapai. Gordon (2002) lists
59: e.g. Moghol (Altaic), Atayal (Austronesian), Guarani, Haitian Creole,
Mazatec.

• Stress on the penultimate syllable:

According to Hayes (1995): e.g. Polish, Piro (in Peru), Cavineña (in
Bolivia), Djingili (Australia), Warao (Venezuela). Gordon (2002) lists 53:
e.g. Mohawk (Northern America), Albanian (Indo-European), Mussau
(Austronesian), Shona (Bantu language in Zimbabwe), Jaqaru.

This is only a toy example for illustrative purposes, and a high number
of languages—including English and Dutch—with more complex (e.g. syllable
weight dependent) stress systems are ignored, similarly to secondary stress. Still,
it seems to be true that there are no (in fact, only very few3) languages where
the rule is to put the stress always on the second syllable. (The second syllable
of a word in other language types may be stressed, though, if for instance the
rule is to put the stress on the penultimate syllable and the word happens to
have three syllables.) A high number of languages have been studied, so we
hope that the lack of languages with a stress on always the second syllable is
not only a random gap. Thus, if a model could describe this typology—that
is, the existence of the existing types and the non-existence of the non-existing
types—then we can claim that this model has “grasped” something from the
essence of human language.

3Gordon (2002) cites only ten (including Basque, Tolai (New Guinea), Lakota or Koryak
(Kamchatka)), as opposed to the more than fifty in each of the three listed types. In the
present example, we shall ignore them, for we hope that a model predicting that a certain
type does not exist may be the first step towards a more elaborate model that predicts that a
certain type occurs significantly less frequently. The same applies to the seven languages men-
tioned by Gordon (2002) with a stress on the antepenultimate syllable (third from the end),
such as Macedonian (Slavic), Cora (Uto-Aztecian, from the Americas) or some Austronesian
languages.
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A note for the non-linguist who is reading the introduction of my thesis.
Linguistics has had several phases in its history. Up to the eighteenth century,
it was most connected to literature, as it originally served as a tool or an aid for
interpreting canonised literary and religious texts. Linguistics in the nineteenth
century became a historical discipline: the history of and the “family relation-
ship” between languages mirrored the history of and the “family relationship”
between nations. After Saussure, in the first half of the twentieth century, lan-
guage turned into a social construct: an arbitrary structure consented to by
the society. Finally, the Chomskyan revolution resulted in seeing language as a
biological (mental, cognitive) phenomenon.4

Consequently, if a model is able to describe some language typology—say,
the observed stress patterns—then we hope nowadays that the model brings
us closer to an understanding of how language works in the brain. (That is,
for some, a better understanding of the human brain, in general.) Especially,
if the same kind of models can be used for several independent phenomena:
word stress can be described with the same repertoire of techniques as sound
alternations, word order in a sentence or form-meaning matching. Additional
arguments can also be made: a good model is able to reproduce not only ob-
served language typologies, but also other language-related phenomena, such
as those observed in language acquisition (child language), in language impair-
ment and disorders (e.g., due to brain injury), and in language variation and
change (dialects, sociolects, historical linguistics). For instance, I will argue for
the cognitive relevance of my model (Chapter 5) by showing that it can also
reproduce fast speech phenomena.

A practical aspect of language modelling is language technology. Can we use
a certain model for building speaking computers? Recent products of language
technology include spell checkers and grammaticality checkers, human-machine
dialogue systems,5 reasonably working machine translation software, as well as
automatic information extraction tools (question answering,6 text summarisa-
tion,...). I have to disappoint the reader: the model presented in the present dis-
sertation does not aim at being readily usable in industrial applications. Many
phenomena to be discussed can probably be implemented much more simply.
There is no need for ten constraints to assign stress to the first syllable of each
word.

Yet, one of the motivations is exactly applicability. Our starting point will
be how a certain linguistic model can be implemented on computers, which is
also interesting from a theoretical point of view. Although language technology
nowadays can dismiss this linguistic model, the widely used linguistic model
cannot dismiss its computational analysis (decidability, complexity, learnabil-
ity,...). Additionally, we will be concerned with the psychological plausibility of
that model, even if not with its contribution to language technology. It is like
understanding the mechanics and dynamics involved in a human leg, while en-
gineers still prefer realising a horizontal motion using wheels. Indeed, linguistics

4Observe that language typology (exemplified by word stress types) has nothing to do
with language families. Genetically related languages frequently belong to different types,
and unrelated languages may share many features.

5An example is when the user calls a phone service of the train company, and the computer
answers questions concerning train schedules (Lendvai, 2004).

6See for instance the Imix project on Question Answering for Dutch using Dependency
Relations of Gosse Bouma described at http://www.let.rug.nl/∼gosse/Imix/.
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has brought numerous arguments in favour of its models, and we shall argue for
a specific implementation.

As the reader can guess, the model that will be used as a language model is
Optimality Theory (OT). First, a non-linguistic example will demonstrate how
OT may reproduce typologies (proving that the general idea is independent of
linguistics), which is followed by a toy linguistic example.

A high number of chocolates can be found on the market, because different
types of customers buy them.7 Chocolates not corresponding to any type of cus-
tomers lack demand and are removed from the market. Different customers have
different priorities: some go for quality, others for quantity, and others again for
price. Suppose that the following four brands8 of chocolate are characterised by
the following tableau:9

Quality Quantity Price

Mars excellent 55 g 0.50 EUR
Túró Rudi excellent 30 g 0.30 EUR
Côte d’Or good 200 g 1.40 EUR
Milka medium 200 g 1.20 EUR

(1.3)

Here, the four brands of chocolate are the candidates, whereas the three
characteristics act as the constraints. Unlike in the previous example on driving
a car, constraints are not either satisfied or violated, but they assign different
evaluations to each of the candidates. More levels are possible. Importantly,
however, these evaluations can always be compared to each other: evaluations a
and b are either the same, or a is better than b, or b is better than a. No fourth
possibility exists, and we shall use this Law of Trichotomy in several occasions
in the coming chapters.

Suppose that the constraint hierarchy of a customer is Quality � Quan-
tity � Price. Similarly to (1.1) on page 1, the symbol � means again that
the first constraint is more highly ranked (left in the tableau) than the second
one. Consequently, our customer will first eliminate Côte d’Or and Milka from
the set of candidates: they are not bad at all, but you can find better. In the
next step, she will compare the quantity of the surviving two candidates, and,
therefore, go for a Mars bar.

Other customers have different constraint rankings, driving them to differ-
ent brands. Hierarchy Quality � Price � Quantity yields a Túró Rudi,
similarly to the—quite different—hierarchy Price � Quantity � Quality.
One can also simply check that Quantity � Quality � Price results in a
Côte d’Or, whereas Quantity � Price � Quality in a Milka in our toy
example. All four candidates are winners of some hierarchy, thereby they are
preferred by some type of customers—as proven by the observable demand for
them. The model also predicts the effect of changing the price of Côte d’Or : if
its price is reduced to 1.10 EUR, those buying Milka would now purchase Côte

7As I was informed after having worked out this example for non linguists, Boersma (2000)
uses a similar example (buying rucksacks and optimising for volume, weight and price), even
if in a slightly different manner. The priority of using this example goes therefore to him. A
further non-linguistic example will be brought in section 8.3 (Papert, 1980).

8Túró Rudi is one of the favourite brands of most Hungarians.
9In our toy example, we ignore the subjective factor, and suppose that Quality is as

objective as the two other dimensions.
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d’Or, but not those buying Mars or Túró Rudi. Altogether, Optimality Theory
could account for customer typology and phenomena on the market.

Let us now turn back to our (oversimplified) linguistic example, stress ty-
pology (cf. Baković (1998), Gordon (2002)). The following constraints are
simplifications of real constraints used by phonologists:10

• Early: number of syllables between the beginning of the word and the
stressed syllable (i.e., the stress must occur as early as possible in the
word).

• Late: number of syllables between the stressed syllable and the end of
the word (i.e., the stress must occur as late as possible in the word).

• Non-Final: 1, if the last syllable is stressed, otherwise 0 (the last syllable
must not be stressed).

Which syllable of a, say, four-syllable word should be stressed? There are
four options, which are the candidates, to be evaluated by the constraints just
introduced. In the following tableau, the character s refers to a stressed syllable,
and u to an unstressed syllable.

4-syllable word Early Late Non-Final

s.u.u.u 0 (excellent) 3 (worst) 0 (good)
u.s.u.u 1 (medium) 2 (bad) 0 (good)
u.u.s.u 2 (bad) 1 (medium) 0 (good)
u.u.u.s 3 (worst) 0 (excellent) 1 (bad)

(1.4)

One can simply verify that the three existing language typologies can be
reproduced with different hierarchies. For instance:

• Early � Late � Non-Final returns s.u.u.u (word initial stress)

• Late � Early � Non-Final returns u.u.u.s (word final stress)

• Non-Final � Late � Early returns u.u.s.u (penultimate stress)

Whereas no ranking yields u.s.u.u as the best candidate, which corresponds to
its systematic absence in the observed typology.

Therefore, we have accounted for three positive observations (the existing
types) and one negative observation (the lack of a type) using three constraints.
If introducing a few more constraints increases the number of observations ex-
plained combinatorically, then the model has a strong reductionist power. On
the other hand, the principle of factorial typology makes the strong prediction
that the number of types cannot exceed the factorial of the number of con-
straints, while the fact that several hierarchies yield the same types further
restricts the number of possible language types. For example, if five constraints
account for why twenty or thirty types exist but not more, then many observa-
tions have been reduced to a few principles, on the one hand, and OT has also
restricted the number of possibilities, on the other.

10For Early and Late, cf. Edgemost of Prince and Smolensky (1993) and the alignment
constraints of McCarthy and Prince (1993a). For Non-Final, cf. Nonfinality in Prince and
Smolensky (1993) and Hung (1994).
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The explanatory power of OT is enhanced further if constraints are concep-
tually less complex than the resulting observations. The toy example presented
might not be the most convincing example, even though I believe that not willing
to stress the last syllable is simpler than what follows from it, namely, stressing
the penultimate.

Summarising, we have seen in the present subsection how Optimality Theory
can account for typologies (customer typology, language typology), and thereby
become a scientific paradigm. It defines a set of candidates, all of which compete
initially; as well as a set of constraints. The latter ones evaluate the candid-
ates and act as filters: the best candidates survive, and the worse-than-best
candidates are filtered out.

1.1.3 A slightly more formal definition of OT

Optimality Theory (OT), introduced in 1993 by Alan Prince and Paul Smolensky,
has been an extremely popular model in linguistics in the last decade. In the
present subsection, a more exact definition is presented.

It is useful to state at this point that the present thesis focuses first of all
on phonology, although most of the proposals can be readily translated to other
linguistic fields. This choice reflects the fact that Optimality Theory has been
employed most often—yet not exclusively—by phonologists. Even though it
claims to be applicable to any field, it has been most attractive to phonologists
who wished to replace the SPE-style rules (Chomsky and Halle, 1968). Many
linguists working on syntax or semantics are concerned with different types of
problems (e.g. with representational issues), orthogonal to the answers offered
by OT. In turn, similarly to most previous theoretical work on OT, I also have
mainly phonology in mind. Concrete applications will also be taken from phon-
ology. Although I claim that the ideas to be presented here are not exclusively
related to phonology, the future will show whether they really can address a
wider audience.

As in most models in generative linguistics, the goal is to map the underlying
representation (UR) onto the surface representation (SR), the form observed in
a particular language. Originally, the background idea is roughly that in lan-
guage production the underlying representation is obtained by extra-linguistic
processes: depending on the meaning of the “message” to be uttered, the UR is
some list of elements taken from the mental lexicon.11 At this point, no “real”
linguistics has been involved, as the “message” is a function of social, contextual
and cognitive factors, whereas the forms of the elements in the mental lexicon
are arbitrary. Optimality Theory refers to this idea as the Richness of the Base
Principle (Prince and Smolensky (2004) p. 220): “all inputs are possible in

11The mental lexicon contains the list of morphemes in a given language, including their
phonemic forms and all further information required. It has been supposed that the mental
lexicon has to be minimised, redundancies have to be avoided, and the different forms of a
morpheme have to be derived by the grammar, as much as possible. For instance, not all
different forms of a word are stored, but only one form for each morpheme, which are then
combined and submitted to phonological transformations. In fact, the human mind has always
been pictured in function of the contemporary technology (as mechanical automata, steam
engines, telegraph cables, etc.; cf. Daugman, 1990), and the idea of avoiding redundancies goes
back to the early years of computers with a very restricted memory. Although nowadays, as
a consequence of the development of computer memories, the mental lexicon is not required
anymore to be minimal, the idea is still present and influences the way linguists build their
models to explain regularities and analogies in language.
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Figure 1.1: The basic architecture of an Optimality Theoretic grammar

all languages, distributional and inventory regularities follow from the way the
universal input set is mapped onto an output set by the grammar”.

In brief, the differences among languages are accounted for by the mapping
from the underlying representation onto the surface form. The task of a linguist
is but to create a “convincing” model for this mapping.

How can this mapping be realised? Traditional generative grammars used
rules. In phonology, the Sound Pattern of English (Chomsky and Halle, 1968)
served long as the example with its (apparently) context-sensitive rewrite rules
(but see also Johnson, 1972, on regular implementations of SPE rules). Two-
level morphology (Koskenniemi, 1983) introduced a second type of architecture,
and Optimality Theory proposed a third alternative.

The standard architecture of an OT grammar is shown in Figure 1.1. It is
composed of two parts, two modules. Out of the input (the underlying repres-
entation UR), the GEN module generates a set of candidates (GEN(UR)). The
elements of the latter are evaluated by the EVAL module, and the best element
is returned as the output (the surface representation SR).

There are two ways of looking at EVAL. It is usually seen as a pipeline, in
which the constraints filter out the sub-harmonic candidates. Each constraint
assigns violation marks to the candidates in its input, and candidates that have
more marks than some other ones are out of the game. This is the algorithm we
have already used in previous examples to calculate which of the possibilities
(candidates) is the best: you lose if another competitor is better than you.

Violation marks are the stars we used in tableau (1.2). There, a candidate
either satisfied (no star) or violated (one star) the constraint. One can also
imagine a constraint assigning more than one violation marks to a candidate.
Indeed, in (1.3) and (1.4), we could replace excellent with zero star, good with
one star, medium with two stars, bad with three stars, and worst with four
stars. Many constraints used in linguistic models require that a substring of the
candidate meet a certain criterion: each part of the input that fails to meet the
criterion incurs an additional violation mark to the candidate.12

Alternatively, EVAL can also be seen as a function assigning to the can-
didates some (strange) harmony value derived from their behaviour on the

12Some call such constraints gradient ones, for they allow for more than two levels in the
goodness of a candidate (e.g. Jäger, 2002). Other authors speak of gradient constraints only
if any substring can violate a certain constraint on several levels, and the violation level
of the candidate is the sum of these gradient local violations. (e.g. McCarthy, 2002; B́ıró,
2003). In fact, the most interesting type of gradient constraints are those that can assign
an unbounded number of violation marks to any locus in the string. For instance, the wide-
spread Align(Foot, Word, Left) assigns each metrical foot in the word as many stars as the
number of syllables intervening between the left edge of the word and the left edge of the foot
(e.g. Tesar and Smolensky (2000) p. 54-55 calls it All-Feet-Left; for its criticism and an
alternative proposal, see McCarthy (2002)).
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constraints. Additionally, EVAL also includes an optimisation algorithm that
compares the harmony of the candidates, and finds the best one, for the most
harmonic candidate is predicted to surface in the language. This Harmony
function has, however, a remarkable property: being worse on a higher ranked
constraint can never be compensated by good behaviour on a lower ranked con-
straint. That fact follows from the filtering approach: whoever is filtered out
at an earlier stage, never comes back. This phenomenon is referred to as strict
dominance hypothesis.13 We shall come back to this approach in Chapter 3,
where we show that the Harmony function cannot be realised with a real valued
function, and propose alternative approaches.

In fact, the success of Optimality Theory since 1993 is partly due to the
idea of strict dominance hypothesis). Not only does it make the model more
restricted, but also seems to be easier or more appealing to work with. Namely,
in the pre-cursor of OT, Harmony grammar (Smolensky, 1986; Legendre et al.,
1990a,b,c), severe violations of lower constraints could accumulate and become
worse than the violation of a higher ranked constraint.

It should be noted that such cumulativity effects have recently come back
to the foreground of research, and we shall return to them in subsection 1.3.5
(Jäger and Rosenbach, 2006). Further research has to decide how wide-spread
cumulativity effects are, and whether ignoring them or incorporating them into
the set of linguistic observations is the more fruitful for the development of sci-
ence. Indeed, scientific progress requires neglecting some phenomena in order to
be able to describe others. “To be able” in the phrase depends on the preferences
of the scientists involved. Therefore, most adherents of OT feel fully legitimate
in “postulating” that linguistic phenomena do not exhibit cumulativity effects,
while others will reject that, and prefer Harmony grammar. Nonetheless, most
general linguists use Optimality Theory, and form a well-organised community
with a growing literature around ROA.14 My thesis aims at addressing this
audience, and the model proposed here should be further developed based on
their knowledge of particular linguistic phenomena.

To sum up, the following list of concepts play a central role in Optimality
Theory :

• Underlying representation = input

• GEN

• Set of candidates

• EVAL

• Constraints, acting as filters

• Hierarchy (= ranking, ordering) of the constraints, which is categorical

13A related and widely used notion is categorical ranking. But, as Paul Boersma has pointed
out, this latter notion refers to the non-variation of the constraint ranking. We shall soon see
models (e.g. models by Anttila and by Boersma) in which constraints strictly dominate each
other (lower constraints cannot help a candidate survive a higher ranked constraint), and yet,
the ranking of the constraints may vary within a grammar.

14The Rutgers Optimality Archive at http://roa.rutgers.edu and the Optimality List are
eminent examples for how a scientific paradigm of the 1990s should use the technology of the
1990s in order to become popular.
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• Surface representation = output

According to the general philosophy of Optimality Theory, not only the set
of possible inputs is universal (cf. the Richness of the Base principle mentioned
earlier), but so is GEN and the set of the constraints present in a language.
Constraints, in fact, should reflect universal tendencies in the world’s languages,
and vice versa, language universals correspond to some constraints. The basic
claim of Optimality Theory is that the same determining factors are active
in all languages, and only their relative influence differs. This is why, in our
chocolate example, we used constraints that maximised quantity and quality
and minimised price: we could have added a fourth constraint that minimises
quality and rank it low, but this constraint would correspond to no observable
phenomenon.

Many allow for some language specific parametrisation of the constraints.
Furthermore, in practice, the set of candidates varies across articles. The goal
set by current research is to determine the best set of constraints, and linguists
propose different constraints, or reformulate previous ones, in order to account
for more phenomena. The trick, as we shall see it soon, is the following rhetoric:
a given model deals only with the highest ranked constraints, whereas all other
constraints argued for by others may be ranked low so that they do not interfere
with the choice of the best candidate. (See also section 1.3.)

The only language specific parameter, therefore, is the ranking of the con-
straints. The acquisition of a language, hence, means learning the adequate
hierarchy, and a grammar learning algorithm is expected to return a hierarchy
that produces the correct outputs for the given underlying forms.

Going back to the example of buying chocolate, we could illustrate the idea
of grammar learning in the following way. Imagine you have a new girl friend,
and you would like to know her better. You know what guidelines people con-
sider universally (quality, quantity, price), yet you would like to know how she
applies them. So, you take her to a shop (without telling her that you would
pay). You propose her several sets of alternatives, and you observe which she
chooses in different situations. Then, you can derive the hierarchy driving her
choices. Learnability is a separate research line within the computational ana-
lysis of Optimality Theory (see e.g. Tesar and Smolensky, 2000; Boersma and
Hayes, 2001; Pulleyblank and Turkel, 2000; Tesar and Prince, 2003; Ota, 2004;
Goldwater and Johnson, 2003; Prince and Tesar, 2004; Pater, 2005b), which we
shall touch upon here and there, especially in section 4.2.

1.2 Infinite candidate sets, implementing OT

In many Optimality Theoretical models advanced by theoretical linguists, the
set of candidates is infinite. The reason for this is at least two-fold. First, most
linguists working within the OT framework simply see GEN as a black box,
producing literally everything. (Or almost everything, but most linguists are
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not very explicit about it. I would like to urge linguists to be more exact about
GEN.) And “everything” is infinite.

Second, in many linguistic phenomena, some structure—such as an epen-
thetical vowel, a default syllable onset or an expletive word—is inserted, and
often more than one insertion is required. Therefore, the simplest way to pro-
ceed is to allow any (finite) number of insertions, that is, to allow recursive
insertions, yielding an infinite set of possibilities. It is true that many of them
have no chance to win under any constraint ranking: they are called losers in
the OT jargon (e.g. Samek-Lodovici and Prince (1999), p. 3). Yet, it is simpler
to include them into the model than to restrict GEN to the set of candidates
that may win under some ranking. We allow, thus, an infinite set of candidates
in order to save the simplicity, the homogeneity or the mathematical beauty of
the model.

On the other hand, the infinity of the candidate set raises numerous ques-
tions. First of all, including losers into the model undermines the “philosophy”
of Optimality Theory previously discussed. We have introduced OT as a model
for language typology: the set of candidates includes the forms present in lan-
guage typology, and each of the possible constraint rankings corresponds to a
certain language type. Why should we include, then, forms that are not observ-
able in language typology? Language typologies allow usually only for a very
restricted set of possibilities, so what’s the business of all other (infinite number
of) forms here? An interpretation of the model might claim that all forms gen-
erated by GEN are conceivable in some sense (for instance, as representations
in the human brain), and yet, further restrictions (i.e., the OT constraints) on
human language exclude many of them from the set of possible surface forms.
Indeed, for the proposal in section 6.5 the loser candidates are crucial: even
though they do not surface in the language as grammatical forms, the model
for the computing algorithm in the human mind makes use of them. They are
like Godot in Samuel Beckett’s tragicomedy: an important character (like any
other character), even if never appearing on the scene.

Additionally, the infinity of a character set poses a computational challenge
to researchers who do not perceive theoretical linguistics as a discipline per se,
rather in connection with language engineering, or with behavioural, cognitive
and neurosciences. Could natural language technology make use of a model that
first requires the generation of an infinite set? Does our brain really work with
such huge data structures?

Different approaches have been proposed to spare the trouble of generating
the whole candidate set. This work is important additionally because the com-
putation in the case of a finite, though enormous set can also be not feasible, if
the algorithm used is to compare each candidate with any other of them. Indeed,
Optimality Theory as a framework allows for intractable problems (NP-hard—
worst case exponential—in the size of the grammar, cf. Eisner (2000b)15). On
the other hand, a clever algorithm can render the search in an infinite set ex-

15See Idsardi (2006a) for a simple proof adopting arguments from Eisner (2000b) that
Optimality Theory as a framework is NP-hard. Kornai (2006a) criticised Idsardi (2006a)
by arguing that the constraints employed by the latter are unattested in the phonologies of
natural languages, to which Idsardi (2006b) answered in ROA. In response, Kornai (2006b)
maintained his optim(al)ism by pointing to the fact that natural languages have very restricted
phoneme inventories and large number of unbounded processes do not operate in parallel, and
therefore real language OT does not blow computationally.
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tremely simple for some problems: when interested in the smallest integer higher
than n, you will use elementary school arithmetics, and not generate the whole
infinite search space.16

Consequently, a major question is to work out computationally tractable
implementations (algorithms) for Optimality Theory. The present dissertation
discusses a novel approach, namely, simulated annealing. An alternative ap-
proach that I was also working with during my PhD scholarship is finite state
technology (B́ıró, 2003, 2005c), a research built especially on results by Frank
and Satta (1998), Karttunen (1998), Gerdemann and van Noord (2000) and
Jäger (2002).

Further approaches to handle a (possibly infinite) candidate set also exist.
Chart parsing (dynamic programming) is probably the best known among them
(chapter 8 in Tesar and Smolensky (2000) for syllabification, Kuhn (2000) for
implementing OT LFG). It presupposes on the one hand that applying a recurs-
ive rule (usually insertion) incurs some constraint violation; and on the other,
that “all constraints are structural descriptions denoting bounded structures”.
The interplay of these two assumptions guarantees that the algorithm may stop
applying the recursive rule after a finite number of steps, for no hope is left to
find better candidates by more insertions.

The basics of another interesting implementation are presented by Turkel
(1994). He uses genetic algorithms (e.g. Reeves (1995), Eiben and Smith
(2003)), for both generation and learning, and claims that “an OT system prop-
erly construed is a genetic algorithm.”

Genetic algorithms are heuristic optimisation algorithms inspired by the idea
of biological evolution. (For the concept of heuristic optimisation in general, see
section 2.1.1.) In each step, we have a population of “chromosomes” (the al-
gorithm starts with a random initial population), which are evaluated according
to some fitness function, and which then participate in producing a new popu-
lation (the next generation). Chromosomes with higher fitness are more likely
to be chosen to participate in the generation of the new population (cf. natural
selection). A few operations (such as crossover, mutation, etc.) are applied to
the chosen chromosomes when they generate the next cohort. The idea is that
the chromosomes with the highest fitness will be most likely to be selected, and
thus the fitness in the pool of chromosomes will converge towards the optimum
that is searched for.

When Turkel (1994) uses genetic algorithms for production in OT, it is GEN
that realises the generation of the new population, and EVAL plays the role of
the fitness function. A population of candidates enters GEN, which creates a
new generation by applying basic operations (“mutation”, “crossover”) on the
candidates entering it. Subsequently, EVAL selects the best ones from this
new generation, which enters GEN again, and so forth. The idea that what
GEN does is to map a candidate (here, in fact, a set of candidates) onto a set
of “neighbouring” candidates by applying minimal modifications shall soon re-
emerge in subsection 2.2.2, and has its parallels in the output-centric picture of
Burzio (2002) discussed in section 4.1. In all these cases, the set of candidates
can be walked across stochastically by applying these minimal modifications
repeatedly.

The same genetic algorithm is then used to model language acquisition, that

16I am thankful for this example to an anonymous reviewer of a conference paper.
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is, to learn the constraint hierarchy best fitting the observed language data (on
learning cf. the end of section 1.1.3). A more matured version of this grammar
learning algorithm, applied to vowel harmony, can be found in Pulleyblank and
Turkel (2000).

1.3 Variation within OT

The primary aim of Optimality Theory is, thus, to account for language typo-
logy. The candidate set contains all the different types of the typology—and
possibly further candidates. A given language, belonging to a given type, is de-
scribed by the hierarchy of constraints that yields the grammatical candidate in
that language as the only output (optimal form with respect to the hierarchy).
Consequently, the standard philosophy behind Optimality Theory should allow
each ranking to return only one candidate: the best one.

Nonetheless, Optimality Theory is, at the same time, a grammar that realises
a mapping from the underlying representation to the surface form. Variation, a
wide-spread phenomenon in languages that Optimality Theory certainly has to
account for, may be seen as more surface forms corresponding to one underlying
representation.17 But can an Optimality Theoretical model produce more than
one output? In the present section, we shall present several approaches to this
issue. Yet, before entering the discussion, we have to clarify what we expect
from a model accounting for variation.

First of all, the term “variation” can be used in a number of senses. In
sociolinguistic or dialectal variation, the distribution of the forms is defined
by non-linguistic factors, and each speaker uses only one variant. In register
dependent variation, a speaker can utter more than one form, yet the variation
can be seen as if the same speaker switched between different languages. In free
variation, no factor seems to play a role.

As sociolects, dialects and registers may be seen as different languages, an
approach could be to assign them simply different grammars. And yet, these
language varieties are clearly interconnected: they are genetically close, they
are perceived as variations of the same language, and they influence each other.
Thus, one would prefer a single grammar with some parameters that render
switching between the varieties possible. Or, what is equivalent, a model that
interconnects the elementary grammars into a larger meta-grammar. Note that
here being able to control the variation is a very important requirement to a good
model: we would like to put a hand also on the relation between the varieties.
Free variation is a slightly different situation in that respect, supposing that
really no factor is observable that would influence the variation.

Fast speech forms, a phenomenon we shall come back to later, is not exactly
free variation, because speech rate is clearly a major influencing factor. It might
be seen, then, as a special register. Nonetheless, I argue to perceive it rather as
a dysfunction of the normal language production, due to the increased speed.

17Some variations can be analysed as the result of more underlying forms being present in
the lexicon, but this approach would not work for productive phenomena, such as word order
scrambling. Furthermore, conditioned variation may be accounted for by including further—
for instance, pragmatic—constraints into the grammar. A Chomskyan linguist, however, may
still wish to separate hard-core linguistics from pragmatics: she would prefer to allow more
outputs from the core-grammar that can then enter pragmatics, OT-like filters in an additional
module.
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As opposed to, say, the hyper-correct or the official register of a language, the
native speaker would not be able to decide whether a certain form belongs to
some “fast speed register”. Additionally, the speaker and the hearer are not
conscious of just having uttered or heard a fast speech form, unlike in the case
of forms typical to some register. Lastly, fast speech is very often characterised
not by a set of different forms, but by a gradual shift in the frequency of forms.
Both the “correct” and the fast speech form is present in both normal and fast
speech, but their frequencies differ. Consequently, predicting the frequency of
the alternative forms becomes very important for fast speech models, even if a
great many linguistic models content themselves with predicting which form is
grammatical and which is agrammatical.

In sum, we are in need of linguistic models—hence, of models within the
Optimality Theoretic paradigm, as well—that can predict, or even control and
fine-tune, the frequencies of alternative outputs corresponding to the same in-
put. One may or may not like to apply them within sociolinguistics or for free
variation. At least for fast speech, however, one cannot dispense with them.

Now, we have to turn back to our original question: can an Optimality
Theoretical grammar return more than one output? Or, do we need to enrich
the model, especially if we would like to account also for frequencies?

First, observe that if two candidates have different violation profiles, that
is, if they behave differently with respect to at least one constraint, then one
of them is more optimal than the other for a given hierarchy. We shall refer to
this property of an OT-system as the Law of Trichotomy.18 Therefore, exactly
one violation profile may be optimal with respect to a given ranking.19 The
architecture of an OT-grammar suggests, thus, three different ways of returning
more than one candidate within one language:

1. Two candidates are assigned exactly the same violation profile.

2. Not only the optimal candidate may emerge as a surface form.

3. A language includes more than one hierarchy (more than one grammar is
present simultaneously).

18A formal proof of the Law of Trichotomy is provided in section 3.1. Informally, the proof
is built on two standard assumptions in Optimality Theory. The first assumption is that the
levels of violation (in practice, the number of violation marks assigned) are fully ranked : for a
given constraint and a pair of candidates, candidate w1 behaves either better or the same or
worse than candidate w2 (no fourth possibility is available). The second assumption, trivially
true for a finite set of constraints, is that the constraints themselves are fully ranked, and each
subset of constraints has exactly one upper bound, which is, furthermore, a member of that
set. (Yet, see Tesar and Smolensky (2000) and Anttila and Cho (1998) for different proposals
involving unranked constraints.)

The Law of Trichotomy states that for two violation profiles w1 and w2, exactly one of the
following three statements is true in a given hierarchy: 1.) w1 is better than w2; 2.) w1 is
worse than w2; 3.) w1 is the same as w2.

In order to prove it, take the set T of constraints for which the two profiles differ. This set
is either empty (in case 3), or has exactly one upper bound. This upper bound is the highest
ranked constraint for which the two profiles differ. Then, due to the first assumption (the
violation levels are fully ranked), either w1 or w2 has to behave better with respect to this
constraint, leading either to case 1 or case 2, respectively.

19At this point we see that one violation profile at most can be optimal, which is what we
need in the present train of thought. In section 3.1, however, we demonstrate that one optimal
violation profile always exists under the usual presuppositions.
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In the following subsections, we shall discuss each of these cases separately.
As we progress, the probability assigned to the candidates will become more im-
portant. We conclude this section by presenting a model in which the difference
between candidates is no longer determined by whether a candidate surfaces or
not, but exclusively by the probability of a candidate to appear in the language.

1.3.1 Forms assigned the same violation marks

First, can we describe alternations by assigning exactly the same violation profile
to the alternating forms? In theory, it is possible, and yet, Anttila (1997a) calls
it the poor man’s way of dealing with variation. Notice that the two forms will
be predicted to be totally free alternations, independently of further factors.
We have absolutely no control over the variation. Furthermore, this approach
does not allow one to predict frequencies, either, unless GEN is enriched so that
it assigns frequencies to the candidates.

The second problem is the following: how to guarantee in an analysis that the
two candidates are assigned exactly the same violation marks, while the number
of constraints grows steeply with the number of papers published in OT? Such
an analysis would rely heavily on restricting the number of constraints used,
which is extremely dangerous. The usual way of sweeping the other constraints
under the carpet is, namely, demoting them radically. The linguist presents
an analysis of the phenomenon at hand based on a small number of proposed
constraints, which filter out all but one candidate. Then, she adds—to save
the idea of a universal set of constraints—that all other constraints argued for
by her colleagues in other languages are indeed present in the given language;
however, they are ranked low, hence not interfering with the presented analysis.

In the present case, this trick would not work. Even if we suppose that a
constraint forgotten by the author of the analysis is very-very low ranked in the
given language, it is active.

Take the following example. Standard Hungarian exhibits a variation [E] ∼
[ø] (e ∼ ö) in many words, originating in the standardisation of two different
dialectal forms, with a minimal preference for the [E] forms in written language:

fel ∼ föl ’up’
felett ∼ fölött ’above’
seprű ∼ söprű ’broom’
tejfel ∼ tejföl ’sour cream’

(1.5)

An analysis could suppose underlying forms including an underspecified
[round] feature, with GEN assigning some value to it. The two constraints
proposed need no argumentation. FullySpecified punishes underspecified
features in the candidates, whereas Harmony[round] requires the [round]
feature of a vowel match that of the previous vowel (Hungarian does exhibit
roundedness-harmony for front vowels). Consequently, the tableau for felett ∼
fölött looks as follows:
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/f [0round]l[0round]tt/ FullySpecified Harmony[round]

+f [+round]l[+round]tt
f [+round]l[-round] tt *
f [+round]l[0round] tt *
f [-round]l[+round] tt *

+f [-round]l[-round] tt
f [-round]l[0round] tt *
f [0round]l[+round] tt * *
f [0round]l[-round] tt * *
f [0round]l[0round] tt **

(1.6)

The candidates f [+round]l[+round]tt (i.e., fölött) and f [-round]l[-round]tt
(felett) seem to incur exactly the same violation marks, and are therefore equally
optimal. Nonetheless, a constraint of the type [αback][αround], preferring un-
rounded front (and rounded back) vowels to rounded front and (unrounded
back) vowels, would differentiate between the two. This constraint, although
not very prominent in Hungarian, which includes vowels [ø] and [y] (ö and ü), is
indeed part of the universal set of constraints, since it accounts for a linguistic
universal. And, no matter how low a constraint is ranked, it will cause the less
optimal candidate meet its Waterloo. This observation is called the Emergence
of the Unmarked (McCarthy and Prince, 1994).

To sum up, assigning variation forms the same violation profile is not a safe,
hence not a promising direction, for unseen constraints may spoil our model.
Nevertheless, one may suppose a barrier beyond which constraints are not active
anymore in filtering out candidates. Demoting constraints not required by one’s
analysis below this barrier may save such an approach. A problem arises only if
that constraint still plays a role in a different phenomenon in the same language.
Additionally, introducing such a barrier involves revising standard Optimality
Theory more than what the fairly orthodox approach presented in the present
subsection would permit. In fact, Coetzee’s proposal, described below, can be
seen as adding such a barrier to the standard OT architecture.

1.3.2 Non-optimal candidates emerging

Coetzee (2004) develops further the idea of the Harmonic Ordering of Forms
introduced by Prince and Smolensky (1993). He proposes a rank-ordering model
in which EVAL imposes a harmonic ranking on the complete candidate set.
Standard OT is concerned exclusively with EVAL finding the optimal candidate
with respect to this order, which will then surface as the output—the relative
goodnesses of the other candidates are not of interest. In Coetzee’s model,
on the other hand, the losing candidates are also ordered with respect to each
other, and most importantly, this order has linguistic significance. In his view,
the second best candidate will be the second most frequently appearing variant
of a certain form, the third best candidate may be predicted to be the third
most frequent form, and so forth. Coetzee claims that the candidates that are
still in competition after the so-called critical cut-off point can be variants of
the optimal candidate:20

20Already the constraint M-Parse of Prince and Smolensky (1993) acts as a cut-off point,
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I propose that there is a critical cut-off on the constraint hierarchy
that divides the constraint set into those constraints that a language
is willing to violate and those that a language is not willing to viol-
ate. A candidate disfavoured by a constraint ranked higher than the
cut-off will not be accessed as output if there is a candidate (or can-
didates) available that is not disfavoured by any constraint ranked
higher than the cut-off. (p. 18.)

In fact, Coetzee’s proposal can be seen as a solution to the problem with the
first approach, namely, assigning the same violation marks to alternative forms.
As the [E] ∼ [ø] alternation in Hungarian has exemplified, its weakness was
that a very low-ranked constraint still can dismiss one of the two forms. Now
suppose that the constraints that are elements of the universal CON but “not
really active” in the given language are demoted below Coetzee’s critical cut-off
point : we may say that the alternating forms are assigned exactly the same
violation profiles—as far as the constraints “really active” in that language are
concerned. The lower constraints do not filter out candidates, but impose some
preferences mirroring universal tendencies. In the Hungarian example, the slight
preference for the [E] forms (at least in the written language) may be explained
by the effect of the demoted constraint disfavouring [ø]. In fact, the [E]-forms
are then predicted to be the grammatical ones, winning the competition. Yet,
as the [ø]-forms are defeated only after the cut-off point, the latter ones emerge
as free variants.

Nonetheless, Coetzee’s solution does not guarantee that one avoids the above
mentioned problems. A constraint cannot be exiled beyond the critical cut-off
point without consequences. As a given language is supposed to have only one
cut-off point, some constraints in an analysis of an independent phenomenon of
the same language may be required to overrank the critical cut-off point, and
thereby spoil your proposal.

Even though he argues for the opposite, it is a further drawback of Coetzee’s
model that it attempts only to give qualitative (“relative”, in Coetzee’s termin-
ology), and no quantitative (“absolute”) predictions about the frequencies of
the alternating forms (e.g. on pages 128-131, p. 226, and especially on p. 306).
We have seen, however, that some phenomena (fast speech, in particular) are
characterised only by a shift in the observed frequencies, so Coetzee could not
account for them. A further criticism may be that ranking the whole candidate
set—or at least compute its best subset—requires more computational power
than finding the optimal element alone, often not a trivial task in itself.

Consequences of his model include that whenever the third best candidate
is observed as an alternative form, then the second best one must also appear
in the language. Furthermore, if the fourth best candidate is defeated by the
same constraint as the third one, then the fourth one should also be an attested
alternation form, else we cannot identify the critical cut-off point.

The model to be proposed in Chapter 2, Simulated Annealing Optimality
Theory (SA-OT), although very different from it, resembles Coetzee (2004)’s
approach—as opposed to all other proposals introduced and to be introduced in
the present section—in that SA-OT also sees alternating forms as non-optimal

even if from the opposite perspective. This is the point where the Null Parse is eliminated
by other candidates. Therefore, if all other candidates have fallen out previously, no surface
form in the language corresponds to the input.
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candidates still emerging. Variation forms will be modelled as local optima with
respect to some neighbourhood structure on the set of candidates. Simulated
annealing, the optimisation algorithm used, is prone to get stuck in such local
optima, especially if optimisation is performed quickly, and this is why forms
that are not globally optimal may be still returned in this approach. The art of
SA-OT is to find a neighbourhood structure that is convincing (not ad hoc) on
the one hand, and which turns the observed alternative forms—and, hopefully,
only them—into local optima, on the other. Then, running the simulation and
varying its parameters may or may not reproduce the observed data by returning
the local optima with the expected frequencies.

In contrast to Coetzee (2004), Simulated Annealing OT aims at producing
quantitative, (“absolute”) predictions about the frequencies of the forms. In
this respect, SA-OT bears similarity to the models to be dealt with presently,
which are based on the third possibility to have a grammar return more outputs.

1.3.3 Several hierarchies within one: reranking

The third way of dealing with alternative forms is to include more than one
hierarchy into a language. This way might also be seen as an OT-style synthesis
of the single route and the dual route approaches in the Past Tense Debate (see
section 4.1): one grammar composed of more grammars.

More specifically, we may want to allow some rerankings, for instance by per-
muting neighbouring constraints. As it would be quite odd to stipulate two, very
different hierarchies within one language, reranking neighbouring constraints
helps minimising the “distance” of the hierarchies simultaneously present. Tesar
and Smolensky (2000, p. 96) introduces the h-distance between some specific
hierarchies, and along their line, we could define the distance of two hierarchies
H1 and H2 as the minimal number of local permutations required to get from
H1 to H2. The simplest case, then, is if H1 differs from H2 in a single rerank-
ing of neighbouring constraints, whereas all other constraints are ranked in the
same way, relative to each other and relative to these two constraints.

Ad hoc rerankings have been supposed in many phonological papers. For in-
stance, in the example used in Chapter 5, Schreuder and Gilbers (2004) propose
to account for fast speech phenomena in Dutch stress assignment by demoting
a faithfulness constraint and promoting markedness constraints (Schreuder and
Gilbers, 2004). Such an analysis has, however, some weaknesses: do you really
claim that native speakers suddenly switch to a different grammar above a cer-
tain speech rate? If so, we predict form 1 being produced exclusively in slow
speech, and only form 2 emerging above a critical speech rate—which contra-
dicts observed data. In fact, the frequencies of the two forms change gradiently
as a function of the speech rate. The fast speech form may also occur in rel-
atively careful speech, whereas the first form is definitely present even at very
high speech rates.

Three alternatives, three enlargements of the standard OT model have been
proposed in order to allow reranking within one grammar in a systematic, more
elegant way.

Anttila (1997b) and Anttila and Cho (1998) offer relaxing the strictness of
a fully ranked hierarchy. See Anttila and Fong (2000) for an application in
syntax-semantics, and Anttila (2002) for Finnish morphology.
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So far, the set of constraints was fully ranked : for any two different con-
straints Ci and Cj , either Ci � Cj or Cj � Ci. In a partially ordered ordered
set, on the contrary, two constraints may be not ranked relative to each other.

Formally speaking, a set S is a partially ordered set with some relation ≺ if
relation ≺ is a subset of S × S such that the following properties are true:21

1. Irreflexivity : for all a ∈ S, a ≺ a does not hold.

2. Asymmetry : for all a, b ∈ S, if a ≺ b then b ≺ a does not hold.

3. Transitivity : for all a, b, c ∈ S, if a ≺ b and b ≺ c then a ≺ c.

In a totally ordered set a fourth property also holds (rendering the first two
axioms superfluous):

4 Comparability (aka the Law of Trichotomy): for all a, b ∈ S, exactly one
of the following three statements holds: 1. either a ≺ b; 2. or b ≺ a; 3. or
a = b.

A partial order ≺ can be enlarged into another order ≺′ on the same set S
(its refinement, following Tesar and Smolensky (2000)’s terminology), such that
for all a, b ∈ S if a ≺ b then a ≺′ b (but not necessarily vice versa). In other
words, relation ≺ is a subset of ≺′ within S×S. Adding arbitrary (a, b) pairs in
order to refine a partial order is not possible, nevertheless: the refinement also
has to satisfy the above axioms.

Standard Optimality Theory requires the set of constraints to be totally
ordered by the relation �. On the contrary, the grammar model proposed by
Anttila and Cho (1998) involves only a partially ordered constraint set, and a
surface form is predicted by such a grammar if and only if it wins for some fully
ranked refinements of the partial order. Furthermore, at evaluation time (using
the term of Boersma and Hayes, 2001), each of the refinements is chosen with
equal probability, and then employed as in standard OT. This approach predicts
the probability of a candidate to be the ratio of the number of refinements
outputting this particular form to the total number of refinements.

For instance, suppose that the following three constraints are not ranked
with respect to each other, and that they assign the following violation marks
to candidates cand1 and cand2 :

A B C

cand1 * *
cand2 *

(1.7)

These three constraints can be ordered in six different ways. Two of the rank-
ings (A � B, C, which is an abbreviation for A � B � C and A � C � B)
yield cand1 as the winner, whereas four of them return cand2. Consequently,
Anttila and Cho’s model will predict a frequency distribution of 33% vs. 67%.
Additionally, Anttila and Cho (1998) propose to account for diachronic change

21The expression a ≺ b is an abbreviation of (a, b) ∈≺. The traditional way of defining an
ordered set is to use the relation ≤ that is reflexive, antisymmetric and transitive. All the
same, the present formulation fits better with the use of the relation� in Optimality Theory,
and follows the presentation of Anttila and Cho (1998).
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and dialectal-sociolinguistic variations by enlarging and refining the partial
ordered set of constraints.

As Boersma and Hayes (2001) correctly remark, however, certain frequencies
can “be obtained only under very special circumstances.” For instance, a 99
to 1 ratio of two forms can be accounted for either by a single stratum in
which 99 constraints prefer the first outcome and 1 favours the other; or, by a
stratum of five constraints conspiring in such a way that only one of the 120
permutations yields the rare form. Furthermore, on a sociolinguistic level (that
is, when the statistical model is used to reproduce the language production
of a whole population, and not of an individual), such a model is unable to
predict the gradual shift in frequencies observable either diachronically (e.g.
cf. Hoeksema (1998)) or across language variation—dimensions that Anttila
and Cho (1998) definitely aim at describing. Further factors can also cause a
gradual frequency shift: we shall deal later on with the speech rate dependence
of fast speech phenomena. In brief, a convincing model should be able to fine-
tune the frequencies. The model advanced by Boersma (1997) (see also Boersma
and Hayes, 2001), and of which Anttila’s model is a special case, will give a nice
answer to these remarks.22

Boersma (2001) calls our attention to the fact that what Anttila uses fre-
quently (though, not exclusively) is a special type of partially ordered constraint
sets, namely, stratifiable partial orderings. In such a grammar, constraints are
grouped into strata, which are fully ranked relative to each other, and within
which constraints are unranked. Hence, constraints within one stratum can be
permuted freely:

Stratum 1 (undominated): Con1,1, Con1,2,...
Stratum 2 (dominated only by Stratum 1): Con2,1, Con2,2,...
Stratum 3 (dominated by Strata 1 and 2): Con3,1, Con3,2,...
etc.

Anttila and Cho’s unranked hierarchies are not to be confused with the strat-
ified hierarchies of Tesar and Smolensky (2000, and earlier versions) introduced
for the sake of a learning algorithm. In the latter, the violation marks within one
stratum are summed up (p. 38), and can also yield more outputs with different
violation profiles simultaneously. In the following tableau:

... A B ...

cand1 **
cand2 **
cand3 * *

(1.8)

22William Reynolds proposed a further approach already in the early years of Optimality
Theory (Nagy and Reynolds, 1997). A floating constraint is a constraint that is unranked
relative to a span in a ranked constraint hierarchy, the floating range of the floating constraint.
At evaluation time, that is, on every evaluation occasion, the floating constraint is anchored
somewhere within its range, between two neighbouring constraints. If the range contains n
constraints, the floating constraint has n + 1 docking sites (including the two ends of the
range), resulting in n + 1 different possible hierarchies. These docking sites, that is, these
hierarchies, are postulated to have equal probabilities. Thus, if a certain output form can be
generated by m different hierarchies, then the predicted probability of this form is m

n+1
. The

critical remarks about Anttila’s model apply also to Reynolds’ proposal: it does not allow for
fine-tuning the frequencies.
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all three candidates will survive the stratum formed by constraints A and B, as
all of them have two violation marks in sum, and no candidate has less. The
constraints in one stratum form a “super-constraint” that we could call A+B,23

and then traditional OT is used to evaluate the candidates with respect to the
hierarchy formed by these super-constraints. Notice if cand3 is the best for lower
constraints, it will win; whereas in Anttila’s model, cand3 could never win, for
it was defeated by either cand1 or cand2 in the two possible permutations of
the constraints A and B. The following tableau

... A B C ...

cand1 ** *
cand2 ** *
cand3 **
cand4 * *

(1.9)

predicts an alternation cand1 ∼ cand3 in Anttila’s model, and an alternation
cand3 ∼ cand4 for Tesar and Smolensky (2000).

Notice that a third construction is also possible, that is a mixture of the
ideas of Tesar and Smolensky (2000) and of Anttila: seeing each stratum as a
“super-constraint”, but which works according to Anttila’s model. That is, a
candidate survives a certain stratum, iff it survives at least one of the mini-
hierarchies formed by some permutation of the constraints in this stratum. In
this approach, tableau (1.9) will return exclusively cand3, because the first three
candidates survive the “super-constraint” formed by constraints A and B, out
of which cand1 and cand2 are defeated at constraint C. This third approach
may also yield more outputs with different violation profiles simultaneously: for
tableau (1.8), both cand1 and cand2 will be returned, if they only differ for
constraints A and B.

A stratified hierarchy Tesar and Smolensky (2000)-style can be seen as a
traditional OT pipeline in which filters are the sum of the constraints within
one stratum. Anttila, however, proposes a branching pipe-line, and the output
of the different branches are collected only at the very end. The third proposal
is a pipe-line which is forked and reconnected at each stratum. As tableau (1.9)
has shown, these three—seemingly very similar—models may predict different
outputs.

Nonetheless, Tesar and Smolensky (2000) introduced their mutation of Op-
timality Theory not in order to account for variation phenomena, but in order
to introduce a learning algorithm. It is, among others, exactly the erroneous
“alternation” forms generated which drive the Error Driven Constraint Demo-
tion algorithm. I do not know about any analysis of linguistic variation which
would use stratified hierarchies in the sense of Tesar and Smolensky (2000).

1.3.4 Several hierarchies within one: Stochastic OT

After having seen the changes proposed by Anttila, as well as by Tesar and
Smolensky to standard Optimality Theory, let us turn to a third proposal.
Boersma (1997)’s Stochastic Optimality Theory (see also Boersma and Hayes,

23This notation especially makes sense if you see constraints as integer-valued (or real-
valued) functions on the set of candidates.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15−1

Con1 Con2

P1 P2

Figure 1.2: Constraints in Stochastic OT: Two Stochastic OT constraints
(Boersma, 1997; Boersma and Hayes, 2001), Con1 and Con2, are associated
with rank P1 = 5 and P2 = 8 respectively, corresponding to the unperturbed
ranking Con2 � Con1. Yet, the selection points p1 and p2 used at evaluation
time are chosen by using a Gaussian noise with σ = 2. Therefore, the tails of
the two distributions overlap, and the probability Prob(p1 > p2) of reranking is
not negligible.

2001) suggests a different solution to reranking constraints—that is, to have
more than one hierarchy—within one grammar.24

The key idea of Stochastic Optimality Theory is to add an evaluation noise to
the constraint hierarchy. More concretely, the constraints are dispersed along
a continuous scale: constraint Con-i is assigned a real number Pi, its rank.
Ranking Con-i� Con-j corresponds to Pi > Pj . Yet, whenever the candidates
in a tableau have to be evaluated in order to determine a winner (in evaluation
time, Boersma and Hayes (2001) p. 47), a Gaussian (normal) noise with a
standard deviation σ around zero is added to the rank of the constraints (Figure
1.2). Each time, a random number πi is generated, and the actual ranking of
the constraint Con-i is determined by its current selection point pi = Pi + πi.
That is, the current output is calculated with respect to the hierarchy gained
from the pi values. In the case of Pi − Pj � σ, the ranking Con-i � Con-j
can be seen as categorical. If, however, | Pi − Pj | is on the order of magnitude
of, or smaller than σ, then the probability of reranking is considerable, that is,
pi < pj may occur even if Pi > Pj .

Anttila’s model is obtained as a special case within Stochastic OT: con-
straints unranked by Anttila should be assigned the same (unperturbed) rank
in Stochastic Optimality Theory. In contrast to Anttila’s model, however,
Stochastic Optimality Theory is able to predict a larger spectrum of any fre-
quency distribution by fine-tuning the real numbers assigned to the constraints
using the Gradual Learning Algorithm (GLA).

Indeed, one of the key selling points of Stochastic OT has been the learning
algorithm that comes with it. Without entering details at this point, what
one should know is that the Gradual Learning Algorithm is fed by surface data
following a certain statistical distribution, and it returns a hierarchy (that is
the Pi rank of the a priori postulated constraints) that reproduces not only the
same data, but also the same data with the same distribution. In addition, GLA

24Check also Keller and Asudeh (2002) for an assessment and critical remarks.
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is robust in the sense that it can handle noisy input data (i.e. data including
erroneous forms), and is therefore more powerful than the Constraint Demotion
Algorithms advanced by Tesar and Smolensky (2000).25

Both approaches incorporating reranking within the model—Anttila’s gram-
mars and Stochastic OT—make some very strong predictions. For instance,
whenever a number of constraints must be unranked with respect to each other
in order to predict a given variation, then all other forms produced by other
permutations of these forms must also be attested variations. Take for instance
the following example:

A B C

cand1 * **
cand2 ** *
cand3 **
cand4 ** **

(1.10)

In this case, cand1 is returned if and only if A � B � C, whereas cand2
is the winner for C � B � A. Two hierarchies (B � A,C) cause cand4 to
win, and cand3 is the favourite of A,C � B. If cand1 and cand2 are observed
alternating forms–and we have no better analysis—both Anttila and Cho, and
Boersma and Hayes must draw the prediction that cand3 and cand4 are also
alternatives appearing in the given language. If these strong predictions are
confirmed by observation, then the model is corroborated.

Thus, Keller and Asudeh (2002) present an example from German syntax
that suggests the following tableau:

A B C

cand1 *
cand2 *
cand3 * *

(1.11)

In this case, only cand1 and cand2 can emerge as the outputs of some hier-
archy. The third candidate is harmonically bounded by cand2 (to be explained
soon); therefore it is an eternal loser. As both approaches considered so far
return only candidates that have won the competition for at least one ranking,
cand3 is predicted not to emerge as an alternating form.

In the case dealt with by Keller and Asudeh (2002), ranking A � B � C
correctly predicts cand2 to be the best candidate, but cand1 and cand3 being
equally wrong (never produced by StOT) does not match empirical findings: it
is claimed that cand3 still has a significantly higher level of acceptability than
cand1. Boersma (2004b) replies to the criticism of Keller and Asudeh (2002),
and by differentiating between production and grammaticality judgements, he
explains why a harmonically bounded candidate can be judged better than
another candidate, even if it does not appear in production.

The notion of harmonic bounding, which will be frequently used in this
thesis, is introduced by Prince and Smolensky (2004, p. 209-212)—attributed
to Samek-Lodovici—as a strategy to prove that a certain structure of candidate

25For the cognitive relevance of GLA, see for instance Broselow and Xu (2004), which demon-
strates a relatively good match between the prediction of GLA and the observed second lan-
guage acquisition of English final consonants by Mandarin Chinese speakers. For an example
where GLA fails, see Pater (2005a).
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can never win. it is sufficient to demonstrate that a better candidate exists
always. A formal discussion of this concept can be found in Samek-Lodovici
and Prince (1999), and the following definition is proposed:

Definition 1.3.1. Harmonic Bounding: A candidate z is harmonically
bounded relative to a constraint set Σ, if there exists a candidate β meeting
two conditions:

• Strictness. β is strictly better than z on at least one constraint in Σ.

• Weak Bounding. β is at least as good as z on every constraint in Σ.

Subsequently, Samek-Lodovici and Prince (1999) demonstrate that a can-
didate z that is harmonically bounded by another candidate β (or even by a
bounding set) is a loser candidate. That is, z is suboptimal on every ranking,
and hence, can never become an output. The advantage of such an argument
is that one does not need to identify the winner in order to demonstrate that
another candidate is suboptimal.

1.3.5 MaxEnt OT and cumulativity

This last observation of Keller and Asudeh (2002) brings us to the lack of count-
ing cumulativity in these models. Cumulativity effects are the influence of lower
ranked constraints on the probability of a candidate, a phenomenon that is re-
quired to account for some phenomena, as argued for by Jäger and Rosenbach
(2006).

English has two ways to express possession, and—among other factors—
the length of the possessor matters: short possessors prefer the ’s-genitive (e.g.
Eastern’s tickets), while long possessors favour the of -genitive (e.g. the rejection
of the last minute French initiative). In an OT account of this phenomenon, the
competing candidates should be the ’s-genitive and the of -genitive constructions
of the same possessor-possessum pair. Neither is agrammatical; and yet, they
display different frequencies, changing gradually in function of—among others—
the length of the possessor (or, of the possessor’s length).

Let a constraint assign a violation proportional to this length to the ’s-
genitive. Counting cumulativity in this case means that the worse an of -genitive
is with respect to this constraint, the less probability it has to surface:

/Input1/ ... Length(’s) ...

’s **
of

/Input2/ ... Length(’s) ...

’s ****
of

(1.12)

In the present case, Jäger and Rosenbach (2006) argue, an adequate model
must return different frequencies: say, the ’s-form should be predicted in 70%
of the cases for /Input1/, and in 55% of the cases for /Input2/. Yet, neither
Stochastic OT, nor its special subcase, Anttila’s model, is able to account for
this phenomenon using a single constraint, as both end up by using standard
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OT at evaluation time. Some ranking is chosen with a certain probability,
and this probability is independent of the input. If constraint Length(’s)
is, then, the highest ranked constraint where the two candidates differ, the
’s-genitive will be defeated independently of its number of violation marks.
Otherwise, if the of -genitive meets its Waterloo earlier, the ’s-genitive wins,
and the number of violation marks assigned by constraint Length(’s) plays no
role. The way Stochastic OT solves such problems is by introducing a series
of binary constraints Length(’s)≤ n, each of which is violated by ’s-genitives
longer than n.

Jäger and Rosenbach (2006), therefore, argue for the use of Maximum En-
tropy models (Goldwater and Johnson, 2003), a variation of Harmonic Grammar
(Legendre et al., 1990a). If each constraint Con-j is associated with some rank
(weight) rj , and output form o corresponding to input form i is assigned a vi-
olation level Cj(i, o) by that constraint, then the harmony value (the ancestor
notion of a violation profile) of that input-output pair is:

H(i, o) = −
∑

j

rjCj(i, o) (1.13)

As the values of Cj(i, o) are considered usually positive punishments, this
harmony function H is a measure of goodness, due to the negative sign in its
definition. The higher (that is, the closer to zero on the negative side) H(i, o)
is, the more well-formed the given input-output pair (i, o).

Maximum Entropy Optimality Theory (MaxEnt OT)—based on information
theory (originating in statistical physics)—defines the probability of the gram-
mar returning output o, upon condition of i being the input, as:

p(o|i) =
eH(i,o)

Z(i)
(1.14)

where Z(i) =
∑

o∈GEN(i) e
H(i,o) is a simple normalisation constant to ensure

that for all i,

∑

o∈GEN(i)

p(o|i) = 1 (1.15)

Even though the probabilities of the candidates are interconnected through
Z(i), the candidates do not compete with each other as directly and cruelly as
it happens in traditional OT. If the harmony of a certain candidate is modified,
then the probabilities of all other candidates usually change only mildly and
uniformly.

Observe that the probability of an output is always higher than zero. Very
ill-formed forms are going to have very low, but still positive probabilities. No
form is predicted to have zero probability, supposing that GEN produces it. This
fact raises a serious problem for MaxEnt OT: cannot it distinguish between low
probability forms and totally absurd forms? I believe that a model should be
able to draw this distinction, because we should not give up the idea of a lin-
guistic competence totally rejecting some structures—even if in a very diluted
form compared to a Chomskyan linguist. One can obviously restrict the produc-
tion of GEN (in a language-specific manner), or argue for an ad hoc threshold
under which probabilities are taken to be zero—neither seems to be a very
promising way.
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MaxEnt OT might be seen as a stochastic variant of Coetzee’s proposal. The
core of both models is to introduce a direct connection between the Harmony
function and the frequency: the higher the Harmony function H(i, o), the higher
the probability p(o|i). Coetzee’s critical cut-off point can be realised here as a
major jump in the ranks ri: constraints ranked higher than this point have a very
large rank, and lower ranked constraints have a very low rank. Then, candidates
that are suboptimal for constraints ranked higher than the critical cut-off point
have a significantly decreased H(i, o) value, hence a very low probability. At the
same time, candidates that survive the critical point will have a p(o|i) probability
that is larger with orders of magnitude.

MaxEnt OT, by definition, realises counting cumulativity. In (1.12),

CLength(’s)of (Input1, ’s) < CLength(’s)of (Input2, ’s)

Therefore, due to (1.14), the predicted probabilities will mirror the empirically
observed frequencies: p(’s|Input1) > p(’s|Input2), supposing everything else is
the same.

Similarly, it can be seen that ganging-up cumulativity also holds in the Max-
imum Entropy model. Ganging-up cumulativity is the joint effect played by
several constraints ranked lower than the constraint where a certain decision is
made. Take the following two tableaux with hierarchy A � B � C:

/Input1/ A B C

cand1 *
cand2 * *

/Input2/ A B C

cand1 * *
cand2 *

(1.16)

In standard OT, cand2 can never win, independently of its behaviour on
lower ranked constraints. In Antilla’s approach, cand2 can emerge only if the
constraints are unranked. In Stochastic Optimality Theory and in the Maximum
Entropy approach, however, cand2 has a chance even if the three constraints
are ranked relative to each other. In Stochastic OT, there is a chance that
constraints A and B are reranked at evaluation time (the chance is significant
if PA − PB is not much larger than σ); whereas no candidate ever has absolute
zero probability in the MaxEnt model. Furthermore, and this is ganging-up
cumulativity, cand1 has more chance with /Input1/ than with /Input2/: in
fact, due to its behaviour at the very low-ranked constraint C! In MaxEnt,
this follows directly from the definition (1.14). In Stochastic OT, there is some
chance that C is promoted above both A and B, and this probability goes to
cand1 in the case of /Input1/, and to cand2 in the case of /Input2/. Jäger and
Rosenbach (2006) also bring examples where ganging-up cumulativity can be
observed empirically.

As MaxEnt OT, but not Stochastic OT can account for counting cumulativ-
ity, Jäger and Rosenbach (2006) argue for the use of MaxEnt OT. However, Har-
monic Grammar, a close relative of MaxEnt OT, has been unsuccessful among
linguists; they prefer standard Optimality Theory, which requires less mathem-
atics and whose more restricted framework produces categorical grammaticality
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predictions. The situation may, nevertheless, change in the near future, under
the influence of Smolensky and Legendre (2006), which was published when
the finishing touches were added to this thesis. In any case, future research
should bring further solid arguments in favour of some proposals and against
other ones, so that scientific factors and meta-scientific ones (deriving from the
sociology of science) will converge.

The model to be presented in the following chapter, Simulated Annealing
Optimality Theory (SA-OT), bears much (superficial) resemblance to Harmonic
Grammar and MaxEnt OT. Still, I hope, its formalism is closer to standard
Optimality Theory, and therefore, may build a bridge between the two com-
munities. Indeed, it is based on a standard Optimality Theoretical model, but
adds to it a special application of the simulated annealing algorithm. We shall
argue for this application to follow organically from the “philosophy” of stand-
ard OT, while Harmonic Grammar and MaxEnt OT employ a very different
form of simulated annealing.

After we have considered a few examples from Chapter 5 onwards, Chapter
8 will confront SA-OT with the different approaches just presented and discuss
the advantages and disadvantages of each of them.

1.4 Probabilistic linguistics?

The general goal of mainstream modern linguistics following the footsteps of
Noam Chomsky is the description (modelling, understanding,...) of the linguistic
knowledge encoded in the brain of the native speaker.26 As Chomsky states in
Aspects :

“Linguistic theory is concerned primarily with an ideal speaker-
listener, in a completely homogeneous speech-community, who knows
its language perfectly and is unaffected by such grammatically irrel-
evant conditions as memory limitations, distractions, shifts of atten-
tion and interest, and errors (random or characteristic) in applying
his knowledge of the language in actual performance. ... We thus
make a fundamental distinction between competence (the speaker-
hearer’s knowledge of his language) and performance (the actual use
of language in concrete situations).” (Chomsky (1965), pp. 3-4)

(Emphasis in the original.) Thus, Chomskyan linguistics takes interest in
the linguistic competence, that is, “the speaker-hearer’s knowledge of his lan-
guage.” Linguistic performance, on the other hand, “the actual use of language
in concrete situations,” should be outside the scope of linguistics.27

26I am thankful to prof. Jay D. Atlas for a discussion which contributed importantly to
rewriting this section. All flaws therein are nevertheless mine. A number of issues raised here
are also discussed by Clark (2005), and further relevant points are added—thanks to Gerhard
Jäger for suggesting me this interesting article.

27The Chomskyan performance definitely parallels the Saussurian concept of parole
(de Saussure (1974), p. 13), the actual manifestations of language in speech or writing.
Yet, there is a difference between Chomky’s competence and Saussure’s langue (ibid, p. 9):
Saussure sees langue as a system that is a social construct, whereas for Chomsky competence
is a biological (mental, cognitive, psychological, neurological) phenomenon. Still, they share
the view that the latter concepts should be the objective of linguistics.
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Linguistic competence defines which form (word, sentence, etc.) is grammat-
ical in a certain language. Already Chomsky (1957) sets the goal of linguistics
to be the selection of the correct grammar for (or the correct theory of) each
language (cf. ibid, p. 49), where a grammar (a theory) predicts whether a given
form will be judged as grammatical by the competence of the native speaker.
Consequently, the frequency or the probability of a form in the language should
not concern the linguist: “[d]espite the undeniable interest and importance of
... statistical studies of language, they appear to have no direct relevance to the
problem of determining or characterizing the set of grammatical utterances”
(ibid, p. 17).

Recently, however, several linguists have turned back to the frequency of
grammatical forms, partially due to the availability of large computational cor-
pora. Additionally, several people have questioned the strict Chomskyan di-
chotomy of grammatical vs. ungrammatical forms: anyone (including Chomsky
(1965), p. 11) who has ever tried to form or elicit grammaticality (acceptabil-
ity) judgements knows that there is a large grey area in between. Both of these
factors have motivated a recent turn (back) towards probabilistic (or stochastic)
models (cf. e.g. the articles and references in Bod et al. (2003)), as opposed to
the algebraic models in traditional Chomskyan linguistics.28

The model to be presented in this dissertation (Simulated Annealing Op-
timality Theory) seems to contradict the Chomskyan research program in more
aspects. Firstly, I shall argue that not only is it a model of linguistic competence,
but it also covers parts of linguistic performance. Secondly, it is unapologetic-
ally probabilistic (stochastic). Therefore, it is important to reconsider the goals
of linguistics at a deeper level, and not to content ourselves with a superficial
understanding of Chomsky.

Chomsky (1957) is in fact not as negative towards probabilistic approaches as
linguists usually think. It is true that he dislikes the models existing those days
(Markov models), and allows statistical models only to describe performance,
but not competence:

Given the grammar of a language, one can study the use of the
language statistically in various ways; and the development of prob-
abilistic models for the use of language (as distinct from the syntactic
structure of language) can be quite rewarding ...

One might seek to develop a more elaborate relation between statist-
ical and syntactic structure than the simple order of approximation
model we have rejected. I would certainly not care to argue that
any such relation is unthinkable, but I know of no suggestion to this
effect that does not have some obvious flaws. (p. 17, n. 4)

The question is whether recent, more elaborate probabilistic models would
be “unflawed enough” to Chomsky (1957) in describing the relationship between

28I would not be surprised if a third motivation for many were that probabilistic models are
easier to handle than algebraic models. With a few statistical knowledge and programming
skills, one can easily create strong models that can be checked quantitatively. Whereas algeb-
raic models require a very good training in mathematics in order to be able to produce new,
non-trivial results. It is not a coincidence, furthermore, that the new generation of probabil-
istic models coincides with the spread of higher performance computers beyond the military
and physical research institutes: nowadays, a linguist can also write and run probabilistic
simulations easily.
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competence and performance.
Recall Stochastic Optimality Theory proposed by Boersma (1997) and Bo-

ersma and Hayes (2001), introduced already in subsection 1.3.4. As we have
already seen, in this approach, each constraint is assigned a real number de-
fining their relative ranking, and the original hierarchy is perturbed by some
random noise during evaluation, possibly leading to reranking. The closer the
two constraints on the real-valued scale and the bigger the noise, the higher the
probability of reranking the two constraints.

Notice the shift of the model’s goal with respect to Chomsky’s agenda. The
objective is not simply to predict whether a form is grammatical or agram-
matical, or to generate the set of grammatical forms. Some forms are indeed
predicted not to be generated ever (the losers, which are harmonically bound;
cf. the next section and Keller and Asudeh (2002)). Yet, the other forms come
with a probability : the conditional probability of returning this form if the cor-
responding underlying representation enters the given model.29

Even though some forms have vanishingly low probabilities (in the mag-
nitude of the noise in the observed data), still there is no clear-cut border
between improbable and probable forms. The prediction of such a model is not
simply a set of grammatical forms, but a set of forms with a probability distribu-
tion on them. More precisely, a probability distribution on each set of realisable
surface forms per underlying representation: the conditional probability p(o|i)
of producing output form o if the input form has been i.

How to interpret this probability? This is going to be the major issue.
Stochastic OT is a probabilistic model, which does not necessarily mean that it is
a frequency-based model, the target of Chomsky (1957)’s criticism. Statistically
observable frequencies are not the only possible interpretations of probabilities.

Indeed, Boersma and Hayes (2001) propose to use Stochastic OT to model
both

1. the frequency distribution of free variations;

2. as well as to model gradient grammaticality (well-formedness) judgements
of alternative forms by native speakers.30

At this point, we have turned back to the philosophical considerations. Both
interpretations contradict the axioms of Chomskyan linguistics to focus on com-
petence, that is, on grammaticality, which is categorical—not a sin in itself.

First, let us discuss the issue of frequency distributions. A typical argument
against sentence probabilities goes as follows. It is undeniable that the sentence
I love you is much more frequent (whatever “frequent” means) than the sen-
tence Let us now consider various ways of describing the morphemic structure
of sentences (Chomsky (1957) p. 18). And yet, both are equally grammatical.

29To recapitulate: a model in Stochastic OT consists of a GEN, a set of constraints, the
initial (noiseless) rank Pi of each constraint, as well as the standard deviation σ of the noise.

30To model gradient grammaticality, Appendix B of Boersma and Hayes (2001) introduces a
sigmoid transformation. Using this monotone function, the subjective gradient grammaticality
judgements are transformed into data frequencies used to feed GLA. Then, the reverse of this
transformation serves to map the frequencies produced by the learnt Stochastic OT model
into the predicted well-formedness levels. See also e.g. Boersma (2005).

Concerning the interpretation of the stochastic component of Stochastic OT, see also the
remarks in Keller and Asudeh (2002), replied to by Boersma (2004b).
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The difference in frequencies is due to extra-linguistic factors, such as to the
social embedding of the language.31

Nonetheless, one must be very careful when referring to frequencies: what
is the pool in which we would like to determine the frequency of a certain
event? Do we aim at predicting the frequency of a word form “in general” (in
a given corpus), or, say, the frequency of a word form among its equivalent
alternatives (synonyms, phonologically or morphologically alternating forms,
etc.)? Stochastic OT claims the second: it only predicts the chance of outputting
surface form o1—as opposed to the chance of returning o2—for a given input i.
What is the chance that the speaker wishes to express somehow input i1, and
not input i2? This probability is indeed determined by extralinguistic factors,
and does not belong to the scope of Stochastic OT.

Therefore, many contemporary probabilistic linguistic models—as exempli-
fied by Stochastic OT—compare the probabilities of alternative forms corres-
ponding to the same input, that is, when the extra-linguistic factors have been
discarded.

As an example for this debate from within the early probabilistic OT liter-
ature, Anttila (1997a) cites Reynolds (1994) (who had proposed the first prob-
abilistic account for variation within OT):

The claim I wish to emphasize here is that phonology itself should
not be expected to provide us with [...] exact probabilities. These
determinations must be made on the basis of empirical research,
taking into account all of the various nonlinguistic factors – such as
style, addressee, gender, age, and socioeconomic class – [...]

To which Anttila replies:

While this may be true in many cases, there seems little reason to
decide a priori what the limits of phonological theory are. It is
entirely possible that there exists variation which is not sensitive
to style, addressee, gender, age or socioeconomic class, but is com-
pletely grammar-driven. To what extent extragrammatical factors
are needed in deriving accurate statistics remains an empirical ques-
tion. (p. 49)

We shall come back soon to this point, but first let us now turn to the
second proposal of how to use Stochastic Optimality Theory, namely, how to
model gradient grammaticality judgements of the native speaker.

Gradient grammaticality is explicitly opposed by Chomsky (1965) (p. 11).
He distinguishes between acceptability, which can be gradient, and grammatic-
ality, which is categorical. This distinction is rejected by many contemporary
linguists who propagate gradient grammaticality. Maybe forgetting about the
Chomskyan concept of acceptability, some of them claim that the native speaker
cannot help but to judge certain forms on a gradient scale. They should speak of

31In the context of Optimality Theory, this argument has been brought by Keller and
Asudeh (2002) against Stochastic Optimality Theory, and refuted by Boersma (2004b) using
the example (sometimes attributed to Noam Chomsky): “I’m from Dayton Ohio” as opposed
to “I am from New York”.
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acceptability, and not grammaticality. Others may consciously refute the binary
nature of Chomsky’s grammaticality.32

Here frequency distribution and gradient grammaticality meet again. For
many, grammar (competence) may in itself influence the surface frequencies
produced, as well as determine gradient grammaticality. Production and gram-
maticality or acceptability judgement are the two working modes of the same
system, namely, language, the heart of which is competence—their categorical
or probabilistic behaviour are thus interconnected.33

Anttila and Cho (1998) interpret their own probabilistic theory in the fol-
lowing way:

[T]he partial ordering theory accommodates both categorical judge-
ments and preferences without abolishing the distinction between
grammaticality vs. ungrammaticality. One and the same grammar
can predict both statistical preferences observable in usage data and
categorical regularities of the familiar kind. Deriving quantitative
predictions from grammars may at first appear to deviate from the
standard assumption that a grammar is a model of competence, not
performance. However, the distinction between competence and per-
formance is clearly independent of the question whether models of
competence are categorical or not. Insofar as usage statistics reflect
grammatical constraints, such as sonority, stress and syllable struc-
ture, they reflect competence and should be explained by the theory
of competence, which partial ordering permits us to do. Conversely,
variable phenomena, including statistics, provide critical evidence
for evaluating theories of competence.

Thus, is competence maybe assigning a scale, that is, (frequency, grammat-
icality) probabilities, to the linguistic forms?

It will turn out to be useful to distinguish between three levels, as opposed
to the competence-performance dichotomy. The surface level is unquestionably
performance, that is, what one can empirically observe: the set of produced
forms and the acceptability judgements of the native speaker. All seem to agree
that this level is probabilistic, the forms in a certain corpus have some frequency,
and the judgements are gradient. Performance in a narrow sense includes only
the outer phase of language production, and the influence of facts such as one
having lost his teeth. But besides phonetics, factors influencing performance also
include pragmatics and the structure of the world: certain words or sentences
are more frequent simply because they contain messages to be uttered more
often in a society.

The deepest level is the static representation of the language in one’s brain.
This level is Chomsky’s competence, in a narrow sense. Between these two levels
is situated the functioning of the brain: a dynamical process that produces some

32Interestingly, Coetzee (to appear) argues that grammaticality is both categorical and
gradient, depending on the task that the native speaker is confronted with. He then proposes
a (non-quantitative) OT account for both.

33Within OT, Boersma and Hayes (2001) demonstrates how to use the same system for
production frequencies and gradient grammaticality judgements, as two working modes of the
same system. In a later paper, however, Boersma (2004b) argues for very different approaches
to predicting (conditional) corpus frequencies, on the one hand, and “paralinguistic tasks”
(grammaticality judgements and prototypicality judgements), on the other.
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output each time. This middle stage, where competence in some broad sense
and performance in its broad sense overlap, is still strongly interrelated with
competence in a narrow sense; hence the completely grammar-driven variations
of Anttila (1997a), and hence the wish to account for it within linguistics. Nev-
ertheless, it might also be seen as already part of performance by a Chomskyan
reader. One may compare the static representation to anatomy, the dynamical
process working on top of the static representation to physiology, whereas the
surface level (performance in the narrow sense) corresponds to the outer ap-
pearance of an animal. Clearly, physiology depends on anatomy, and the outer
appearance is a result of physiological processes. The animals’ outer appear-
ance is not the research topic of biology as a modern science, but physiology is
unquestionably.

Stochastic OT, for instance, introduces two levels of description by differ-
entiating between the unperturbed ranks of the constraints and their selection
points at evaluation time. The selection points at evaluation time can be seen
as a model of this middle level, for they describe grammar-driven variations
and are thus closely related to the competence model; much closer than what
would follow from Chomsky’s traditional policy to exclude performance from
linguistics.

Suppose that nobody questions the idea that linguistics is a science that
aims at accounting for some observable data. These data, as explained, can be
observed on the surface level. Three ways of proceeding can be imagined:

The first one remains on the level of the data, that is on the surface level.
Although this approach can be useful—especially in practical applications, such
as language technology—most linguists after Saussure and Chomsky are not
satisfied with it. I concur, that is, I also would like to understand linguistic
competence.

The second approach, on the opposite, concentrates solely on the compet-
ence, by insisting on certain axioms and turning competence into an esoteric
concept. Such an attitude reminds me of medieval physics: only the celestial
motions follow the ideal rules of physics, and therefore the sublunar motions are
uninteresting. Additionally, as the celestial motions are ideal, they have to be
described exclusively by using ideal concepts, such as circular motions. Even if
not to such an extent, the linguist with an aversion towards performance may
miss the scientific goal of linguistics, namely, to account for the observed data.

Therefore, I argue for a third approach, which aims at describing the ob-
served performance data (including frequencies and gradient acceptability), and
is simultaneously interested in better understanding all of the three layers. The
agenda of medieval physics in focusing on celestial motions only had its reward
at the end: the Newtonian laws could be most easily derived from these close-to-
ideal phenomena. Being selective about phenomena, ignoring some observations,
idealising and abstracting is not unscientific behaviour; on the contrary, it is the
only method to ensure long-term advance. Nonetheless, one should also keep at
least half an eye on the ignored data: after having successfully decomposed the
sublunar motions into Newtonian motion and drag or friction, one must proceed
and deal with the second factor, as well.

One may object that linguistics has not reached its Newtonian laws yet. I
would answer that in order to appreciate Newton’s mechanics in the sublunar
world, convincing arguments are needed for the proposed decomposition into
Newtonian motion versus friction. The physicist should be willing to deal with
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friction, and not adhere to the idealisation in a medieval way. Similarly, besides
preserving the competence-performance distinction, a successful model of com-
petence has to point at least towards how to deal with the performance. Note
that the competence-performance distinction is more than the decomposition of
the problem into a first approximation and secondary terms: similarly to the
decomposition in mechanics, it provides a better understanding of the factors
yielding the data.

Having said that, we should also note that an a priori decomposition is cer-
tainly a good working hypothesis, but not necessarily the truth. The quote from
Reynolds contradicted by Anttila has shown us above that several approaches
are feasible about where frequencies and probabilities should enter the model.
What many stochastic grammars, such as Stochastic OT, do—and what Sim-
ulated Annealing OT will also do—is to take a non-probabilistic grammar (for
Chomsky: a non-probabilistic syntax) accounting for competence, and to add
a stochastic component to it. The crucial question is the interpretation of the
statistical distribution added by the stochastic component. Where is statistics
located between competence and performance?

Some argue that even competence models, namely, the grammars, should
produce probabilities—this is the case for Anttila’s model to be introduced in
the next section, as well as for some interpretations of Stochastic OT. Simulated
Annealing OT preserves a more Chomskyan concept of static competence in its
narrow sense, and adds the stochastic component only to the second level: to
the model of the dynamic working of the brain. I agree with Anttila (1997a)
cited above, as opposed to Chomsky (1957) and Reynolds (1994): already the
encoding of the language in one’s brain includes stochastic features. Still, I prefer
to postpone it to the second level within the brain, as I claim that an adequate
stochastic grammar must be able to make the distinction between competence
in its narrow sense (first level) and the transition towards performance (second
level).

For instance, free variations (or, “almost free” variations) are an integral
part of language, as we shall see in the next section. A related phenomenon is
the emergence of fast speech errors as the speech rate increases. Importantly,
many have noticed that several phenomena banished to performance, such as the
unequal distribution of equally grammatical forms, or the emerging of agram-
matical forms as variation, are often related to linguistic factors and to concepts
that also play a role in the grammar, that is, the competence. Stochastic OT and
Simulated Annealing OT are just “more elaborate” models to account for the
properties and frequencies of these alternations than the probabilistic models
proposed by Reynolds or Anttila; which, in turn, are still much more elaborate
ones than those criticised by Chomsky (1957).

As I shall argue, simulated annealing can on the one hand interpret the
Chomskyan notions of “equally grammatical” forms (even though appearing
with different probabilities) or forms that are “agrammatical, even if appearing”.
These notions—grammatical and agrammatical—refer to the competence in its
narrow sense. On the other hand, a probabilistic model of the second level (of
the dynamic functioning of the brain) may account (partially) for frequencies:
why are some grammatical forms rare, and why do some agrammatical forms
(“performance errors”) appear? As this second level is a middle area between
competence in its narrow sense and performance in its narrow sense, linguistic
factors—supposedly related to competence and not to performance—may still
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play a role in shaping probabilities. Nevertheless, I do not deny that further,
unquestionably extra-linguistic factors also play a very important role on the
third level (performance) in determining the observable frequencies.

1.5 Overview of the thesis

Chapter 2 first introduces the notion of heuristic optimisation techniques (based
on Reeves, 1995) in general, and simulated annealing in particular. Afterwards,
it argues for why and how simulated annealing could be used for finding the
best candidate of the candidate set in Optimality Theory. The central result of
this chapter, or even of this thesis, is the Simulated Annealing for Optimality
Theory (SA-OT ) Algorithm presented on Fig. 2.8 on page 64, as well as its
embedding into a language production model shown in Table 2.1 on page 43.
Finally, this chapter also presents a few toy examples demonstrating the use of
this algorithm.

Chapter 3 introduces some possible formal approaches to Optimality The-
ory, proposes a formal definition and analyses its mathematical properties. As a
consequence, it demonstrates—even twice—why the SA-OT Algorithm presen-
ted in Fig. 2.8 follows straightforwardly from the general idea behind standard
Optimality Theory. Although the formal concepts employed are introduced,
this chapter is heavily mathematical. The less mathematically oriented reader
can skip it without losing anything from the rest of the present thesis.

The subsequent chapter touches upon a few issues that put SA-OT in a wider
linguistic context. First, the connection between the lexicon and the grammar
is dealt with, partially in order to introduce a novel definition for the constraint
Output-Output Correspondence (OOC, or Output-Output Faithfulness), which
plays an important role later, in Chapter 5. This section is followed by a few
remarks on learnability, an issue unavoidable in formal discussions on Optimality
Theory.

The rest of the dissertation presents different applications: stress assignment
in Dutch fast speech (Chapter 5), voice assimilation of neighbouring Dutch stops
(Chapter 6) and two issues in syllabification (Chapter 7).

The goal of these chapters, however, is less to account for specific linguistic
phenomena. Sometimes, the exact nature of the data are unclear or the spe-
cific linguistic analysis (the constraints and the ranking used) might be subject
to criticism. Certainly, more collaboration with general linguists should have
been useful here or there, while I am thankful to those colleagues (primarily
to Maartje Schreuder, Dicky Gilbers and Judit Gervain) who supplied me with
empirical data or with linguistic models. Yet, all flaws in the linguistic analyses
are exclusively mine.

My primary goal in these chapters has been more methodological: to demon-
strate how SA-OT can be put into practice, what the roles of the algorithm’s
parameters are, and what further issues are raised when working with SA-OT.
Hence, the models are presented in an order of growing complexity, and a sum-
mary is given in section 8.1.

Finally, Chapter 8 reviews the main results of this dissertation, before com-
paring SA-OT to alternative approaches to Optimality Theory. Finally, the
arguments in favour of SA-OT are completed by demonstrating how well it fits
into a more general cognitive framework.



Chapter 2

Optimality Theory and
Simulated Annealing

2.1 Heuristic optimisation and simulated anneal-
ing

2.1.1 Heuristic optimisation for OT

It has been mentioned that Optimality Theory can be seen in two different ways.
According to the most frequent picture, the output of GEN is connected to a
pipe-line of constraints acting as filters. Alternatively, we may see EVAL as a
special function derived from the constraints: the goal is to find the candidate
that optimises the Eval-function (also called the Harmony function).

Therefore, Optimality Theory belongs to the family of combinatorial op-
timisation problems. The world is indeed full of optimisation. Entrepreneurs
maximise their benefit by minimising costs, football players maximise goals,
whereas runners minimise time. Hedonists maximise pleasure, students minim-
ise homework, and so forth. In physics, energy is to be minimised and entropy
maximised. In all of these problems, a given function f(x) has to be optim-
ised (usually minimised, sometimes maximised) subject to a set of conditions,
such as gi(x) ≥ bi (for i = 1, ...,m) (Reeves, 1995): for what x satisfying these
conditions is the quantity f(x) optimal?

In Optimality Theory, the Harmony function H(x) should be optimised,
subject to the condition x ∈ GEN(UR), and the solution is predicted to be the
surface form corresponding to the input underlying representation UR. Famous
members of the family of combinatorial optimisation problems include the as-
signment problem (minimise the costs, if a set of n people is available to carry
out n tasks, and if person i performing task j costs cij units); different problems
in logistics (planning the routing of vehicles); the travelling salesman problem
(find a tour of minimum distance that passes through a given set of points,
say, towns); or node colouring of graphs (find the colouring with the smallest
possible number of colours, such that adjacent nodes are not given the same
colour).

Certain problems are easy to solve, others are more complex. Sometimes
it would require a huge amount of computational resources to find it with cer-
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tainty. A great variety of problem-specific or more general solutions have been
developed in the recent decades, and this is not the place to give a general over-
view of them. Here we focus on heuristic techniques, and in particular on one
of them, namely, simulated annealing. Reeves (1995) defines heuristic (p. 6)
as “a technique which seeks good (i.e. near-optimal) solutions at a reasonable
computational cost without being able to guarantee either feasibility or optim-
ality, or even in many cases to state how close to optimality a particular feasible
solution is.”

Simulated annealing (Reeves, 1995) is one of the simplest and most popu-
lar among these heuristic techniques. Simulated annealing, similarly to other
heuristic techniques, does not guarantee the correct answer. You do not even
know if the answer returned is the optimal one! If you want the probability of
obtaining the optimal solution to approach 1, you may require more iterations
than exhaustive search (i.e., checking each possibility, supposing a finite search
space).

Nevertheless, a heuristic technique such as simulated annealing may have
its purpose within linguistics, in general, and within the Optimality Theoretic
paradigm, in particular. What are the arguments for finding the optimal ele-
ment of the candidate set—the element optimising the Harmony function—with
simulated annealing, and not with other techniques mentioned in section 1.2?

First, the computation involved in heuristic techniques is simple, not in-
volving a large working or storing capacity—an attractive feature both for cog-
nitive models and for language technology.

Second, you are guaranteed to be returned some answer within constant
time, even if not necessarily the correct one. In that respect, heuristic al-
gorithms resemble human speech, which also produces outputs at a constant
rate, and these outputs are not always fully correct. A counter-argument may
be that the brain is an extremely powerful computer and the speech flow is only
slowed down by the inertia of the speech organs, this is why we do not observe
the time difference between processing simpler and more complex structures.
Why then the higher rate of errors for complex structures? Why then the in-
creased number of errors in fast speech, many of which are not due to the inertia
of the speech organs? Consequently, I propose to view (some of the) perform-
ance errors—for instance, in fast speech—as errors introduced by the mental
computation. In fast speech, the human mind is willing to give up precision in
order to gain speed. And this is exactly a phenomenon that can be reproduced
by simulated annealing: not only does simulated annealing return some output
certainly within a constant time, but this constant time can be diminished (the
simulation can increase its speed) at the cost of precision.

As a matter of fact, I have to acknowledge that sometimes it is hard to
distinguish between performance errors that are consequences of computational
difficulties and performance errors that are consequences of physical problems.
Indeed, we run into the problem of how much phonology is grounded in phon-
etics: for instance, whether an assimilation process is related to the inertia of
some speech organs. So, dropping some segments in fast speech might be argued
to result from phonology (which is grounded in phonetics); but it can also be
explained within phonetics, even if the phenomenon is influenced by phonolo-
gical factors. However, progressive and regressive voice assimilations should be
equally good solutions from a physical point of view, so if grammar requires re-
gressive assimilation to take place, then a progressive assimilation can definitely
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be seen as a result of computational difficulties. Finally, performance errors out-
side phonology (especially in syntax) cannot be derived from the inertia of the
speech organs. In brief, my working hypothesis is that there exist performance
errors that are due to computational difficulties.

Additionally, we have seen in section 1.2 that finding the optimal element
of the candidate set can be a hard problem: Eisner (2000b) proves that it is
NP-hard—worst case exponential—in the size of the grammar. Although many
proposals have been advanced to use a series of simple OT-grammars,1 the tra-
ditional view is still to view the language faculty as one huge OT-grammar.
In turn, a huge grammar implies computational difficulties that heuristic tech-
niques can overcome the most simply.

2.1.2 A technique from statistical physics

Our agenda is, thus, to employ simulated annealing in modelling real-time
speech production, including variation or speech errors. In particular, to com-
bine simulated annealing with Optimality Theory. This marriage is, however,
far from obvious. In the present subsection, we introduce the key idea of simu-
lated annealing, so that we can combine it with Optimality Theory in the next
section. The implementations to be presented in chapter 5 will demonstrate the
validity of the previous arguments.

Simulated annealing, also referred to as Boltzmann Machines or stochastic
gradient ascent (descent), is a wide-spread stochastic technique for combinator-
ial optimisation, especially in the fields of neural networks (e.g. Reeves (1995),
Spall (2003)). The idea originates in solid state physics (Metropolis et al.,
1953),2 and was first presented by Kirkpatrick et al. (1983), as well as, inde-
pendently, by Černy (1985). It can be also related to the root finding algorithm
of Robbins and Monro (1951) (cf. Spall, 2003, p. 97-98).

In linguistics, simulated annealing has been used for (context-free) pars-
ing, by Selman and Hirst (1985), Selman and Hirst (1994) or Howells (1988).
Kempen and Vosse (1989) present a cognitive architecture based on activation
decay and simulated annealing, and compare the result of simulated annealing
with different cooling schedules to aphasic data (see also Vosse and Kempen
(2000) for a reconsideration of this model). The link of simulated annealing
to connectionist foundations of Harmony Theory—the historical background of
OT—goes back as early as Smolensky (1986). However, it has never been used
with a concrete linguistic model within OT to my knowledge.

1Stratal OT, a combination of Kiparsky (1982)’s Lexical Phonology with Optimality The-
ory, was already introduced by McCarthy and Prince (1993b). Further examples include, for
instance, B́ıró and Hamp (2002), who propose a similar model for Israeli Hebrew morphology.

2This paper, co-authored by the late Edward Teller, presented a modification of the Monte
Carlo integration over the configuration space. The question was how to calculate the aver-
age of some quantity F over a large system. The original Monte Carlo algorithm randomly
generated configurations xi, in each of which the value of F was calculated (F (xi)); then, the
different F (xi)s were averaged with the probabilities P (xi) of the configurations, as weights.
Nonetheless, the simulation is very likely to generate some of the many improbable configur-
ations, and to avoid the few, high-probability equilibrium states. Therefore, the Metropolis
algorithm proposes a random walk in the state space (or phase space), along which the val-
ues of F can be averaged. Indeed, the procedure to be described with respect to simulated
annealing produces a series of states xi that can be used as a representative sample, that is,
in which the frequency of a state xi is proportional to its theoretical probability P (xi).
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Figure 2.1: Landscape produced by a real-valued energy or cost function (B́ıró,
1997).

Simulated annealing is a modification of the algorithm called gradient des-
cent (iterative improvement ; it is also called as gradient ascent or as mountain
climbing in the fog, when used for maximisation). Gradient descent performs a
random walk in the search space with the restriction that you may never move
upwards, only horizontally, or, preferably, downhill. (For gradient ascent, one
simply has to reverse the directions.) At each time step, the random walker
picks a neighbour position, compares it with its actual place, and moves there
only if the target position is better. Two strategies can be followed: either a
neighbour is chosen randomly, or the walker picks its best neighbour, that is,
it takes the steepest slope. The position of the random walker at the end of
the walk is returned by the algorithm. In both cases, however, the random
walker will easily be stuck into local minima—we need therefore a trick to avoid
non-global local minima.

Simulated annealing, as we shall see presently, also allows upwards moves,
in order to avoid getting stuck into these local minima. The trick originates in
statistical physics (thermodynamics and solid state physics).

An interstitial defect in a crystal lattice, say, in the structure of some sort of
metal, corresponds to a (non-global) local minimum in the energy of the lattice.
Although the perfect lattice would minimise the energy level, the defect is stable,
because any local change would increase the energy. In order to climb this energy
barrier and to reach the global minimum, one needs either to globally restructure
the lattice within one step, or to be permitted to temporarily increase the energy
of the lattice. Heating the lattice means to go for the second option. The
lattice is allowed “to borrow” some energy, that is, to transform thermic energy
provisionally into the binding energy of the lattice, thereby climbing the energy
barrier separating the local minimum from the global minimum.

At temperature T , the probability of a change that increases the lattice’s en-

ergy by ∆E is e
−∆E
kT . Here, e ≈ 2.7182 is the base of the natural logarithm, and

k ≈ 1.38 · 10−23JK−1 is Boltzmann’s constant, which connects energy (meas-
ured in joules, J) to the phenomenological measure of temperature (measured in
kelvins, K). The higher the temperature, the smaller the absolute value of the
exponent, and therefore the higher jumps in energy are reasonably probable. At
relatively low temperature, the probability of a relatively high jump in energy
is not likely to happen.

When annealing a metal, we increase its temperature, therefore the lattice
can easily get out of a local minimum. Then, we slowly cool it down. The lower
the temperature, the smaller the energy hills the system is able to climb, thus
it gets stuck in some valley. Hopefully, this valley corresponds to the global
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minimum, but at least to a minimum smaller than the initial local minimum.
At the end of the annealing, the system probably arrives at the bottom of a
deep valley.3

Now, the idea of simulated annealing is straightforward (Kirkpatrick et al.,
1983). Suppose that we wish to find the state of a system for which the quantity
E (say, energy or evaluation) is minimal. We define some sort of fictitious
“temperature” T , a mere control parameter, and choose an initial state w0, the
starting point of a random walk.

At each step of the simulation, when we are in state w, we randomly choose
one of the neighbour states (w′) of the actual state. This random choice is
one of the main factors driving the stochastic behaviour of the algorithm. It
presupposes some sort of neighbourhood structure (topology) on the search space
that determines which states are the neighbouring states of w. Moreover, the
topology also defines the a priori probability Pchoice(w′|w) of choosing w′ if we
are in state w. Unless one allows the system not to move at all, we stipulate
that

∑

w′∈Neighbours(w)

Pchoice(w′|w) = 1 (2.1)

In the simplest case, a state has a finite number of neighbours, and each of
them has equal a priori probability. We shall come back to further possibilities
in section 2.2.2.

Once we have picked a neighbour, we have to decide whether to move there
or not. If the neighbour state w′ represents a lower level in E than w, we

move there. Otherwise, we move only with probability e
−∆E
T , where ∆E is the

increase in energy in the case we took that move:

P (w → w′) =

{
1 if E(w′) ≤ E(w)

e−
E(w′)−E(w)

kT if E(w′) > E(w)
(2.2)

In other words, a random number with a uniform distribution is chosen from
the interval (0, 1), and if it is smaller than P (w → w′), then we move from w to
w′. Why an exponential function? One argument is the analogy from statistical
physics, where the probability of state s at temperature T is proportional to
e−E(s)/T . Another argument is that the exponential function is the only non-
trivial continuous function F that has the property F (x+y) = F (x)F (y); hence,
the probability of moving upwards x+ y is equal to the probability of an uphill
step with a difference x followed by an uphill step with a difference y.

Please remember the difference between the a priori probability Pchoice(w′|w)
of choosing state w′ when the random walker is in state w, on the one hand;
and the probability P (w → w′), defined in Eq. (2.2), of really moving from
state w to w′, once w′ has been chosen, on the other. Clearly, the probability of

3In fact, the energy-structure of traditional lattices is too simple, too trivial, so that the
global optimum is usually very well approached. This may be the reason why the original idea,
already published by Metropolis et al. (1953), did not raise much interest beyond solid-state
physics and related fields for thirty years. The behaviour of spin glasses in magnetic fields,
however, yields quite a complicated energy-structure. The investigation of spin glasses led,
therefore, both Kirkpatrick et al. (1983) and Černy (1985)—independently of each other—to
applying Metropolis’ algorithm on optimisation problems in general, such as the travelling
salesman problem. For more mathematical details, consult, among others, van Laarhoven
(1987).
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ALGORITHM: Simulated Annealing

Parameters: w_init # initial state (often randomly chosen)

t_max # initial temperature > 0

alpha # temperature reduction function

w := w_init ;

t := t_max ;

Repeat

Repeat

Randomly select w’ from the set Neighbours(w);

Delta := E(w’) - E(w) ;

if Delta < 0

then

w := w’ ; # move to lower energy state

else

generate random r uniformly in range (0,1) ;

if r < exp(-Delta / t)

then w := w’ ; # move to higher energy state

end-if

end-if

Until iteration_count = nrep # usually simply: nrep = 1

t := alpha(t)

Until stopping condition = true # usually: until t < t_min

Return w # w is the approximation to the optimal solution

Figure 2.2: The algorithm of traditional Simulated Annealing.

actually moving from w′ once in w is the product of the two probabilities. The
chance of not moving from w at all in a certain step is:

1−
∑

w′∈Neighbours(w)

Pchoice(w′|w) · P (w → w′) (2.3)

Equation (2.2) is the point where the control parameter called “temperature”
T has come into play. Observe that if ∆E = E(w′)−E(w) � T , the probability
of moving is practically 1. If, however, ∆E = E(w′)−E(w) � T , the move to
w′ becomes almost prohibited. In brief, the role of T is to define the order of
magnitude of ∆E in which P (w → w′) is neither very close to 1, nor very close
to 0.

At the beginning of the simulation, T is assigned a high value, making any
move very likely. The value of T is then decreased gradually according to some
cooling schedule, yet T remains always positive. By the end, T is very close
to zero: according to (2.2), even the smallest jump becomes highly improbable
then. When the temperature has reached its lowest value, the algorithm returns
the state into which the random walker is finally “frozen”.

The general algorithm of simulated annealing can now be introduced in Fig.
2.2. We follow Reeves (1995), with a few modifications and indications pointing
to the way we shall use simulated annealing later.

Why does adding temperature improve the performance of this search al-
gorithm compared to gradient descent? Imagine an asymmetric search space
composed of three states, as represented in Fig. 2.3. Suppose that we would
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Figure 2.3: An asymmetric landscape with three states, two of which are local
optima, but where only state C is a global optimum. State B is a neighbour of
both A and C, whereas states A and C are not neighbours of each other.

like to minimise the function E.

Gradient descent (iterative improvement) would assign both local minima
50%. Namely, if each of the states is chosen with equal probability as the initial
state, then there is 33% chance that the search begins in state A; then, as it is a
local minimum, the random walker is stuck there. The same applies to state C.
The remaining one third goes to the case when B is chosen as the initial state.
Then, the two neighbours of B are chosen with equal probability: whichever is
chosen, the random walker moves there, and get stuck there. Summing up, the
probability of the search algorithm to terminate in either state A or state C is
1/3 + 1/3 · 1/2 = 1/2.

Suppose now that we perform simulated annealing. Then, the random walker
can climb back from A or C to B. After having climbed to B, the random walker
falls back to A or C with equal probability. It is, however, harder to climb to
B from C than from A at a given temperature, because ∆E is higher.

Roughly speaking, the random walker will be confined to C, while it still can
escape from A. In order to end up in A, it has to choose A always when in B,
otherwise it gets locked into C. If the number of steps (number of iterations) is
2n, then the random walker can be n times in state B: the chance of choosing
alwaysA is 0.5n, which decreases quickly as n grows. With higher n, terminating
in C has a probability 1− 0.5n very close to 1. The more iterations, the higher
the chance to end up in C.

Although this train of thought has been only a rough illustration, the general
morale still holds: a slower cooling schedule, that is, increasing the number of the
iterations, improves the precision of simulated annealing (e.g. Reeves (1995),
van Laarhoven (1987)).4 This observation will become very important in the
argumentation in favour of Simulated Annealing Optimality Theory.

Obviously, nothing guarantees still that we have found the global minimum.
Imagine, indeed, that the global minimum is situated at the bottom of a narrow
valley: in such a case, the simulation will most often find a broader, but less
deep basin, and the returned state will be the minimum of that one. One can,
for example, run a few simulations in parallel, and choose the best of the results
of these simulations.

Convergence results exist which prove the chance of finding the global op-
timum asymptotically converging towards 100% under certain circumstances.

4Interestingly, the exact manner of decreasing temperature influences the precision less
than the rate at which temperature drops (Reeves, 1995).
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Yet, these results imply solution times that are exponential in problem size,
and often require more iterations than exhaustive search, so they are of limited
use (Reeves, 1995).

2.1.3 Spin glasses in the brain

At the end of subsection 2.1.1, we have brought several arguments in favour of
using heuristic optimisation techniques in linguistics in general, and for Optim-
ality Theory, in particular. Now, we elaborate on some of them: how can we
turn a seeming weakness—the lack of precision—into an advantage. Moreover,
how to use it to contribute to a long-standing debate in linguistics, namely, to
the issue of competence vs. performance, and categorical vs. gradient gram-
maticality.

Kirkpatrick et al. (1983), introduced simulated annealing as an analogy
between physical systems and optimisation problems. In particular, they based
their hope for the usefulness of simulated annealing upon the success of the Met-
ropolis algorithm (Metropolis et al., 1953) in modelling spin glasses in statist-
ical physics (Manrubia et al., 2004, cf. e.g.). Spin glasses are “highly frustrated
systems”: magnetic interactions favouring different and incompatible kinds of
ordering might be simultaneously present. Determining the optimal state of
such a system is far a less trivial optimisation task than finding the optimal
structure of a traditional magnetic lattice, and yet the Metropolis algorithm
turned out to be useful. Furthermore, Kirkpatrick et al. (1983) write: “The
physical properties of spin glasses at low temperatures provide a possible guide
for understanding the possibilities of optimizing complex systems subject to
conflicting (frustrating) constraints” (p. 673). But “conflicting constraints” is
exactly the magic key word in Optimality Theory, as well!

A non-negligible difference between spin glasses and OT is, nonetheless, that
“systems like spin glasses have many nearly degenerate random ground states
rather than a single ground state with a high degree of symmetry” (ibid). In
other words, while most materials and conventional magnets have only one
globally minimal configuration (ground state), which is realised if the particles
form a highly symmetric crystal structure; spin glasses, on the other hand, can
reach many different local minima, and these minima represent amorphous—
glass-like—structures. Reaching a different minimum from some ground state
requires considerable rearrangement, hence local minima are quite stable. Last,
and most importantly, none of these local optima is significantly worse than
the global optimum, thus “it is not very fruitful to search for the absolute op-
timum” (Kirkpatrick et al. (1983), p. 674). As an analogy, simulated annealing
is claimed to be the most promising for problems where reaching a near-optimal
solution is also satisfactory, such as the physical design of computers (Kirk-
patrick et al., 1983) or the travelling salesman problem (Kirkpatrick et al., 1983;
van Laarhoven, 1987; Spall, 2003).

In standard Optimality Theory, however, we definitely search for the global
optimum: the candidate that globally optimises Harmony—that is, minimises
the violation marks—with respect to the conflicting constraints. In turn, we
either hope for a much simpler (less frustrated) search space with an easily
reachable global optimum; or we accept the alternative “ground states” as lin-
guistically meaningful solutions. Indeed, we shall see situations for both cases.
In section 5, the search space will have a medium complexity: although the
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Level its product its model the product
in the model

Competence in narrow standard globally
sense: static knowledge grammatical form OT optimal
of the language grammar candidate
Dynamic language acceptable or SA-OT local
production process attested forms algorithm optima
Performance in its acoustic (phonetics,
outmost sense signal, etc. pragmatics) ??

Table 2.1: The proposed three-level model of the human language

global optimum is easy to find with a slow cooling schedule, yet a fast cooling
schedule may return other local optima, which are interpreted as fast speech
forms. In section 6.1, however, some local optima will be interpreted as well
attested (and acceptable) agrammatical forms. What is meant here?

Remember the Chomskyan distinction between acceptability and grammat-
icality (section 1.4): grammaticality refers to the linguistic competence or to
its model, and not to the performance. As far as performance is concerned, a
native speaker usually distinguishes between several levels of acceptability, even
if some of the forms in the grey area are clearly grammatical or clearly agram-
matical. Similarly, a corpus study will reveal that agrammatical forms are well
attested, whereas grammatical ones may be very rare. This is why I urged in
section 1.4 a model that makes the difference between the underlying static
knowledge of the language (competence in its narrow sense), the dynamic pro-
duction process (which may produce—or accept—forms that are agrammatical
for the competence in its narrow sense) and the clearly extra-linguistic factors.

This is where the numerous near-optimal ground states of the spin glasses
can be used as an analogy. I propose to see Optimality Theory, the model that
formulates the optimisation problem, as the model of competence in its narrow
sense. A form is grammatical if and only if it is the optimal solution to the
problem posed by the OT grammar—that is, if it is globally optimal. On the
other hand, further local optima also appear in the model, which will serve
as pitfalls to Simulated Annealing for Optimality Theory, the model of the dy-
namic language production process. Consequently, the linguistic interpretation
of the non-optimal ground states is that they model linguistic forms that are
agrammatical but acceptable according to the judgement of the native speaker;
alternatively, they are the forms that are agrammatical but attested in a corpus
study (Table 2.1).

This approach—I believe—has two advantages. First, it may save a never-
ending discussion on where the exact border between competence and perform-
ance is to be drawn. Second, it may help keep the competence model simple,
as to be demonstrated by section 6: only the general rule has to be accounted
for by the grammar (the model of the competence in the narrow sense), and
(some) exceptions can be explained as being introduced by the language pro-
duction process. Remember the history of mechanics: the decomposition of the
problems into friction and motion following Newton’s laws helped grasping the
sublunar motions, as well.

Now the question is how to implement Simulated Annealing to Optimality
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PERFORMANCE

Optimality Theory :
a model of competence

Simulated Annealing :
a model of performance

Figure 2.4: A simplified picture of the proposed relationship of OT and SA-OT.

Theory exactly. The search space is the set of candidates, but a real-valued
energy function to be minimised cannot be defined in most cases (Prince and
Smolensky (2004); see Prince (2002) for models where it can). Therefore, we
have to find out how to implement simulated annealing to a non-real valued
function. Section 2.2 introduces the general idea first. (Later, Chapter 3 will
present a much more formal way to the same algorithm, by asking the question:
if the function to be optimised is not real-valued, what is it then?) The algorithm
of simulated annealing presented in Fig. 2.2 will have to be adjusted to the
answer. After having constructed the SA-OT algorithm, section 2.3 contains a
discussion of cases where SA-OT works and where it does not work as we might
expect in anticipation.

2.2 Simulated Annealing for Optimality Theory

2.2.1 How to combine simulated annealing with OT?

Let us summarise where we are so far. Generating the winner candidate in Op-
timality Theory, as even suggested by its name, is a combinatorial optimisation
problem. The goal is to find the optimal candidate in the candidate set, with
respect to some Harmony function defined by the constraint hierarchy. It can
be an NP-hard problem (Eisner, 1997, 2000b; Wareham, 1999), which motivates
the use of heuristic algorithms in general, and the use of simulated annealing in
particular.

The general idea of Simulated Annealing for Optimality Theory (SA-OT) is
that the random walker roves around in the search space, which is the candidate
set. The possible states of the system are thus the candidates. The function
to be optimised is the Harmony function. Yet, the algorithm presented in Fig.
2.2 requires a few more non-trivial details so that we may implement it. What
is Neighbour(w)? How to calculate the difference E(w′) −E(w)? What should
the cooling schedule (tmax, the stopping condition or tmin, and the function
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alpha(t)) be in SA-OT?

The procedure of applying simulated annealing to Optimality Theory will
be decomposed into the following five steps:

• Step 1: Define the candidate set.

• Step 2: Define a neighbourhood structure (topology) on the candidate set.

• Step 3: Define the Harmony function to be optimised: what are the con-
straints and how are they ranked?

• Step 4: Define temperature and the transition probabilities.

• Step 5: Define the cooling schedule and perform the simulation.

Steps 1 and 3 are familiar to anybody who has worked with Optimality The-
ory. Yet, the formal definition of the candidate set and of the constraints may
require some extra work. In most of the linguistic literature, Gen is vaguely
seen as a “black box” that produces “everything”. For computational pur-
poses, nonetheless, Gen (that is, the candidate set) has to be defined in an
exact way: for instance, by explicitly listing the elements of the set, by spe-
cifying clear conditions on membership,5 or by using finite-state automata or
context-free grammars. Moreover, constraints are usually defined by specify-
ing the conditions that must be met by a candidate to satisfy the constraint.
Yet, OT constraints are violable, and often the degree of violation plays a cru-
cial role. Therefore, computational implementations require the formulation
of constraints as functions that specify clearly how many violation marks are
assigned to each candidate. For instance, a frequently employed, though only
vaguely defined constraint—which we will reformulate for the sake of SA-OT—is
Output-Output Correspondence: while the OT phonological literature is pleased
by qualitatively demonstrating that a certain candidate is worse for OOC than
the optimal one, SA-OT will require the exact difference of the marks assigned
to any pair of candidates.

The hierarchy of the constraints should be settled by linguists working within
the traditional OT paradigm, because the meaning of the hierarchy remains
unchanged: to return the candidate that is supposed to be the grammatical one.
The model underlying SA-OT is a traditional Optimality Theoretic grammar.
It remains the task of the linguist to collect the data (that is, to find out which
forms are grammatical), to make cross-linguistic comparisons, and to argue for
specific constraints and specific hierarchies.

In brief, Gen, the set of constraints and the ranking—handed over by the
theoretical linguist to the computational linguist—should yield as the optimal
candidate the grammatical form, which is observed empirically by the descript-
ive linguist. What remains to clarify from the above agenda is step 2, that is,
defining the neighbourhood structure (the topology); as well as, steps 4 and 5,
the actual implementation of simulated annealing.

5As it is the case in all fields of mathematics, such a definition of a set must have the
following form: “all members of set S [another well-defined set] that satisfy these well-defined
conditions”. The goal of the exact definition is to be able to handle them in an algorithm.
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Figure 2.5: Schematic view of a search space—that is, the candidate set with
a simple topology (neighbourhood structure)—in which simulated annealing
realises a random walk. Candidate w0 is the initial state of the random walk.
Candidate w′ is a neighbour of w, as they are connected by an edge.

2.2.2 Topology on the search space

We shall come back to step 4 in subsection 2.2.3. Our goal now is to work
out the neighbourhood structure (the topology) of the candidate set (step 2),
so that performing the simulation with different cooling schedules (step 5)—or
with different parameter settings, in general—return interesting results.

The word topology refers to “the mathematical study of the properties that
are preserved through deformations, twisting, and stretching of objects. Tear-
ing, however, is not allowed.”6 The classical such property is neighbourhood :
neighbouring points remain neighbours during twisting and stretching (but not
during tearing), even though their distance may change. Thus, distance in ab-
solute terms does not interest topology. A forerunner of topology was graph
theory, which is exclusively interested in the connection between the vertices,
but not in their spacial positions: moving the nodes of a graph does not alter
it, as long as the edges are kept the same. If one prefers, one may employ the
term geometry of the candidate set, as well.

When speaking about the topology or the neighbourhood structure of the
candidate set (the search space), we have to imagine a graph-like structure in
a first approximation (Fig. 2.5). Although the candidate set can include an
infinite number of elements, its structure may be visualised as a set of points
with the neighbouring points being connected by edges. In addition, the edges
on this graph-like picture may be directed and labelled in order to represent the
probabilities of picking a given neighbour.

In section 2.1.2, we have already seen what the topology on a search space
consists of. For each state (now, candidate) w, we define the set Neighbours(w)
of its neighbours. A directed edge can be drawn from vertex w to vertex w′ if
and only if w′ ∈ Neighbours(w). Supposing that the neighbourhood relation is
symmetric, one does not even need a directed graph. Importantly, this “graph”
must be connected: a path of a finite length should connect any two vertices.

Furthermore, we have also seen that we also require a probability distribution
on the set Neighbours(w): the a priori probabilities Pchoice(w′|w) determine the
choice of a particular neighbour in the first line of the core of the loop in the

6Eric W. Weisstein. “Topology.” From MathWorld–A Wolfram Web Resource. http:

//mathworld.wolfram.com/Topology.html.
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simulated annealing algorithm (Fig. 2.2). These probabilities can be written
on the directed7 edges of the graph—or graph-like structure, if the number of
candidates is infinite. Due to equation (2.1), the sum of the weights leaving
each vertex is 1.

Notice that the topology of the candidate space is the horizontal structure
of the landscape in which the random walk takes place, and is independent
of the landscape’s vertical structure, defined by the Harmony function. That
is to say that the same candidate set with a different hierarchy will yield the
same Pchoice(w′|w) a priori probabilities, and different P (w → w′|T ) transition
probabilities. The former is defined by the candidate set, whereas the latter
depends on the violation profile (that is, the “altitude”) of the two candidates.

It should be emphasised that adding a structure to the candidate set is
new within Optimality Theory as seen by (almost) all linguists.8 I postulate
that this structure is universal (innate), the same way as the set of possible
underlying representations (Richness of the Base, Prince and Smolensky (2004)
p. 225) and the Gen module—thus, the set of candidates—are claimed to be
universal (innate). I suppose that the topology of the search space is a result of
the way the candidates are represented, and neighbours differ only in a minimal
component of their representations.9

Although the structure of the candidate set is assumed to be universally
defined (if you wish, innate), it is still unknown to us. Research should dis-
cover it. That is to say, models have to be created to describe empirical data.
Well, one may object that enriching the OT model by adding new components
(such as the topology) to it will lead to ad hoc models that are less convincing.
Indeed, there is such a danger: Ockham’s razor advises simplifying scientific
models, and not adding new concepts to them.10 Nonetheless, topology is not a
superfluous addition, and two factors keep a tight rein on it. First, it should be
convincing and cannot be ad hoc: a general principle has to define what simple
basic operations (possible basic steps in the candidate set) transform one can-
didate into its neighbour. Second, the enriched model is required to account for
an enriched set of data: not only for what is grammatical, but also for what
the alternations or performance errors are, and under what circumstances they
appear in speech.

7If the neighbourhood relation is symmetric, the graph is not directed in the sense that
w1 is connected to w2 if and only if w2 is connected to w1. However, Pchoice(w2|w1) =
Pchoice(w1|w2) does not necessarily hold even in this case.

8Paul Smolensky mentioned in a talk (October 2004, in Amsterdam) that variation forms
are local optima—exactly what the present research line is about. Therefore, he must also
suppose some topology on the candidate set, otherwise the expression local optima would be
meaningless. Furthermore, the candidate set has been supposed to have the structure of a
regular grammar in finite state approaches to OT since Ellison (1994).

9This proposal bears clear similarity with Paul Smolensky’s connectionist approach to
Optimality Theory. Yet, here we are free to embrace also representations different from those
advanced by connectionism.

10Ockham was a nominalist in the medieval dispute between nominalists and realists. Real-
ists (today, we would call them idealists) supposed that the Platonian ideals existed onto-
logically, whereas nominalists (e.g. Abelard) claimed that concepts are created only by the
human intellect. According to Ockham, “plurality is not to be posited without necessity”,
and referred to the razors used in those days to remove unnecessary ink from pergaments.
Thus, nowadays, we should rather refer to Ockham’s eraser or to Ockham’s delete button, as
proposed by Gábor Balázs—to whom I thank for this explanation. See also: Spade, V.S., Ock-
ham’s nominalist Metaphysics, In: Spade, V.S. (ed.), The Cambridge Companion to Ockham,
1999. pp. 101-102.
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Simulated annealing makes a mistake when it gets stuck in a local optimum—
supposing that the simulation has enough time to relax in its final phase. (Oth-
erwise, if the simulation is terminated without waiting for it to arrive into some
local optimum, basically any form may be returned.) Consequently, the topo-
logy should be defined so that the observed alternation forms be local optima:
even if they are not globally optimal, they must be better than all their neigh-
bours. The horizontal component (neighbourhood structure) and the vertical
structure (Harmony function) of the landscape should jointly cause the simula-
tion to sometimes fall into these traps.

The art of Simulated Annealing Optimality Theory, thus, consists of creating
a landscape—with a simple and convincing definition of the neighbourhood
structure and with arguably universal constraints—where the global optimum is
the grammatical form and the other local optima are the observed alternations.

Later sections will introduce models demonstrating that even having such a
landscape is not always sufficient. For instance, some local optimal traps are
always avoided, or are never avoided. Sometimes, the logic of the representations
forces us to also include other local optima: in such cases, we can only hope that
they are avoided by the random walker, while the local optima corresponding
to observed alternation forms are those where the walker is sometimes caught.
By the end of the present thesis, the reader should be convinced that adding a
topology to the candidate set does increase the explanatory power of Optimality
Theory, because it may account for observations in a non-trivial way.

Now, let us elaborate on the concept of a topology on the candidate set. The
goal of the neighbourhood structure, again, is to define how a next candidate
w′ is chosen as a possible next state of the random walker, when the walker
is in candidate w. Obviously, after having chosen w′, it is still not sure yet
that the walker really moves there: this depends on the transition probability
P (w → w′|T ), to be defined in the next section following equation (2.2).

As a matter of fact, we should distinguish between three steps when intro-
ducing the topology of a candidate set:

1. Define the set of candidates

2. Define the set of the neighbours Neighbours(w) of each candidate w.

3. Define the a priori probability distribution Pchoice(w′|w) on Neighbours(w).

What we really need is the probability distribution Pchoice(w′|w), yet the
first two steps will lead to it. As it reflects some sort of probabilistic connection
between states, one can compare this probability distribution to a Markov-
model with two major differences: the number of states may be infinite, and
choosing w′ does not mean immediately moving there. Rather the product
Pchoice(w′|w) · P (w → w′|T ) is the probability of really moving from w to w′;
but then, this probability changes during the simulation as T changes, hence,
we cannot speak of a Markov chain, either.

All introductions to simulated annealing emphasise the importance of an
adequate neighbourhood structure in order to obtain an efficient optimisation
algorithm. Too few neighbours, on the one hand, may result in too many local
optima, and finding the global optimum becomes improbable. Too many neigh-
bours, on the other, turns the algorithm practically into a random or exhaustive
search, and does not deploy the structure of the search space.
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A few strategies can be followed, and we turn now to comparing them. What
has been suggested until now is that you should best define some basic operations
which transform a candidate to a very similar other candidate. These operations
typically alter only the candidate string at one single point, for instance by
inserting, deleting or rewriting one atomic element of the string, or by flipping
the value of a single feature. The number of basic operations should be minimal
and the definition of such a basic operation (basic step, basic transformation)
has to fit the way candidates are represented in the grammar (autosegmental
phonology, context-free trees, AVMs, and so forth). Such basic steps would then
lead to only a very restricted number of neighbours:11

Neighbours(w) =
{
w′ ∈ GEN(GEN−1(w))

∣∣∣w′ = some basic transfo(w)
}

(2.4)

Nevertheless, even if the strategy allows only one basic operation per step,
more options are available with respect to probabilities. One could assign ad hoc
probabilities to the neighbours, but two further alternatives are more sound.

Either each of the neighbours has equal chance to be picked out—this pro-
posal sounds reasonable if every candidate only has a few neighbours. We shall
apply this approach in our treatment of Dutch stress in fast speech in Chapter
5, as well as in our example about Dutch voice assimilation in Chapter 6.1. If
# denotes the cardinality of a set,

Pchoice(w′|w) =

{
1

#Neighbours(w) if w′ ∈ Neighbours(w)

0 else
(2.5)

Alternatively, performing each of the basic steps can be assigned some prob-
ability, and thus not all neighbours have equal chance. For instance, we first
decide whether to insert, to delete or to rewrite an atomic segment, and then
decide where in the string to perform this action. Even if each locus in the can-
didate string has equal chance, the probabilities pinsert, pdelete and prewrite may
vary. An example for this approach is found in our discussion of syllabification
in section 7.

So far, Neighbours(w) has been a relatively small subset of the candidate set.
As already mentioned, the emerging “graph” must be a connected structure:
each candidate should be reachable from any other candidate within a finite
number of steps. In other words, for all w and w′, there must exist an integer
n and a series of candidates w0, w1, ..., wn such that w0 = w, wn = w′, and for
each j < n: wj+1 ∈ Neighbours(wj).

11The implementation of Optimality Theory by Turkel (1994) uses a genetic algorithm, and
proposes to see OT Gen as the generator of a new GA generation. He writes (p. 8):

[t]he standard assumption about the generator is that it takes a single repres-
entation and returns a set of representations consisting of modifications to the
input. I will assume that the generator takes a set of representations and re-
turns a set of representations. If the input set contains one element, then the
generator returns a number of variations on that element (this is the standard
operation). If the input set is empty, then the generator randomly creates a set
of appropriate representations and returns that. ...

His standard operations (modifications, such as mutations, recombinations and crossov-
ers) correspond to our basic operations: by applying them repeatedly, we can explore the
search space. These operations, as proposed by several readers, could also be underpinned
psycholinguistically. In any case, future work has to work out some general principles.
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A radically different approach is to define the set of neighbours as the whole
candidate set:

Neighbours(w) = GEN(GEN−1(w)) (2.6)

and to focus rather on the probabilities. In this case, some sort of similarity
measurement may serve as Pchoice(w′|w). The more similar w and w′, the higher
the probability Pchoice(w′|w). The similarity measurement must be normalised,
so that

∑
w′∈GEN(UR) Pchoice(w′|w) = 1 hold (cf. equation (2.1)).

An approach based on (2.6) allows huge steps, which may be both useful
and harmful. Clearly, if each candidate is equally reachable from a certain
candidate, then simulated annealing turns into a very clumsy and ineffective
way of trying out all possibilities: many candidates will be tried out repeatedly,
whereas many other candidates will be ignored (let alone what happens in an
infinite search space). Consequently, the Pchoice(w′|w) probabilities should make
use of the properties of the search space in order to direct the search in a clever
way. Indeed, a similarity-like Pchoice(w′|w) sounds promising, although further
experimentations will be required.

In fact, a topology where every two candidates are neighbours, has no local
optima, except for the global optimum. But notice that for all ε > 0, the
set {w′|Pchoice(w′|w) > ε} defines a finite ε-neighbourhood around w.12 This
observation becomes important when applying a neighbourhood (2.6) to an
infinite (or very large) set. Namely, if 1/ε is in the magnitude of, or greater
than the number of iterations performed, then the candidates beyond the ε-
neighbourhood of w are practically unreachable from w within one step. In
brief, such an infinite neighbourhood can be elegant, and still not significantly
different from the finite neighbourhood structure defined by equation (2.4).

What do I mean by an elegant model? Sometimes, allowing one single basic
operation per step, as in equation (2.4), may lead to problems. The example
on syllabification in Chapter 7 will show that allowing exclusively the simplest
basic steps may not prove very useful: the landscape will include too many local
optima. There, one also has to be able to delete fully overparsed syllables—and
not only single segments—in order to build a workable model. In similar cases,
it is more fruitful to include ad hoc larger steps, as well. In turn, a well-designed
model in which Pchoice(w′|w) > 0 for any pair of candidates might prove to be
both more elegant and useful.

Earlier in this section, I postulated the topology of the candidate set to be
universal (alternatively, innate). Now, I should add that although the prin-
ciples of the topology are claimed to be universal, yet some parameters may be
language-dependent or speaker-dependent. Take the approach in which differ-
ent basic transformations might have different probabilities: for instance, pinsert,
pdelete and prewrite, which are not dependent on the argument of the operation.
These three parameters are not independent of each other, pinsert + pdelete +
prewrite = 1 should hold, because exactly one of them can be applied in one
step. Now, the fact that three basic operations with some probabilities as para-
meters define the topology is claimed to be universal; nonetheless, the exact
value of these parameters may vary across speakers or across languages.

12As
P
w′∈GEN(UR) Pchoice(w′|w) = 1 must hold, fewer than 1/ε candidates may be within

such an ε-neighbourhood.



2.2. Simulated Annealing for Optimality Theory 51

In this section, we have elaborated on the concept of a neighbourhood struc-
ture on the candidate set. The concept is new for main-stream Optimality
Theory, even if not for connectionist approaches to OT. We have proposed sev-
eral possibilities to define this topology, but only concrete applications will prove
the usefulness of any of them. In the following section, we tackle the problem
of how to define temperature for Simulated Annealing Optimality Theory.

2.2.3 Temperature for OT

As explained on page 45, creating an SA OT model consists of the following
steps:

• Step 1: Define the candidate set.

• Step 2: Define a neighbourhood structure (topology) on the candidate set.

• Step 3: Define the Harmony function to be optimised: what are the con-
straints and how are they ranked?

• Step 4: Define temperature and the transition probabilities.

• Step 5: Define the cooling schedule and perform the simulation.

Out of these five steps, step 1 and step 3 depend on the traditional Optim-
ality Theoretic system that serves as the underlying model. Subsection 2.2.2
has elaborated on step 2. Our present task is to work out step 4, so that we
can experiment with different models (a candidate set with a neighbourhood
structure, as well as a set of constraints with a hierarchy) and different cooling
schedules.

The goal of defining a temperature is to define the transition probabilities
P (w → w′|T ) of moving in a counter-optimal direction. Remember that step-
ping to a more optimal candidate should always be possible: once a certain
neighbour w′ of the present position w of the random walker has been chosen,
the random walker moves there if w′ is better than w.

If w′ ∈ Neighbours(w) and w′ � w, then P (w → w′|T ) = 1 for all T .

Here, and from now on, the relation a � b denotes that candidate a is better
than candidate b with respect to the current constraint hierarchy. A more formal
definition follows in section 3.1.

In brief, the w′ � w case is simple. Yet, if w′ ≺ w, the probability of moving
to w′ should depend on the loss of harmony that this move would involve: the
steeper the step, the less probable it is. Moreover, the probability of a particular
step is gradually diminished from 1 to 0 during the simulation. The parameter
called “temperature” is introduced to simulated annealing exactly in order to
control the way how each of the probabilities P (w → w′) are gradually reduced
from 1 to 0.

Let us recapitulate the idea of simulated annealing. The notion of temperat-
ure is taken from thermodynamics and statistical physics. A physical system at
a temperature above absolute zero has some inner random “vibration”, and this
thermic energy “flows” between the particles of the systems as they interact
with each other. Consequently, the energy of a given particle may randomly
increase and decrease. Emitting an energy quantum is always possible (hence,
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Figure 2.6: The e−1/x function with a logarithmic x-axis. Observe that the
function is very close to 0 if x < 0.1, and very close to 1, if x > 100.

moving towards the better state has a probability of 1), whereas the chance of
collecting, or borrowing, an energy package of ∆E depends on the temperature
T of the system:

e−
∆E
k·T (2.7)

where k is Boltzmann’s constant (k = 1.3807×10−23J ·K−1; J stands for joules
and K for kelvin), whose role is merely to connect energy to temperature, so
that the exponent has no unit of measurement.

Let us have a closer look at the expression (2.7), as well as at Fig. 2.6.
The meaning of temperature T is to define the range of energy transitions that
have an intermediate probability. Large jumps in energy (∆E � kT ) have
a vanishingly small probability, very close to zero; whereas small changes in
energy (∆E � kT ) are almost certain to happen. For ∆E = kT , however, the
probability is 1/e ≈ 0.37. These observations are summarised in Table 2.2.

Therefore, defining temperature in simulated annealing means defining the
transitions that we want to assign this medium probability to in a certain stage
of the simulation. Thus, temperature has to belong to the same “type” as the
changes in the function to be optimised. In physical terms, the exponent has
to be dimensionless, that is, ∆E and k · T in (2.7) must have the same units of
measurement (for example Joule or kcal).

This is also the reason for the introduction of Boltzmann’s constant in phys-
ics. For historical and human reasons, the temperature scale has been defined
independently of energy: we perceive temperature as a qualia in its own right,
even though physics has reduced this concept to the concept of energy. In fact,
why not call rather k · T the temperature? This is the way simulated annealing
proceeds. In simulated annealing, k = 1 simply, so energy and temperature
have the same dimension.

Our goal is to implement equation (2.2) for Optimality Theory in a form
such as:

P (w → w′|T ) =

{
1 if w′ � w
e−

H(w′)−H(w)
T if w′ ≺ w

(2.8)
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∆E < 0 P (w → w′|T ) = 1

0 < ∆E � T P (w → w′|T ) ≈ 1

∆E ≈ T medium P (w → w′|T )

∆E = T P (w → w′|T ) = 1/e ≈ 0.368

∆E � T P (w → w′|T ) ≈ 0

Table 2.2: The way the transition probability P (w → w′|T ) is dependent on
the temperature T and on the steepness ∆E = E(w′)−E(w) of the transition
w → w′. By decreasing the positive control parameter T during the simulation,
the same transition turns gradually from being highly probable into being highly
improbable.

Consequently, we need to know the dimension of the Harmony function, in
order to introduce temperature T to SA-OT. So, what is the dimension of the
Harmony function?

The situation is even worse: not only does the Harmony function lack a
proper dimension, but normally it is even not construed as a real-valued func-
tion! How can we divide the Harmony function with anything, and then compute
its exponential?

Luckily enough, however, we do not need the dimension of the Harmony
function proper. What we really need in equation (2.8) is the difference H(w′)−
H(w) of two violation profiles. This seemingly additional step—subtraction—
will help us. For this reason, our action plan to define P (w → w′|T ) for the
case w′ is worse than w will be the following:

• Firstly, we represent the violation profiles in an appropriate way.

• Secondly, we define the difference of two violation profiles.

• Thirdly, we define temperature in a similar format.

• Fourthly, we define the exponential of their quotient.

• Lastly, we introduce the SA-OT algorithm.

We shall perform this action plan several times. In this section, we try
to build up an intuitive idea. Therefore, we shall represent violation profiles
as vectors, whereas the difference of two violation profiles will be a pair of
numbers. A violation profile as a vector is but a shorthand for a row in a
traditional tableau, most probably familiar to the reader. Subsequently, the
following section presents two alternative mathematical models. Yet, all three
approaches will lead to the same SA-OT algorithm.

Difference of violation profiles

We follow the action plan just presented, and begin with the representation of
a violation profile. In traditional terms, a violation profile is a set of tokens of
violation marks. For instance, candidate w1 incurs two marks from constraint
C4, one mark form C2, five marks from C1, and one mark from constraint C0.



54 Chapter 2. Optimality Theory and Simulated Annealing

Such a set can be simply visualised by a tableau, many of which we already saw
in Chapter 1.

If candidate w1 has incurred five violation marks from constraint C1, then we
simply write C1(w1) = 5: candidate w1 has a violation level of 5 on constraint
C1. In short, constraints are functions mapping from the set of candidates onto
the set of non-negative integers.

Suppose that the constraints form the following hierarchy: CN � CN−1 �
...� C0. Then, a row in a tableau is:

CN CN−1 ... C0

w CN (w) CN−1(w) ... C0(w)
(2.9)

Frequently, cells with value Ci(w) = 0 are left empty. Now, a violation
profile can be seen as a vector formed by the levels of violation:

H(w) =
(
CN (w), CN−1(w), ..., C0(w)

)
(2.10)

It is simply a shorter way to write a row of a tableau. We shall call the H(w)
thus introduced the violation vector corresponding to the violation profile of w.
It will be also called the vector representation of the Harmony function.

Note that the indices decrease within the vector representation. The first
component of the vector has the highest index, and it represents the violation
level of the highest ranked constraint. Although this notation might look awk-
ward at this point, it will become handy later on to assign higher indices to
higher ranked constraints. Additionally, this notation clearly parallels an OT
tableaux, in which the highest ranked constraints appear on the left.

Now, we proceed to the difference of two violation profiles. Let us take two
violation profiles represented in the form of a traditional tableau:

C4 C3 C2 C1 C0

w1 ** * ***** *
w2 ** *** *

(2.11)

The reader familiar with Optimality Theory will immediately observe that
the crucial constraint that differentiates between the behaviour of the two can-
didates w1 and w2 is constraint C2. We shall call a constraint playing this
important role the fatal constraint, the critical constraint, or, following Prince
and Smolensky (2004), the highest ranked constraint with uncancelled marks.

Even though candidates w1 and w2 do not necessarily satisfy the two highest
ranked constraints, C4 and C3, these constraints do not play any role in the
comparison. If the question is whether to move from w1 to its neighbour w2, the
two violation marks incurred by both candidates with respect to constraint C4
just “elevate the baseline”: hiking from 500 m above sea-level to 800 m above
sea-level is the same as hiking from 1500 m to 1800 m above sea-level. In brief,
these highly ranked, but shared violations will not influence the difference in
the Harmony value of the two candidates.

Furthermore, standard Optimality Theory teaches us not to look further in
the hierarchy once we have found a difference between the violation profiles (for
counter-examples and the notion of cumulativity, see subsection 1.3.5). Can-
didate w2 is defeated by w1 at constraint C2, and the many violation marks
assigned to w1 by C1 do not make any difference. Hence, the difference of these
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two violation profiles will be “two violations of constraint C2”. That is, the
difference of two violation profiles will have the form of a pair: a constraint
followed by the difference of the violation levels of this constraint.

By generalising this concrete example, we now define the difference of two
violation profiles, by following the theoretical foundations of OT. Prince and
Smolensky (2004) introduce the concept of mark cancellation and prove the
Cancellation Lemma (p. 258):

Cancellation Lemma. Suppose two structures [violation profiles—
T.B.] S1 and S2 both incur the same [violation] mark *m.13 Then to
determine whether S1 � S2, we can omit *m from the list of marks
of both S1 and S2 (’cancel the common mark’) and compare S1 and
S2 solely on the basis of the remaining marks. Applied iteratively,
this means we can cancel all common marks and assess S1 and S2

by comparing only their unshared marks.

A consequence of this lemma is the Cancellation/Domination Lemma (Prince
and Smolensky (2004) p. 261):

Cancellation/Domination Lemma. Suppose two parses [candid-
ates] A and B do not incur identical sets of marks. Then A � B iff
every mark incurred by A which is not cancelled by a mark of B is
dominated by an uncancelled mark of B.

It is this second lemma that teaches us that the crucial point in comparing
two candidates is the highest constraint Cfatal where the two profiles differ.
All violation marks assigned by constraints higher than Cfatal are cancelled,
whereas lower violation marks are dominated by some violation of Cfatal. Con-
sequently, constraints ranked lower than Cfatal can be ignored.

For the sake of simulated annealing, however, we require not only the compar-
ison of two violation profiles, but also their difference. The general “philosophy”
of Optimality Theory just presented motivates us to neglect what happens at
constraints lower than the fatal constraint:

Definition 2.2.1. Difference of two violation profiles: Suppose that
for candidates A and B, constraint Cfatal is the fatal constraint, that is, the
highest ranked constraint assigning either A or B an uncancelled mark following
mark cancellation.
Then, the difference of the violation profiles of candidates A and B is the pair〈
Cfatal, Cfatal(A)−Cfatal(B)

〉
, that is: “the difference14 Cfatal(A)−Cfatal(B)

at constraint Cfatal”.
Furthermore, the difference of the violation profiles is defined to be zero (

〈
0, 0
〉
)

if the two candidates incur exactly the same violation marks (i.e. there is no
uncancelled mark).

For instance, in tableau (2.11), the difference of the violation profiles of w1

and w2 is the pair
〈
C2,−2

〉
(“−2 violations of C2”).

13Here the mark *m is meant to be a token of violating constraint m.
14In linguistic applications, the levels of violation are non-negative integers, thus their dif-

ference is always an integer. Generalising to real-valued violation levels is straightforward.
Problems may arise, however, if the constraints map to a fully ordered set in which subtrac-
tion is not defined. Yet, we do not deal with this case.
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Let us introduce this definition now in a slightly more formal way. The
point-wise difference of two profiles seen as vectors (equation (2.10)) is still a
violation profile-like vector :

H(w′)−H(w) =
(
CN (w′)− CN (w), ..., C0(w′)− C0(w)

)
(2.12)

This difference, however, does not have yet a form that can be used in (2.8).
When one compares two candidates, what matters according to the Cancel-

lation/Domination Lemma is the leftmost non-zero component in this difference
vector. This is the component corresponding to the fatal constraint: the highest
ranked constraint that assigns a different number of marks to the two candid-
ates. In standard OT, only its sign (positive or negative) matters. The crucial
step in the present proposal is to take its value (as opposed to only its sign) and
its place in the vector, but no further information.

Consequently, two difference vectors are equivalent for the present purpose
if their leftmost non-zero component is the same and in the same column:15

Definition 2.2.2. Two vectors, a = (aN , ..., a0) and b = (bN , ..., b0) are equi-
valent

a ∼= b

if and only if there is a k ∈ {N, ..., 0} such that ak is the leftmost non-zero
component of a, bk is the leftmost non-zero component of b, and ak = bk.
Additionally, (0, 0, ..., 0) ∼= (0, 0, ..., 0).

In other words, we require both vectors to begin with the same number of
zeros, and their first non-zero element to be also equal. They may differ in their
further components.

It can be easily shown that ∼= is indeed an equivalence relation:16 it is
reflexive (a ∼= a), symmetric (a ∼= b implies b ∼= a) and transitive (if a ∼= b
and b ∼= c then a ∼= c). Consequently, ∼= defines equivalence classes on the
set of the vectors: a and b belong to the same equivalence class iff a ∼= b. The
equivalence classes are disjunct (their intersection is empty) and cover the whole
set of vectors. An equivalence class can be specified by the index of the left-most
(that is, highest ranked) component, as well as by the value of this component.

What really interests us is not the difference as defined in Eq. (2.12), but
the equivalence class to which this difference belongs. The philosophy of stand-
ard Optimality Theory, namely the Cancellation/Domination Lemma, does not
differentiate between two difference vectors that belong to the same equivalence
class with respect to equivalence relation ∼=.

This is why we define the magnitude of a violation profile-like vector as the
equivalence class to which the vector belongs:

Definition 2.2.3. The magnitude of a violation profile-like vector (aN , ..., a0)
is

‖(aN , ..., a0)‖ = 〈k, ak〉
15This definition introduces the equivalence ∼= of two vectors in general. This relation will

be used on vectors representing the difference of two violation profiles. It is not to be confused
with the equivalence relation in Definition 3.1.6, according to which two violation profile-like
vectors are equal (H(w1) = H(w2))—the candidates are equivalent (w1 ' w2)—iff they incur
the same number of violation marks by each of the constraints.

16Cf. e.g. Eric W. Weisstein. ”Equivalence Relation.” From MathWorld—A Wolfram Web
Resource. http://mathworld.wolfram.com/EquivalenceRelation.html



2.2. Simulated Annealing for Optimality Theory 57

CN CN−1 ... Ck+1 Ck Ck−1 Ck−2 ...

w′ 2 0 1 2 3 0
w 2 0 1 3 1 2

H(w′)−H(w) 0 0 0 -1 2 -2
‖H(w′)−H(w)‖ 0 0 0 -1 − −

Table 2.3: An example for the difference of two violation profiles: given
the profiles of w and w′, | w′−w |= ‖H(w′)−H(w)‖ = 〈Ck,−1〉, and Ck is the
fatal constraint. The differences in the violation levels of the constraints ranked
lower than Ck are ignored in the magnitude of a vector.

where k is the lowest (rightmost) element of {N, ..., 0} such that ∀j > k: if
j ≤ N then aj = 0

Thus, 〈k, ak〉 is the name of the equivalence class to which all vectors belong
whose first components (with indices N , N − 1,..., k + 1) are zero, and whose
kth component is ak. If k = N , there are no zero components on the left.

Then, we define the difference of two violation profiles as simply the mag-
nitude of the difference of the violation profile vectors:

Definition 2.2.4.

| w′ − w |= ‖H(w′)−H(w)‖ = 〈k, Ck(w′)− Ck(w)〉

Here, Ck is the fatal constraint, that is, the highest ranked constraint with
uncancelled violation marks (the highest k such that Ck(w′)− Ck(w) 6= 0):

‖H(w′)−H(w)‖ = ‖
(
0, 0, ..., Ck(w′)− Ck(w), ..., C0(w′)− C0(w)

)
‖ =

= 〈k, Ck(w′)− Ck(w)〉 (2.13)

An example is given in Table 2.3.
Note that the difference of two violation profiles is a pair of numbers : the first

number is the index of a constraint, whereas the second number is a difference
in violation levels. So far, both have been integers, but later we shall be more
flexible.

We have already introduced the Law of trichotomy in Chapter 1, and we
shall return to it soon. It states that for any two violation profiles A and B,
exactly one of the following statements holds: 1. A is better than B (A � B); 2.
A is equivalent to B (same violation profile, A ' B); 3. and A is worse than B
(that is, A ≺ B). By using the Cancellation/Domination Lemma, it is easy to
demonstrate that these three cases correspond to the second component in the
difference of the violation profiles being negative, zero or positive, respectively.
Consequently, it is well-founded to represent violation profiles by violation vec-
tors. Section 3 will introduce two further ways of representing violation profiles,
prove their well-foundedness, and derive ways of applying simulated annealing
to Optimality Theory.

Even if we could not reduce the difference of two violation profiles, the
expression H(w′) −H(w) appearing in pseudo-definition (2.8), to a real value,
we have now a pair of numbers instead of an N -dimensional vector.
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We shall soon need—for the introduction of temperature—the comparison
of two such pairs. Which jump is greater: moving from w1 to w2, or from w3

to w4? Increasing the violation level of a higher ranked constraint is a steeper
step than increasing the number of marks assigned by lower ranked constraints
only. If both of two steps increase the violation level of constraint Ck (without
increasing the violation level of higher ranked ones, and we do not care about
lower ranked ones), then the step that adds more violation marks is the steeper
one, although the steepness of the two steps do not differ dramatically.

Consequently, we propose the following relations (not all of which exclude
the other ones):

Definition 2.2.5. Let K1 and K2 be real numbers, while t1 and t2 be positive
real numbers.

1. Two pairs are equal:
〈K1, t1〉 = 〈K2, t2〉, iff K1 = K2 and t1 = t2.

2. One of the pairs is greater:
〈K1, t1〉 > 〈K2, t2〉, iff either K1 > K2 or K1 = K2 and t1 > t2.

3. One of the pairs is much greater:
〈K1, t1〉 � 〈K2, t2〉, iff K1 > K2.

4. Two pairs are approximately equal:
〈K1, t1〉 ≈ 〈K2, t2〉, iff K1 = K2.

After this slight detour, let us turn back to our agenda set up earlier. We
have argued for a definition of the difference of two violation profiles. How does
it help us in defining temperature?

Defining temperature and the transition probabilities

Recall the slight move of replacing the fatal constraint by its index in Definition
2.2.3: we shall use 〈k, Ck(w′)− Ck(w)〉, and not 〈Ck, Ck(w′)− Ck(w)〉. The
goal of this slight change has been to help defining temperature.

As discussed earlier, the “temperature” in simulated annealing determines
the range of change in energy (harmony, or some other function to be optimised),
above which counter-optimal moves are prohibited, and under which counter-
optimal moves are allowed. Therefore, temperature has to have the same “form”
(dimension, structure) as changes in the function to be optimised. As a differ-
ence of two violation profiles is now a pair 〈k, t〉, we define temperature also as
a pair of numbers:

T = 〈KT , t〉 ∈ R ×R+ (2.14)

If KT = i such that there is a constraint Ci, then the temperature T is said
to be in the domain of constraint Ci. The temperature T = 〈KT , t〉 is above
(below) constraint Ci if KT > i (KT < i). Using Definition 2.2.5, temperature is
in the domain of constraint Ci iff T ≈ 〈i, 1〉; and temperature above the domain
of constraint Ci iff T � 〈i, 1〉. Temperature being far above the domain of Ci
(if one wishes, T ≫ 〈i, 1〉) will denote KT � i, in an informal sense.

t ≤ 0 is not allowed by definition, because, as we shall see, that would lead
to mathematical problems in the simulation. The situation is similar to the
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one in physics, where zero and negative absolute temperatures (Kelvin’s scale)
are also prohibited. On the other hand, KT can be both positive and negative,
and behaves like relative temperature scales in physics (Celsius, Fahrenheit,
Réaumur). In practice, KT will be an integer, although nothing prohibits having
non-integer values for KT . In addition, KT will range between Kmax, usually
(far) above the highest ranked constraint, and Kmin, always far below the lowest
ranked constraint. Assigning index 0 to the lowest ranked constraint causes the
system to freeze exactly when the first component of the temperature KT < 0,
as the continental reader might expect.17

Notice that if KT is the index of some constraint—and this case will be the
most interesting one—, then temperature 〈KT , t〉 corresponds to some equival-
ence class on the set of possible violation profile vector differences. Namely,
to the vector differences whose first (leftmost) components (with indices N ,
N − 1,..., KT + 1) are zero, and whose KT th component is t (by Definition
2.2.3). In other words, such a temperature is equivalent to a move which in-
creases the number of violation marks assigned by constraint CKT by t, leaves
the violation marks of higher ranked constraints unchanged, and might change
the violation marks assigned by lower ranked constraints in any way.

However,KT does not necessarily correspond to some constraint. This is why
the structure of temperature is said to be a generalisation of the violation profile
differences. And yet, we can also apply the comparison relations introduced
by Definition 2.2.5 to such generalisations. Using this definition, a decreasing
series of temperature values (a cooling schedule) can be specified. Moreover, it is
possible to compare a change in the harmony function to the actual temperature,
in order to define the transition probabilities.

Remember Table 2.2, based on equation (2.7): temperature in simulated
annealing draws a smooth border line between allowed and prohibited counter-
optimal transitions. The chance of increasing the energy function with T is 1/e
at temperature T .

Combining Definition 2.2.5 with Table 2.2, we can easily formulate now the
definition of the transition probability for the w � w′ case:

P (w → w′|T ) =





1 if ‖H(w′)−H(w)‖ � T

1/e if ‖H(w′)−H(w)‖ = T

0 if ‖H(w′)−H(w)‖ � T

(2.15)

In words, if temperature is in a domain above that of the fatal constraint,
then the loss of Harmony (the increase in violation marks) incurred by the move
is negligible compared to the temperature, and the move is always taken. If,
one the other hand, the temperature is very cold compared to the increase in
violation marks, then the move is never taken.

According to Table 2.2, if the increase in the cost function is comparable to
the temperature, then the probability of moving has a medium value. Specific-
ally, if the two are equal, the move has a chance of 1/e. By Definition 2.2.5,
this translates to the case when the temperature is exactly in the domain of
the fatal constraint. In this special case, equation (2.7) can be simply copied:
augmenting the violation marks of the fatal constraint by d has a probability of
e−d/t, where t is the second component of the temperature in equation (2.14).

17Even if weird, nothing prohibits the Anglo-Saxon reader from assigning index 32 to the
lowest ranked constraint.
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In particular, if ‖H(w′)−H(w)‖ = T , that is, d = t, the transition probability
is indeed e−1 = 1/e.

In summary, the transition probabilities for the w � w′ case are:

P (w → w′|T ) =





1 if ‖H(w′)−H(w)‖ � T

e−d/t if ‖H(w′)−H(w)‖ ≈ T
0 if ‖H(w′)−H(w)‖ � T

(2.16)

where d is the second component of ‖H(w′)−H(w)‖, and t is the second com-
ponent of T .

Equation (2.16) differs from the behaviour of the traditional transition prob-
abilities summarised in Table 2.2 only in one respect. Namely, in traditional
simulated annealing (and in physics), the ∆E � T and ∆E � T cases were
informal notions, and consequently, the statements P (w → w′|T ) ≈ 0 and
P (w → w′|T ) ≈ 1 were also to be taken informally. SA-OT, however, imple-
ments a non-real valued optimisation (due to the Strict Domination Hypothesis
of OT), therefore the � relation could be introduced exactly in Definition 2.2.5
(again, due to the Strict Domination Hypothesis of OT). This is the reason why
the probabilities in the ∆H � T and the ∆H � T cases are postulated to be
exactly 0 and 1, respectively.

At this point, we are already getting very close to the introduction of the
SA-OT algorithm. We have defined temperature and the transition probabil-
ities. The very last step is to introduce the cooling schedule, that is, a series
of decreasing temperature values. The way to do this is already implicit in
Definition 2.2.5.

The cooling schedule is realised in standard simulated annealing as a single
loop gradually decreasing the temperature (Fig. 2.2). Thereby, the probability
of jumps increasing the cost function are gradually decreased from very close to
1 to very close to 0. At each moment, temperature defines the jump that has a
probability of 1/e.

What should the cooling schedule do in SA-OT? Initially, it should allow any
transitions. Then, it should prohibit transitions increasing the violation level of
highly ranked constraints. Then, prohibit also the transitions that would only
increase the violation marks assigned by lower ranked constraints, etc. In the
final phase of the simulation, no move to a worse state should be allowed.

According to equation (2.16), a temperature that would allow any move
has a first component KT that is higher than the index of the highest ranked
constraint. A temperature that prohibits augmenting the violation level of the
highest ranked constraint, but allows augmenting the violations of lower ranked
constraints, has a KT value that is lower than the index of the highest ranked
constraint, but higher than the indices of the lower ranked constraints. Finally,
if KT is lower than the index of the lowest ranked constraint, no transition to a
worse candidate is allowed. Consequently, we have to diminish KT .

Furthermore, we also want to diminish t in a more fine-grained way. At a
given point, CKT is the highest ranked constraint whose violation marks can
increase. Still, equation (2.16) prefers increasing the number of these violation
marks by d = 1 over by d = 2. If initially, t = 5, taking both steps are relatively
easy. As t is decreased, the chances of both moves are smoothly turned off,
although the d = 2 jump will be always less likely than the d = 1 one.
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In sum, we add an embedded loop diminishing t into the loop diminishing
KT . Such a double loop will mimic traditional simulated annealing. At each
time of the simulation, temperature shows what is the jump that has a prob-
ability of 1/e. Steeper jumps are less probable, and much steeper jumps have
a zero probability. Smaller jumps have a higher probability, and much smaller
jumps have a probability of 1. If the value of temperature corresponds to some
equivalence class on the set of profile differences, its meaning can be simply
translated as “increase the violation marks assigned by constraint CKT by t, do
not change the violation marks assigned by higher ranked constraints, and do
what you want with the violation levels of lower ranked constraints”. Otherwise,
the temperature cannot be translated into a change in the violation profile, but
can be compared to such changes, by using Definition 2.2.5.

The following picture may help to visualise the idea better. Take a scale
which is composed of intervals called domains, denoted by K = 5, K = 4,...,
K = 0, K = −1,...18

C2 C0

. . . K = 3 K = 2 K = 1 K = 0 . . .

. . . ... 2.5 2.0 1.5 1.0 0.5 ... 2.5 2.0 1.5 1.0 0.5 ... 2.5 2.0 1.5 1.0 0.5 ... 2.5 2.0 1.5 1.0 0.5 . . .

Figure 2.7: Visualising the domains traversed by temperature

Each domain is an interval open on the left and closed on the right, so
that the interval (+∞, 0] can be projected onto it. Temperature T = 〈K, t〉 is
represented on this scale by the point that is the projection of t onto the domain
K. Moving to the right on this scale means decreasing temperature: remember,
T1 = 〈K1, t1〉 > T2 = 〈K2, t2〉 iff either K1 > K2, or K1 = K2 and t1 > t2.

Furthermore, some of the domains correspond to constraints—in the present
example, constraint C2 corresponds to K = 2, and constraint C0 corresponds to
K = 0. The higher ranked a constraint, the higher the domain K it is associated
with (in the present case, thus, C2 � C0). Notice that here we already enjoy
the advantages of the initially surprising notation that associates higher indices
with higher ranked constraints. Temperature may be assigned values that are
in domains corresponding to some constraints, or values that are in domains
above / between / below some constraints.19

Now, decreasing temperature can be realised by decreasing t within one
domain, and then jumping to the next domain (or to another domain further
below). In practice, embedded loops will be used: the outer cycle decreases the
domain of the temperature (K descends from Kmax to Kmin, by steps Kstep),
and the inner loop decreases t within a given domain (from tmax to tmin, by
steps tstep). Importantly, the borders of the domains are taboo: t > 0 always,
similarly to absolute temperature in physics.

18This approach, similarly to the applications to follow, supposes that the first component
of the temperature T = 〈K, t〉 may take only integer values.

19In what follows, we shall place constraints into the domains K = 0, K = 1, K = 2,
etc. Nothing prohibits us, however, from leaving out some domains. Then, in some phase
of the simulation, temperature may take values from the domain lying between the domains
associated to two successive constraints.
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2.2.4 Introducing the SA-0T algorithm

At this point we are able to formulate the way simulated annealing will be im-
plemented for Optimality Theory. We will soon introduce the precise algorithm
for Simulated Annealing Optimality Theory (Fig. 2.8).

We begin the random walk in the space of the candidates by choosing (ran-
domly or semi-randomly) an initial candidate w0 (recall Fig. 2.5). In the case of
a finite candidate set, we shall use each candidate as a starting point with equal
probability. In practice, we shall run the simulation many times from each of
the candidates. In the case of an infinite candidate set, however, a more useful
solution is to start the simulation with equal probability from the elements of
a small finite subset: for instance, from the candidates without the recursive
insertion that results in an infinite candidate set. A third option is to launch
the simulation always from the candidate that is arguably the default one with
respect to the underlying representation.20

In the beginning, temperature T0 = 〈Kmax, tmax〉 is high, that is, Kmax

is higher than the domain of the highest ranked constraint. A lower initial
temperature can also be chosen, but if Kmax is higher then the index of the
highest ranked constraint, the simulation may have an initial phase in which
the transition probability P (w → w′) is 1 for all w and w′. The advantage (or
disadvantage, depending on what your goal is) of setting Kmax high enough is
to reduce the influence of the initial candidate’s choice.

At each time step of the simulation, temperature is decreased, and one step
may be performed in the search space. Traditional simulated annealing some-
times allows for more steps before reducing the temperature (cf. the parameter
nrep in Fig. 2.2). Instead of introducing an additional parameter, we rather
set nrep = 1, and prefer to reduce the temperature in smaller steps. The differ-
ence between the two approaches should not be significant, but a proliferation
of parameters might render our analysis more complex. Nonetheless, further
research could analyse the role of this factor, as well.

At a given moment in the simulation, the random walker is located in the
position represented by candidate w. Temperature then is T = 〈KT , t〉. A
neighbour w′ of candidate w (cf. Fig. 2.5) is randomly picked. The choice is
determined by the topology of the search space: the neighbourhood structure
provides the set Neighbours(w), from which w′ is chosen using the a priori
probability distribution Pchoice(w′|w) on Neighbours(w). As discussed in section
2.2.2, the elements of Neighbours(w) may have equal or different chance to be
picked, and several strategies exist to define Neighbours(w).

There follows a comparison of the violation profiles of w and w′. If w′ is more
harmonic than w (w′ � w), or they are equally harmonic (w′ ' w: they incur
exactly the same violation marks), the random walker automatically moves to
w′. Otherwise, moving to w′ depends on the temperature. How? The likelihood
is defined in equation (2.16).

To sum up, if T = 〈KT , t〉 and ‖H(w′)−H(w)‖ = 〈k, d〉, then the transition
probability is:

20Suppose for instance that the stress pattern of a compound word has to be predicted.
Then the default candidate could be the one whose stress pattern is the concatenation of the
stress patterns of the two parts of the compound. We shall return to this idea in section 5.7.
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P (w → w′ | T ) =





1 if d ≤ 0

1 else if k < KT

e−d/t else if k = KT

0 else

(2.17)

We can reformulate this equation in words:

Rules of moving: Let the crucial constraint (the highest ranked
constraint with uncancelled marks) when comparing w to w′ be Ck,
and temperature be T = 〈KT , t〉. Then the following options are
available:

• If w′ is better than w (w′ � w, that is, Ck(w′) < Ck(w)), then
move from w to w′.

• If w′ loses due to the critical constraint Ck > KT : don’t move!

• If w′ loses due to the critical constraint Ck < KT : move!

• If w′ loses due to the critical constraint Ck = KT : move with
probability P (w → w′) = e−d/t, where d = Ck(w′)− Ck(w).

The case k < KT corresponds to ∆E � T in standard simulated annealing:
the transition is highly probable. Similarly, k > KT means in the OT philosophy
that ∆E � T , and the transition is prohibited. The middle case, ∆E ≈ T ,
corresponds here to k = KT , and the exponential function ensures a smooth
transition between the two extremes. In this last case, as temperature and
the violation profile difference are in the same domain, the second (real-valued)
components of both play the main role. Otherwise, these second components—t
and d—do not get to the stage.

Temperature T = 〈KT , t〉 is decreased in a double loop. The outer one
diminishes KT from Kmax to Kmin, in linear steps of Kstep. Similarly, the inner
cycle reduces t from tmax to tmin, in linear steps of tstep. The linearity of the
outer cycle follows directly from the picture presented in Fig. 2.7.

However, the component t of the temperature could be decreased in several
other ways, as well, for instance on a logarithmic scale.21 Still, according to
the literature on standard simulated annealing Reeves (1995), the exact way
of decreasing temperature does not have a major influence on the precision.
Consequently, we opt for the simplest way, and leave alternatives for future re-
search. Section 5 will examine the role of tmax and tmin, and will conclude that
different ways of running the inner loop may result in minor—though statistic-
ally significant—results. Thus, I suppose that a logarithmic scale would have
similar consequences.

The algorithm in Fig. 2.2 also includes a stopping condition. Frequently, a
simulated specific heat is measured, that is, the improvement in energy (in the
cost function) per unity temperature change (∂E/∂T ). The stopping condition
then requires this measure to drop below a certain level, that is, the algorithm
terminates when decreasing the temperature does not lead to much decrease in
the cost function anymore.

21A logarithmic scale involves multiplying t each time with a constant factor smaller than 1:
tn+1 = tstep ·tn. Whereas a linear scale adds a constant negative value to it: tn+1 = tn−tstep.
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ALGORITHM: Simulated Annealing for Optimality Theory

Paramters: w_init, K_max, K_min, K_step, t_max, t_min, t_step

# t_step: number of iterations / speed of simulation

w <-- w_init ;

for K = K_max to K_min step K_step

for t = t_max to t_min step t_step

choose random w’ in neighbourhood(w) ;

calculate < C , d > = ||H(w’)-H(w)|| ;

if d <= 0 then w <-- w’

else w <-- w’ with probability

P(C,d;K,t) = 1 , if C < K

= exp(-d/t) , if C = K

= 0 , if C > K

end-for

end-for

return w

Figure 2.8: The algorithm of Optimality Theory Simulated Annealing:
Moving with probability P(C,d;K,t) is a short-hand for generating a random
number 0 ≤ r ≤ 1, and moving iff r ≤ P(C,d;K,t).

We could have included a similar condition: the algorithm stops whenever
the random walker has not moved for a certain number of time steps. For
instance, if the random walker has not left candidate w for c · |Neighbours(w)|
steps (with c = 5, say), we may safely conclude that w is a local optimum, and
temperature has become too cold to be able to escape it. Running further the
algorithm makes no sense, for the likelihood of such an escape will further drop
with decreasing temperature. If c is set too low, the algorithm may frequently
stop in candidates that are not local optima, but have a few neighbours that
are even worse. If c is set too high, the simulation may run unnecessarily long.
Nonetheless, it is not difficult to come up with a reasonable compromise.22 The
danger only arises in the case of a search space that has “locally optimal valleys”
formed by neighbours that incur exactly the same violation marks and are more
harmonic than their environment. Such a system is prone to run into an infinite
loop, so one either has to employ also a Kmin limit, or to count horizontal
moves as if the system were stuck in a state (that is, count time steps without
improvements in the Harmony function).

The algorithm of Optimality Theory Simulated Annealing (OT-SA) is finally
presented in Fig. 2.8 in the form we shall use it.

22Suppose that a candidates has n neighbours, only one of which is more harmonic than
this candidate. Temperature is low enough, so that the random walker cannot move to
a less harmonic neighbour. Suppose, furthermore, that each neighbour has equal a priori
probability. Then, the likelihood of choosing a neighbour to which the system will not move
is n−1

n
. Trying c · n times, and still not leaving this non-local optimum has a probability of

 
n− 1

n

!cn
< e−c

because the series (1 + 1
n−1

)n is a monotonically decreasing series with e as its limit. Con-

sequently, c = 3 guarantees you to terminate the algorithm in a local optimum with probability
95%, and c = 5 with a probability higher than 99%. Moreover, this likelihood is even much
higher in most search spaces.
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Compare it to the standard simulated annealing algorithm in Fig. 2.2 in
section 2.1.2. The two main changes are the way temperature is decreased and
the transition probability is calculated. Both are connected to the more complex,
non-real valued character of the function to be optimised (the cost function).
Temperature is decreased in a double cycle, as explained when temperature
was introduced: the outer loop decreases its first component and the inner
loop its second component. Furthermore, the transition probability can also be
determined in a more complex way, which follows equation (2.17).

As can be seen, the parameters of the algorithm are the initial candidate
(w0) from which the simulation is launched, as well as the the parameters of the
cooling schedule: Kmax, Kmin, Kstep, tmax, tmin, tstep.

Typically, Kmax will be higher than the highest ranked constraint, so that
there will be a phase of the simulation when the random walker can freely in-
crease the violation marks of even the highest ranked constraints. One may
however add constraints higher ranked than Kmax: the resulting picture will be
as if we restricted GEN, since the candidates sub-harmonic for these “hyper-
strong” constraints would not play a role at all in the model. Section 6.5 intro-
duces a model whose success depends on tuning Kmax, a parameter that does
not influence the model in Chapter 5 (other than trivially).

If the role of Kmax is to supply additional layers above the highest ranked
constraint in order to allow the random walker to move unhindered in the initial
phase of the simulation, then the role of Kmin is to define the length of the final
phase of the simulation. Namely, by having Kmin (much) below the lowest
ranked constraint, the system is given enough time to “relax”, to reach the
closest local optimum, that is the bottom of the valley (the top of the hill, if
you maximise the function) in which the system is stuck. Without such a final
phase, the system will return any candidate, not only local optima, leading to an
uninteresting model. Consequently, Kmin has to be chosen such that the number
of iterations in this frozen state (KT < 0, if the lowest ranked constraint is C0)
be enough to reach the closest local optimum by a hindered random walk.23

Not much attention will be given to the parameter Kstep. Although other
options are also possible, the standard way we shall proceed is the following:
if we have N + 1 constraints, we always place them into the domains K = 0,
K = 1,..., K = N , and we set Kstep = 1. Further, if not specified otherwise,
Kmax = N + 1. Moreover, the system is said to be frozen if the temperature
T drops below domain K = 0, that is, T = 〈KT , t〉 with KT < 0. In a frozen
system, no move can lead to a less harmonic candidate.

The parameters tmax, tmin and tstep drive the inner loop of the algorithm,
that is the decreasing of the second component t of temperature T = 〈K, t〉.
This second component plays a role only in the expression e−d/t, used when the
the crucial constraint at which w′ is defeated by w coincides with the domain
of the current temperature. Because the neighbouring candidates w and w′

typically differ only minimally (a basic operation transforms w into w′), their
violation profile is also quite similar, thus the difference d in violating the crucial
constraint is expected to be a low number (usually 1 ≤ |d| ≤ 2). Consequently,
the e−d/t vanishes if t � 3, and so the default values used will be tmax = 3,

23In our models—with Tstep = 1—a good choice might be Kmin = −100. If Tstep = 0.01,
however, Kmin = −1 is enough, and Kmin = −100 will make the simulation unnecessarily
long. Remember that the constraints are located in the domains k = 0, ...,N . My scripts
automatically adjust Kmin to Tstep.
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tmin = 0.24

Chapter 5 will also present experiments tuning tmin and tmax. Increasing
or decreasing the half-closed interval [tmin, tmax) crossed by t has a measurable,
though minor effect on the outcome of the simulation. Based on this result, we
argue that t and the exponential expression e−d/t in the definition of SA-OT
does have an effect on the outcome of the simulation.

The most interesting parameter is tstep, for it is inversely proportional to the
number of iterations performed—if the other parameters are kept unchanged.
In this way, it directly controls the speed of the simulation, hence, indirectly, its
precision. Therefore, most of our experiments will vary this parameter. Actu-
ally, the other parameters also may change the number of iterations performed,
but their effect is more complex, so tuning tstep is the most straightforward
way—at least, for me—to change the speed. On the other hand, when meas-
uring the role of tmax and tmin in Chapter 5, the parameter tstep will help in
controlling for the number of iterations.

In the next chapter, additional arguments are brought in favour of the SA-
OT Algorithm in Fig. 2.8: different formal approaches will lead to the same
proposal. Before that, however, let us perform some first experiments using the
Simulated Annealing Optimality Theory Algorithm in order to get an impression
of it.

2.3 Playing with SA-OT

2.3.1 When SA-OT works

We have defined the Simulated Annealing for Optimality Theory Algorithm (SA-
OT), so it is now high time to try out whether it really works, and to see under
what circumstances it “fails”.

In the present section, we are trying out toy models in order to obtain a bet-
ter understanding of what SA-OT really does in practice. The reader is welcome
to implement these examples personally on the demo SA-OT available on my
web site at http://www.let.rug.nl/∼birot/sa-ot/. One can simply vary the
different parameters of the algorithm, and examine its behaviour. Furthermore,
one can specify a “verbose” output, which explains all the details during the
simulation.

In section 2.1.2, we introduced a search space with three states and with an
asymmetric lambda-shape neighbourhood structure (Fig. 2.3) in order to show
why traditional simulated annealing works. Now, we shall try out analogous
cases in Optimality Theory and analyse the performance of SA-OT.

Among the three candidates, B is a neighbour of A and C, whereas A and
C have the singleton set {B} as their neighbour set. In other words, A and C
are not neighbours of each other. Candidate C is always the global optimum,
to which the usual + symbol points, whereas candidate A is a local optimum,
annotated by the variation symbol ∼ (Fig. 2.9). If A and C were neighbours,
A could not become a local optimum.

24Notice that for the sake of convenience, tmin is always understood as the lower border of
t, exclusively. The inner loop runs while t > tmin. Nevertheless, Kmin will be understood
as the lower border, inclusively : the outer loop is meant to run while K ≥ Kmin—whenever
rarely Kmin will be mentioned. This slight incongruity should render the notations otherwise
simpler.
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Figure 2.9: An asymmetric landscape with three states, two of which are local
optima, but only state C is a global optimum. State B is a neighbour of both
A and C, however states A and C are not neighbours of each other.

The first tableau to be examined is the following:

C1

∼ A *
B **

+ C

(2.18)

It is easy to check that C � A � B. The only constraint C1 is assigned index
(a K-value) of 0, that is, temperature will be in its domain whenever the first
component of T is KT = 0. Let us set Kmax = 1, Kstep = 1, tmax = 3, tmin = 0,
and Kmin low enough, say, Kmin = −100. The only parameter we vary is tstep.

As Kmax is higher than the rank of the only constraint, the initial candidate
of the simulation will not really matter. In practice, however, we launch the
simulation in 1/3 of the cases with A as the initial candidate, in 1/3 of the cases
with B as the initial candidate, and in 1/3 of the cases with C as the initial
candidate.

The algorithm is stochastic, and is prone to return different outputs. If Kmin

were higher than the rank of the constraint, even B would be returned in 1/3
or 2/3 of the cases, depending on the parity of the number of the iterations.
With different parameter settings, the algorithm terminates only in A and C, or
exclusively in C. Therefore, what will interest us is not the output of a certain
simulation, but the proportions of the different outputs of several simulations.
In other words, we seek to know the likelihood of the simulation to return a
certain candidate—similarly, to other stochastic linguistic models referred to in
chapter 1.25

The following table contains the absolute frequencies returned by a number
of experiments performed on the demo web site, with the simulation launched
100 times from each of the three candidates:

25By running the simulation many times, the proportion of a certain output (the relative
frequency) should approximate the theoretical probability of returning that candidate.
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tstep Frequency of A Frequency of C

3 141 159
3 146 154
3 145 155
3 129 171
3 131 169
1 128 172
1 122 178
1 134 166
1 130 170
1 127 173
0.1 79 222
0.1 86 214
0.1 82 218
0.1 72 228
0.1 90 210
0.01 32 268
0.01 33 267
0.01 40 260
0.01 40 260
0.01 27 273
0.001 9 291
0.001 10 290
0.001 12 289
0.001 6 294
0.001 14 286

(2.19)

Based on these data, the probability and the standard deviation (n) of re-
turning the globally optimal candidate, C, in function of tstep is:

tstep Frequency of C

3 0.537 ± 0.0237
1 0.573 ± 0.0130
0.1 0.727 ± 0.0207
0.01 0.883 ± 0.0167
0.001 0.967 ± 0.0087

(2.20)

The results speak for themselves. A very fast cooling schedule, such as
tstep = 3, returns the local—but non-global—optimum A in almost half of the
cases. Slowing down the cooling schedule, that is, increasing the number of
iterations performed, will increase the likelihood of returning the global optimum
in a highly significant level. For tstep = 0.001, the chance of returning A is below
5%, and an even smaller tstep would further reduce the frequency of A. This
case, in which the frequency of the global optimum increases gradually to 100%
as tstep decreases, will be considered a success of SA-OT.

One can also check simply that the choice of the initial candidate does not
influence significantly the simulation, if Kmax is large enough. For instance,
here are the absolute frequencies for the outputs, when we launched the simu-
lation 500 times from each of the three candidates, with tstep = 1 (the data in
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parentheses are the results of repeating the experiment twice):26

Initial candidate Returning A Returning C
A 211 (218, 231) 289 (282, 269)
B 191 (198, 195) 309 (302, 305)
C 198 (227, 218) 302 (273, 282)

(2.21)

We can now proceed to cases where SA-OT does not work in the sense
that decreasing tstep will not increase the likelihood of returning the globally
optimal (that is, the grammatical) candidate. In such cases, the topology of
the candidate set forces the simulation to always return local optima with a
constant likelihood. However, empirical research might find phenomena that
can be accounted for by these systematic failures, as we shall argue for in section
6.4. The main reason for these systematic failures will be that in our definition
of violation profile difference we neglect constraints that are below the fatal
constraint.

2.3.2 When SA-OT does not work

Remember that a crucial step in introducing SA-OT was neglecting the con-
straints below the fatal constraint (the highest ranked constraint with uncan-
celled marks). The difference of two violation profiles is the difference in their
levels of violating the fatal constraint, independently of how they behave with
respect to lower constraints. Consequently, the difference of w and w1 is the
same as the difference of w and w2—violation C1 once—in the following tableau:

C2 C1 C0

w * **
+w1 * *
w2 * * **

(2.22)

We argued for this definition based on the foundations of Optimality Theory,
following the claim that cumulativity effects should be avoided. Nevertheless,
neglecting lower ranked constraints—not making any difference between the
difference of w and w1 on the one hand, and the difference of w and w2 on the
other in tableau (2.22)—leads us to cases where the algorithm for OT-SA just
presented does not work.

Imagine again the asymmetric lambda-shaped landscape with three candid-
ates, two of which are local optima, such as the one presented in figure 2.9. This
is the repetition of figure 2.3, which we used in section 2.1.2 to understand why
traditional simulated annealing works.

Remember the argumentation there. Moving to both directions from the
middle state B has equal chance: both neighbours are chosen with equal prob-
ability, and the random walker moves there certainly, once chosen. Yet, it is
more difficult to escape from the global optimum C than from the local optimum
A, because moving to B involves a greater step uphill. So a slower cooling sched-
ule with more time steps n makes it more probable that you will escape from A,

26Notice that tstep = 1 and Kmax = 1 allows only for three unhindered steps, namely when
T = 〈1, 3〉, T = 〈1, 2〉 and T = 〈1, 1〉. Changing the parameter setting would increase the
number of unhindered steps, and would therefore decrease further the role of choosing the
initial candidate.
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and at least once choose to go to C, where you will be caught.27 In order not to
get confined in C, you have to choose always moving to A from B, which has a
probability of 0.5n vanishing with high ns. The chance of choosing C—and get
stuck there—at least once in n time steps is 1 − 0.5n ≈ 1 for high ns, that is,
for slow cooling schedules.

Consequently, although gradient descent would assign the same probability
of ending in A and C, the stochastic process introduced by simulated annealing
increases the chance of finding the global optimum. The slower the cooling
schedule, the higher the chance to find it.

Can our proposed simulated annealing for Optimality Theory exhibit the
same behaviour? It depends on the profile of the three candidates, A, B and
C. Without changing the topology, let us observe the behaviour of OT systems
with different violation profiles. The simplest example was the one analysed in
the previous subsection, namely, tableau (2.18), and there, simulated annealing
worked perfectly. The effect just observed in the real-valued case also works if
the three candidates are characterised by the following tableau:

C1 C2

∼ A *
B * *

+ C

(2.23)

Using the demo web site at http://www.let.rug.nl/∼birot/sa-ot/, we
can observe that finding the global optimum—to which the hand points—is
even easier in this system than in the one defined by tableau (2.18). Namely,
at tstep = 0.5, the likelihood of terminating in candidate A—the alternative
form marked with the ∼ symbol—is already below 10%; whereas tstep = 0.1 will
return exclusively the globally optimal candidate C.

What happens in this case? When temperature T is in the range of the
constraint C2, moving from C to B is already impossible, for such a move would
increase the number of violations of constraint C1 � T . However, escaping
from A to B is still possible, and thus a slower schedule will result in a higher
probability of escaping from A and falling into the trap of C. The more time
steps are allowed while T is in the domain of C2, the higher the probability of
ending up in C.

Thus, tableau (2.23) represents a second case where SA-OT behaves the
same way as traditional simulated annealing. Take now the following tableau:

C1 C2

∼ A *
B *

+ C

(2.24)

Here, stepping to B involves incurring an extra violation of constraint C1,
both from A and C. Candidate C being better than A does not matter for they
are not neighbours—otherwise they would not be local optima. The situation is
fully symmetric from the viewpoint of the probabilities, because escaping from

27Here, I am presenting a caricature of the situation, because escaping from state C always
has some minor positive probability in a real-valued simulated annealing. The train of thought
should nevertheless be clear.
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C has always the same chance as escaping from A: the violation profile difference
incurs one violation of C1 in both cases. If you succeed to climb from A to B,
you will also succeed to climb from C to B. If you are caught in C, you are
also caught in A. The difference between A and C is invisible, and the trick
that worked before does not work now. The distribution of the outputs will
only depend on how candidate B distributes the probabilities between A and
C—independently of the cooling schedule.

Can we make the chance of moving from A to B higher than that of moving
from C to B in this last situation, too (at least in some phase of the simulation)?
Remember that the transition probability P (A → B|T ) cannot depend on the
violation profile of candidate C.

Changing the a priori probabilities of moving from B to A or C results
in a distribution different from 50%-50%, because the chance of going to A
or to C from B is not symmetric anymore; and yet, this distribution is still
independent of the cooling schedule. Indeed, the a priori probabilities define
the horizontal structure of the landscape, whereas our problem here concerns
its vertical structure, to which the cooling schedule is related, as well.

This question is still an open research question, and may lead to altering the
whole concept of simulated annealing for OT. Meanwhile, I can only imagine
solutions that would not only contradict the general philosophy of OT, but also
introduce further problems.

For instance, take the following new definition of the difference of two vi-
olation profiles. Start with the mark cancellation procedure from the highest
ranked constraint. Initial violation marks shared by both candidates do not
interest us. Suppose C1 is the fatal constraint where the better candidate (can-
didate A) has fewer violation marks than candidate B. Until here, the difference
of the two violation profiles was defined as the constraint C1 and the number
of uncancelled marks by C1. Now, we also want to take into consideration the
highest violation mark of candidate A that is below C1. Eyeballing tableau
(2.24), we can see that this is how one may capture the fact that moving from
C to B involves a bigger upward step than from A to B.

Nonetheless, how to implement this idea in the case of the following tableau?

C1 C2 C3

∼ A * *
B *

+ C *

(2.25)

Both A and C have their first violation mark at the same constraint C2,
and their difference shows up only deeper in the hierarchy. Hence, this new
definition would make no difference between moving from A or from C to B.
Remember also that OT suggests not to look at further constraints if you have
found the needed differences when comparing two candidates.

As a side remark, as SA-OT may predict the same probability to candid-
ates A and C here, we have just shown that SA-OT does not have ganging-up
cumulativity (cf. tableau (1.16) in section 1.3.5). Namely, the probability of
candidate A (and similarly to C) does not change from tableau (2.25) to the
following tableau, notwithstanding its different behaviour for constraint C3:
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C1 C2 C3

+ A *
B *

∼ C * *

(2.26)

Further, the new definition proposed would work incorrectly in this case:

C1 C2 C3 C4

∼ A * *
B * * *

+ C * *

(2.27)

Now, when comparing A to B, we have to descend two constraints in order
to find the first violation mark incurred by A below the critical constraint C2.
Two levels is a higher difference than the one level needed when we compare C
to B. Obviously, we may consider again the highest constraint where the two
profiles differ, and then the given differences can be said to be “two levels from
C2” as opposed to “one level from C1”.

In addition, the number of violation marks found at a lower level by the
better candidate needs also to be taken into consideration, as shown by the
following tableau:

C1 C2

∼ A **
B *

+ C *

(2.28)

We may speculate further. Nevertheless, I have no idea how to capture all
these observations into a single elegant model. Do not forget that the only
information at hand when determining the transition probabilities are the two
violation profiles, and we cannot refer to other neighbours of the target state.
Probably, the phenomenon discussed in the present subsection is an inevitable
consequence of applying simulated annealing to a non-real valued function, such
as is the case for the harmony function in Optimality Theory.28

One may also add a small bit of memory to the random-walker: while wan-
dering around in the search space, the best candidate found so far is always
remembered and compared to the present position. Then, the algorithm re-
turns not necessarily the final position, but the best candidate found during the
walk. This trick would work, especially in small search spaces as those seen
in this section, but not necessarily in large ones. Nonetheless, we shall leave

28As proposed by Balázs Szendrői, a solution may be the approximation of the harmony
function of OT with polynomials P (w)[q] = CN (w)qn + ...+ C1(w)q + C0(w) the coefficients
of which are the constraint violation levels (using exponential weights; cf. subsection 3.3,
and e.g. Smolensky’s pre-OT Harmony Theory or Prince (2002)). By increasing q, we may
better approach the OT harmony function, but an unreasonably high value for q will simply
reproduce the described situations. An additional argument for keeping q relatively low is
that if the neighbouring candidates do not differ much, their violation profile is also similar,
consequently smaller qs will also correctly account for their difference in harmony. Yet, one
can also reproduce cumulativity effects (cf. subsection 1.3.5) this way—supposing one wishes
to. As higher qs require higher ranges for the temperature, further research may also consider
the possibility of gradually increasing q instead of decreasing the temperature.
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this possibility for future work, and rather focus on what the implementation
of traditional simulated annealing to OT can propose us.

Additionally, we shall later turn these failures of SA-OT into an advantage
by claiming that such failures correspond to empirically attested agrammatic-
alities. Language—even slow and careful speech—can display irregular forms
that contradict the general rules of the grammar, and yet, they are inevitably
produced in speech and attested in corpora. Instead of turning the grammar
much more complex so that it account for these irregularities, we shall argue to
keep the grammar model (the underlying OT-system) simple, and explain these
forms on the language production level.

The OT-grammars discussed in this section have been very simple, as they
included only a few candidates and a few constraints. One may ask then how
the precision is influenced by the number of candidates and the number of
constraints, but no simple answer can be given. A major disadvantage of SA-
OT is that the interactions between the neighbourhood structure, the constraint
hierarchy and the cooling schedule is so complex that it is often impossible to
find out the behaviour of the system without running the simulations. The
second part of my dissertation introduces different models, involving larger but
finite, as well as infinite candidate sets, and displaying very different behaviours.
If there are only few local optima, then the system’s precision may be similar
to the precision of those analysed so far; if, however, the huge candidate set is
full of local optima, as will be the case with the different models of Chapter 7,
then precision can drop drastically.

Before that, let us turn to a few theoretical, formal and mathematical issues
related to Optimality Theory in general, and SA-OT in particular.
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Chapter 3

Formal Approaches to
SA-OT

The goal of this chapter is to underpin the Simulated Annealing Optimality
Theory Algorithm (Fig. 2.8) in general, and the definition (2.17) of the trans-
ition probability P (w → w′ | T ), that is, the Rules of moving (page 63) in
particular. We demonstrate that this definition follows directly from the Strict
Domination Hypothesis, which constitutes the basis of OT. Therefore, we in-
troduce several formal representations of Optimality Theory. Each of them
is first proved to realise the Strict Domination Hypothesis, and then to lead
to the same definition of temperature and to the same transition probabilities
P (w → w′ | T )—independently of each other. Before introducing different rep-
resentations (real numbers in section 3.2, followed by polynomials in section 3.3,
and finally ordinal numbers in section 3.4), however, we have to formally define
what a representation is in Optimality Theory (section 3.1). Fig. 3.1 on page
85 might serve to the reader as a road map to the present chapter.1

As the formal models developed here result in the same algorithm, latter
chapters, as well as further implementations of SA-OT, can certainly be under-
stood without the mathematically demanding details of the present chapter.

3.1 Towards a formal definition of OT

The violation profile as introduced by Prince and Smolensky (2004) (Prince and
Smolensky, 1993) is a list of violation marks—or, rather, a set of tokens of vi-
olation marks. The Harmony function is the mapping that assigns a violation
profile to a candidate. Nonetheless, Prince and Smolensky’s “list of violation
marks” is a less convenient construction. Therefore, here we (re-)introduce the
vector representation of a violation profile, a straightforward translation (and
generalisation) of Prince and Smolensky’s idea. We repeat the idea already
presented in section 2.2.3, and elaborate more on this approach. Then, we con-
sider it as the standard for introducing two further representations: polynomials
and ordinal numbers.

1A summary of the present chapter has been published as B́ıró (2005b).
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As our starting point, we are given GEN, a mapping from the set of pos-
sible underlying representations to the set of possible candidates. Let GEN(UR)
denote the set of candidates corresponding to a specific underlying representa-
tion UR. The set PC of all possible candidates is the union of GEN(UR) for all
possible UR.

3.1.1 Constraints

Let Ci(w) be the number of times candidate w violates constraint Ci. In general,
we shall call Ci(w) the level of violation incurred by candidate w with respect
to constraint Ci, and in specific models we may speak of the number of violation
marks assigned by the constraint.

Indeed, Ci most often takes non-negative integer values in linguistic prac-
tice, conform to the original idea of a “list of violation marks” in Prince and
Smolensky (1993). Yet, here we generalise the concept:

Definition 3.1.1. Constraint Ci is a function on the set PC of all possible
candidates, such that for each possible UR: the set {Ci(w) | w ∈ GEN(UR)}
(the image of the candidate set corresponding to UR) is a totally ordered set
with some ordering relation Ri,UR, and any of its subsets has a lower bound
contained by the subset.2

Notice that different constraints may have different ranges. Moreover, the
same constraint with different underlying representations could also have very
different ranges in theory. Moreover, the requirement of a lower bound is only
important to ensure that an optimal form always exists. The set of non-negative
integer values with the simple greater than relation used in practice for Ci clearly
satisfies all our requirements.

Although it has been already mentioned, it may be useful to repeat here:

Definition 3.1.2. Let S be a set, and > a binary relation on S.3 Then, the
pair (S,>) is a totally (fully) ordered set, iff:

1. The law of trichotomy: for all x, y ∈ S exactly one of the following three
statements holds: 1. x > y, 2. or y > x, 3. or x = y.

2. Transitivity: for all x, y, z ∈ S, if x > y and y > z then x > z.

3.1.2 Hierarchies

First, let us introduce the notion of isomorphism:4

Definition 3.1.3. The totally ordered sets (A,<) and (B,≺) are order iso-
morphic, iff there is a bijection5 f from A to B such that for all a1, a2 ∈ A,
a1 < a2 iff f(a1) ≺ f(a2).

2In brief, the set {Ci(w) | w ∈ UR} is well-ordered with the relation Ri,UR.
3That is, < is a subset of S × S.
4Cf. e.g. Eric W. Weisstein: ”Bijection”, from MathWorld–A Wolfram Web Resource,

http://mathworld.wolfram.com/Bijection.html; Holz et al. (1999, p. 11).
5A bijection f is “a transformation which is one-to-one and onto”. That is, its domain

covers A and its inverse f−1 is also a function (f(a1) = f(a2) iff a1 = a2) whose domain
covers the entire set B.
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In other words, the isomorphism f translates the order < on set A into the
order ≺ on set B.

The subsequent key concept in OT is a constraint hierarchy :

Definition 3.1.4. A constraint hierarchy H, is a finite set of totally
ordered constraints {CN , CN−1, ..., C1, C0} with an ordering relation �.

Any two totally ordered sets with finite k elements (for any nonnegative
integer k) are order isomorphic.6 Consequently, the above hierarchy H is order
isomorphic to the ordered set (N,N − 1, ..., 0), so it can be easily represented
as a vector:

H = (CN , CN−1, ..., C1, C0) (3.1)

In turn, the vector representation of the Harmony function of a can-
didate w with respect to a constraint hierarchy H = (CN , CN−1, ..., C1, C0) is
defined as the vector

HH(w) =
(
CN (w), CN−1(w), ..., C1(w), C0(w)

)
(3.2)

In subsection 2.2.3 (equation (2.10)), we already saw that this vector rep-
resentation is but a shorthand for a row in a traditional tableau.

Most frequently the hierarchy will be constant, so the subscript H may be
left out. Notice that the subscripts of the constraints are written in a decreasing
order: this minor inconvenience at this point will help us later in keeping our
notations simple.

The way Prince and Smolensky’s original “list of violation marks” can be
translated into this vector representation is straightforward: first, if the list of
violation marks incurred by candidate w contains n tokens of violation marks
∗Ci, then let Ci(w) = n; second, the ranking of the constraints can simply be
mapped onto a vector using the order isomorphism. Therefore, this representa-
tion of a violation profile will serve as the formalisation of standard Optimality
Theory.

3.1.3 An order on violation profile-like vectors

Our goal is to formulate the central idea of Optimality Theory in (3.3) that says
that the surface representation is the candidate that maximises the Harmony
function. Therefore, our next step is to define an order between two violation
profile-like vectors. First we introduce

Definition 3.1.5. A violation profile-like vector with respect to under-
lying form UR is an element of the following Cartesian product:

RangeUR(CN )×RangeUR(CN−1)× ...×RangeUR(C0)

Here, RangeUR(Ci) = {Ci(w) | w ∈ GEN(UR)}. We shall, however, omit
the reference to UR for the sake of simplicity.

Now, we define an order � on two, violation profile-like vectors:

6Stated for instance in the MathWorld of Eric W. Weisstein. ”Ordinal Number” at http:

//mathworld.wolfram.com/OrdinalNumber.html.
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Definition 3.1.6. Let A = (aN , aN−1, ..., a0) and B = (bN , bN−1, ..., b0) be two
violation profile-like vectors (with respect to the same UR). Then, A is more
harmonic than B, A � B if and only if there is an integer k ∈ {N,N −
1, ..., 1, 0} such that

1. ak < bk

2. and for all i ∈ {N,N − 1, ..., 1, 0}: if i > k then ai = bi

Moreover, A = B iff for all k ∈ {N,N − 1, ..., 1, 0}, ak = bk.

The set {N,N−1, ..., 1, 0}, which is going to recur very frequently, could have
been replaced by an arbitrary finite set of indices I with some order >. This
more general and shorter notation is however equivalent to the more transparent
notation we use, since, as noted, any two totally ordered finite sets of equal
cardinality are order isomorphic.

We may call Ck the critical7 or fatal constraint : this is the constraint that
determines the relative harmony of two violation profile-like vectors. This defin-
ition of the binary relation � may be also called lexicographic ordering (Eisner,
2000b).

It may be confusing that the more harmonic than relation has an opposite
direction to the bigger than relation on the number of violation marks: more
harmonic (A � B) corresponds to fewer marks (ak < bk). In the following
sections, the rule is that the Harmony function is to be optimised or maximised,
whereas the energy function (cost function, the violation marks) minimised.

In what follows, we demonstrate that relation � is a total order on any set
of violation profile-like vectors: that is, both trichotomy and transitivity hold.

Theorem 3.1.7. Transitivity: Suppose that A = (aN , aN−1, ..., a0), B =
(bN , bN−1, ..., b0) and C = (cN , cN−1, ..., c0) are violation-like vectors (with re-
spect to the same UR).If A � B and B � C, then also A � C holds.

Proof. Suppose that A � B with Ck being the crucial (fatal) constraint (ak <
bk; for all i > k: ai = bi). Furthermore, suppose B � C with Cl as crucial
constraint (bl < cl; for all i > l: bi = ci). Now, we have to demonstrate that
A � C. Let us distinguish between three cases: l > k, l = k and l < k.
If l > k, then, by the definition of �, al = bl < cl, and for all i > l > k:
ai = bi = ci. Thus, A � C, and the crucial constraint is Cl. Secondly, if l = k,
then al = ak < bk = bl < cl, and for all i > l = k: ai = bi = ci. Again,
A � C, with the crucial constraint being Cl = Ck. Finally, whenever l < k,
ak < bk = ck, and ai = bi = ci for all i > k > l. In this case, A � C because
the crucial constraint is Ck.

Theorem 3.1.8. Trichotomy: Suppose that A = (aN , aN−1, ..., a0) and B =
(bN , bN−1, ..., b0) are violation-like vectors (with respect to the same UR). Then,
exactly one of the following three relations hold:

• A � B

• B � A
7This notion of critical constraint should not be confused with the critical cut-off point in

Coetzee (2004)’s proposal (cf. section 1.3.2).
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• A = B

Proof. Suppose that A 6= B. By the last part of definition 3.1.6, two vectors
are not equal if at least one of their components is different. Take the set
S =

{
i ∈ {N,N − 1, ..., 1, 0}

∣∣ ai 6= bi
}

. Observe that S is a finite set, thus
it has a maximum k, and therefore contains it: k = max(S) ∈ S. We are
demonstrating now that Ck is the crucial constraint. Because k is the maximum
of S, it is true that for all i ∈ [N, ..., 1, 0]: if i > k then i is not in S, so ai = bi. As
for the first requirement in the definition of �: because k ∈ S, either ak > bk or
ak < bi. (Note that here becomes important that the range of the constraints
are also fully ranked sets.) In the first case B � A, and in the second case
A � B.

In sum, we have shown that any set of violation profile-like vectors are totally
ordered with respect to the relation �. Now, we demonstrate that any set of
violation-like vectors has a minimum, and also contains it:

Theorem 3.1.9. The Maximum-theorem on violation profile-like vec-
tors: Let S be a non-empty set of violation-like vectors (with respect to the same
UR). Then, there is exactly one violation-like vector A0 = max(S) such that: 1.
A0 ∈ S; and 2. for all A ∈ S, if A0 6= A then A0 � A.

Proof. We shall find A0 the same way as a linguist finds the best candidate in
a tableau.

Let SN+1 = S. Further, for all i ∈ {N,N − 1, ..., 0}: suppose that mi =
min

{
wi
∣∣ W ∈ Si+1

}
and Si =

{
W ∈ Si+1

∣∣ wi = mi

}
, where we use the

abbreviation W = (wN , wN−1, ..., w0). In other words, mi is the lowest violation
level for constraint Ci attested among the elements of Si+1; whereas Si is the
subset of Si+1 containing the elements which have exactly violation level mi

for constraint Ci. Observe that the definition of mi makes crucially reference
to a property in Definition 3.1.1 of a constraint: a subset of Range(Ci) (here{
wi
∣∣ W ∈ Si+1

}
) always has a lower bound. Not only does it have a lower

bound, but the subset also contains its bound. Consequently, there is at least
one W ∈ Si+1 such that wi = mi, which is why Si is not empty. In brief, Si is
the set of violation profile-like vectors that have “survived” the filtering effect
of constraint Ci.

Now, we show that S0 has exactly one element. First, we have just seen that
S0 is not empty, similarly to all Sis. Second, suppose both A ∈ S0 and B ∈ S0.
Then A ∈ S0 ⊆ S1 ⊆ ... ⊆ Si, that is, ai = mi, for all i ∈ {N,N − 1, ..., 0}.
Similarly, bi = mi, by definition of Si. Consequently, all components of A and
B are equal, that is, by definition 3.1.6, A = B.

Last, we show that the only element A of S0 is the minimum predicted
by the theorem. Clearly, A ∈ S0 ⊆ SN+1 = S. Moreover, take any B ∈ S
that is different from A (hence, not a member of S0). Let k be such that B
is an element of Sk+1, but not an element of Sk. Such a k exists, because
S0 ⊆ S1 ⊆ ... ⊆ SN+1 = S, and B is element of S, but not of S0. Now, as
A ∈ S0 ⊆ Sk, ak = mk < bk, by definition of mk. Yet, for all i > k, both A and
B are in Si: in other words, ai = mi = bi. Therefore, we have demonstrated,
by definition 3.1.6, that A � B. In sum, the only element A of S0 is a maximal
element of S.

Finally, S cannot have two different maximal elements. Suppose that both
A1 and A2 were maximal elements. Because A1 is a maximal element, and A2 is
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a different element of S, then A1 � A2. Similarly, A2 � A1 should hold, which
contradicts the law of trichotomy (theorem 3.1.8).

3.1.4 Comparing candidates

The following definition follows closely the proposal of Prince and Smolensky,
also called strict domination:

Definition 3.1.10. For a given hierarchy H = (CN , CN−1, ..., C1, C0) and can-
didates w1 and w2, w1 is more harmonic than w2, or w1 �H w2, if and only
if there is an integer k ∈ {N,N − 1, ..., 0} such that

1. Ck(w1) < Ck(w2)

2. and for all i ∈ {N,N − 1, ..., 1, 0}: if i > k then Ci(w1) = Ci(w2)

Moreover, two candidates w1 and w2 are equivalent, w1 ' w2 if and only if
for all i ∈ {N,N − 1, ..., 1, 0}: Ci(w1) = Ci(w2).

The reference to the hierarchyH may be omitted whenever obvious. The ex-
pression strict domination refers to a very important property of this definition:
if a candidate meets its Waterloo at a given constraint, it can never come back
to the battle field. Even by satisfying all lower ranked constraints, behaving
with respect to them much better than all surviving candidates, it is definitely
defeated.

Observe the following properties:

Corollary 3.1.11. The relation ' is an equivalence relation on the set of can-
didates. That is, if w1, w2 and w3 are candidates, then

1. w1 ' w1 (reflexivity)

2. w1 ' w2 iff w2 ' w1 (symmetry)

3. w1 ' w2 and w2 ' w3 the w1 ' w3 (transitivity)

Furthermore, for a given hierarchy H, if w1 ' w2 and w2 �H w3 the w1 �H
w3.

By comparing the definition 3.1.10 of the � and ' relations on candidates to
the definition 3.1.6 of � and = on violation profile-like vectors, we immediately
see by equation (3.2) that

Corollary 3.1.12. The Equivalence of strict domination and viol-
ation profiles: The vector-representation of the violation profiles realises
Prince and Smolensky’s definition of strict domination:

1. HH(w1) � HH(w2) if and only if w1 �H w2;

2. HH(w1) = HH(w2) if w1 = w2;

Moreover, w1 ' w2 if HH(w1) = HH(w2).
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In other words, the function HH is a homomorphism (Holz et al., 1999, p.
10-11) with respect to relations �H on the set of candidates and � on the set
of violation profile-like vectors.

In the following two subsections, we shall demonstrate that the alternat-
ive representations to be proposed are also equivalent to the violation profiles,
hence, to strict domination.

Now, relation� is almost a total ordering on the candidate set corresponding
to a given underlying representation UR. Transitivity holds, as a consequence
of the transitivity on the set of violation profile-like vectors. Yet, the Law of
Trichotomy only holds in a weaker modified version: whenever neither w1 � w2

nor w2 � w1, then w1 and w2 are equivalent (w1 ' w2), that is, they incur the
same violation level by all constraints (H(w1) = H(w2)). To prove it, one has
to apply the law of trichotomy on violation profile-like vectors to the vectors
H(w1) and H(w2), and use corollary 3.1.12.

Similarly, the consequence of the Maximum-theorem on violation profile-like
vectors is the following:

Theorem 3.1.13. The Maximum-theorem on candidates: Let S be a set
of candidates (corresponding to the same UR). Then, for a given hierarchy of
constraints H, S has a unique subset S0 = minH(S) ⊆ S such that

1. if w1 ∈ S0 and w2 ∈ S0, then HH(w1) = HH(w2);

2. if w1 ∈ S0 and w3 ∈ S \ S0, then w1 �H w3.

Proof. To prove this statement, one has to apply the Maximum-theorem on
violation profile-like vectors to the set

{
HH(w)

∣∣ w ∈ S
}

. This is a set of
violation profile-like vectors, and has exactly one maximal element A0. Now, the
maximum subset S0 of S is formed by the elements w ∈ S such that HH(w) =
A0 = min

{
HH(w)

∣∣ w ∈ S
}

. In other words: S0 = argminw∈S(HH(w)).

Set S0 is not empty, because the maximal element A0 ∈
{
HH(w)

∣∣ w ∈ S
}

,
that is, for at least one w ∈ S, HH(w) = A0. If both w1 and w2 ∈ S0, then
HH(w1) = A0 = HH(w2). Finally, if w1 ∈ S0 and w3 ∈ S \ S0: HH(w3) ∈{
HH(w)

∣∣ w ∈ S
}

, but HH(w3) 6= A0 (otherwise, w3 ∈ S0), thus HH(w1) =
A0 �H HH(w3). Then, by corollary 3.1.12, w1 �H w3.

Finally, we show that the maximum subset S0 is unique. Namely, suppose
that two such maximum subsets, S0 and S′0 exist at the same time. If the two
subsets are different, then there exist an element w ∈ S such that either w ∈ S ′0
and w /∈ S0, or w /∈ S′0 and w ∈ S0. As the two cases are symmetrical, let
us take the former case. Then, w ∈ S \ S0, hence w1 �H w for any w1 ∈ S0.
As S′0 is also a maximum subset, all its elements w2 ∈ S′0 are equivalent to
w (HH(w) = HH(w2)). Consequently, for any w1 ∈ S0 and w2 ∈ S′0, it is
true that w1 �H w2, and therefore S0 and S′0 are disjunct sets (by the Law of
Trichotomy). Furthermore, S ′0 cannot be a maximum subset, for its elements
are less harmonic than some elements of w ∈ S \ S ′0, namely, the elements of
S0, which fact would contradict the Law of Trichotomy.

3.1.5 The definition of Optimality Theory

Finally, we are able to formulate what Optimality Theory is about, and see the
soundness of this formulation.
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Remember that GEN is a function that maps each underlying representation
(UR) to a set of candidates. The central idea of Optimality Theory is that the
surface representation is the optimal (maximal) candidate of the candidate set
with respect to an ordering defined by the given hierarchy:

SR = maxH(GEN(UR)) =
= argmaxw∈GEN(UR)HH(w) (3.3)

The first line of this definition makes sense because of theorem 3.1.13, and
is equal to the second line by corollary 3.1.12.

In words: the surface representation(s) maximise(s) the Harmony function.
Whenever more candidates w ∈ GEN(UR) maximise H(·), all of these candid-
ates are predicted to appear as a grammatical form on the surface (Prince and
Smolensky (2004) p. 82): this is the approach mentioned in section 1.3.1.

Sometimes, the candidates include information not present in the overt lin-
guistic form, such as parsing brackets. Nevertheless, the surface form can be
readily arrived at from the winning candidate by a simple function (e.g. by eras-
ing these brackets). Note that because the inverse of this transformation is not
always a function, and more candidates can correspond to the same form, learn-
ing algorithms face extra difficulties. Tesar and Smolensky (2000) propose using
Robust Interpretive Parsing in order to decide which candidate corresponding
to the overt learning data form to employ in the learning algorithm.

3.1.6 Realisations of the Harmony function

Subsection 2.2.3 showed how Prince and Smolensky (2004)’s concept of a set
of violation mark tokens can be translated into the vector representation of
the Harmony function. There, we referred crucially to Prince and Smolensky’s
Cancellation/Domination Lemma. The present subsection has demonstrated
formally that this representation makes sense, and that the formulation of an
OT grammar as equation (3.3) is well-founded.

In the following subsections, we introduce two new representations of the
Harmony function. We do that in order to carry out again the agenda of intro-
ducing SA-OT:

• Firstly, we represent the violation profiles in an appropriate way.

• Secondly, we define the difference of two violation profiles.

• Thirdly, we define temperature in a similar format.

• Fourthly, we define the exponential of their quotient.

• Lastly, we introduce the SA-OT algorithm.

Before launching this program, however, let us define what an appropriate
representation of a violation profile is. Corollary 3.1.12 has already stated the
(almost) equivalence of the ranking � on the candidate set and the ranking �
on the set of vector representation of the candidates’ violation profiles. Thus,
the vector representation of a violation profile is a typical example of order
isomorphism as introduced in definition 3.1.3.
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To be more exact, based on corollary 3.1.11, we introduce the set of viol-
ation profiles, which is the set of equivalence classes on the set of candidates
with respect to equivalence relation '. Again by corollary 3.1.11, but by its
second part this time, a total order �H on the violation profiles may be intro-
duced: an equivalence class is more harmonic than another equivalence class,if
some element of the first class is more harmonic than some element of the
second class (by definition 3.1.10). Now, the set of violation profiles (equival-
ence classes on the set of candidates) with order �H is order isomorphic to the
set {HH(w)|wis a candidate} with the order � on violation profile-like vectors
(def. 3.1.6).

The new representations of the Harmony function must be isomorphic to the
set of the violation profiles, too. Only this can ensure that the new representa-
tions will yield the grammar defined by equation 3.3. In other words:

Definition 3.1.14. A realisation of the Harmony function H(w) is a map-
ping E(w) : PC → X (from the set of all possible candidates to some set X),
such that:

• a total ordering relation ≺ and an equivalence relation = is defined on the
set X;

• for all candidates w1 and w2: H(w1) � H(w2) iff E(w1) ≺ E(w2);

• for all candidates w1 and w2: H(w1) = H(w2) iff E(w1) = E(w2).

Observe that the new representation E is compared to the vector represent-
ation H , which can be done because isomorphy is a transitive relation between
ordered sets. We know that the set of violation profiles is order isomorphic
to the set of vector representations; hence, a new representation is isomorphic
to the set of violation profiles if and only if it is isomorphic to their vector
representation.

Besides being clearer, an additional advantage of using the vector represent-
ation as the starting point—as opposed to a set of violation mark tokens—is
that definition 3.1.1 allows for more flexibility concerning the range of the con-
straints.8

Note that the ordering will be reversed: while the Harmony function H is to
be maximised, the new representations—seen as energy or cost function—will
be minimised.9 The advantages of reversing the � relation are manifold. It
is simpler to derive formally the new representations from the constraints seen
as non-negative valued functions in a way that results in this reversed relation.
Intuitively, the minimisation approach parallels better the idea of minimising
the violation marks—that is, the punishment symbols. Moreover, simulated
annealing is traditionally formulated for minimising the cost function. Observe
that subsection 2.2.3 already defined the difference of two violation profiles so
that it is positive if less violation marks is subtracted from more violation marks:

8Most often in practice, violation levels are non-negative integers. Nonetheless, equation
(4.8) introduces a constraint whose possible range is N0 + z · N0 with z ∈ R—a different set,
which still meets the requirements of definition 3.1.1. Note that the polynomial approach will
allow for this more general type of constraints, whereas the ordinal number approach requires
this set be mapped by an isomorphism to the set of non-negative integers.

9Adding a minus sign would be possible in the case of the polynomial representation, but
not possible for the ordinal numbers. Furthermore, maximising negative numbers is probably
less intuitive than minimising positive numbers.
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that is, the goal was there also to minimise the violation marks. Similarly, even
definition 3.1.6 would be simpler (the usual definition of lexicographic ordering)
if we reversed the � sign. Yet, there the motivation was to follow the OT
concept of Harmony maximisation.

Fig. 3.1 summarises the different levels of representations.
Definition 3.1.14 requires us to add new items on our agenda. In turn, the

introduction of the two new representations will follow this agenda:

1. Introduce the representation E(w).

2. Define the relations ≺ and = on the range of E.

3. Prove that for all candidates w1 and w2: H(w1) � H(w2) if and only if
E(w1) � E(w2).10

4. Define the difference of two violation profiles.

5. Define temperature in a similar format.

6. Define the exponential of their quotient.

7. Introduce the SA-OT algorithm.

3.2 Violation profiles as real numbers

In what follows, we introduce two further representations of a violation profile.
The goal of both approaches is to interpret Eq. (2.2) in the context of Optimality
Theory, and thereby to implement simulated annealing.

Surprisingly or not, both approaches will result in the SA-OT algorithm
already presented in Figure 2.8.

As an introduction, we try to realise violation profiles as real numbers. If it
worked, SA-OT could be implemented as a real-valued optimisation problem.
As it does not, we will have to proceed to the realisations using polynomials
and ordinal numbers.11 Yet, it is educative to understand why HH(w) cannot

10We shall also demonstrate the law of trichotomy on the range of E, and therefore the two
latter points of definition 3.1.14 can be summarised as above.

11Gerhard Jäger pointed out that it is possible to define order preserving mappings from
violation profiles into the real numbers. Their applicability to SA-OT should be tested in the
future, even if these functions do not preserve the magnitude of differences between violation
vectors, as defined in the previous chapter.

Jäger’s proposal is based on the fact that the function f(x) = 1−(x+2)−1 is order preserving
on non-negative reals and maps all positive numbers into the interval (0, 1). Therefore, he
proposes the following recursive definition, supposing that the violation levels Ci(w) are non-
negative integers:

g0(w) = C0(w)

gi+1(w) = Ci+1(w) + f(gi(w))

E(w) = gn(w)

A similar solution is E(w) =
Pn
i=0 fi(Ci(w)), where fi(x) = 22i− 22i

x+1
. Observe that fi(x)

grows monotonously, fi(0) = 0, fi(1) = 22i−1 and limx→∞ fi(x) = 22i, whence it is easy
to show that constraints ranked lower than Ck can never accumulate a sum larger than the

weight of a single violation of constraint Ck , for
Pk−1
i=0 22i = 4k−1

4−1
> 22k−1 if k > 0.
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Candidates
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P1

P2

P3

H1

H2

H3

E1

E2

E3

Figure 3.1: Different levels of representation: A candidate w incurs a cer-
tain number of violation marks from each of the constraints. Its violation profile
P (w) can be seen as a set of tokens of these marks. Given a certain hierarchy
H, the violation profile P (w) corresponds to a vector HH(w), introduced by
equation (3.2). Finally, HH(w) will be translated to different secondary repres-
entations EH(w).
Definition 3.1.10 has introduced the order �H and the equivalence relation ' on
the candidate set. The relation ' defines equivalence classes on the candidate
set (the dashed circles on the figure), which are then identified with the viol-
ation profiles: all elements of such an equivalence class have the same profile.
Relation ' depends only on the definition of the constraints, which is universal,
similarly to the candidate set. Thus, the set of violation profiles is also univer-
sal. The language dependent hierarchy H determines the ranking �H both on
the candidate set and on the set of violation profiles.
This distribution of tasks is reversed in the right half of the figure. Different
hierarchies map the same profile to different vectors. Therefore, different lan-
guages involve different subsets of the set of all possible vectors (that is, NN+1

0

if the violation levels of the N + 1 constraints are the non-negative integers).
The total order relation � used is however universal, as introduced in definition
3.1.6.
The secondary representations to be introduced will behave similarly. Each
vector Hi will be mapped by an isomorphism onto some Ei. The order ≺ on
the Eis is universal, but the hierarchy H determines the specific value EH(w)
associated with the candidate w.
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be realised as a real number, and this train of thought will lead us in a natural
way to the subsequent proposals.

In the present section, as well as in section 3.3 (but not in 3.4), we could
suppose that the violation levels are non-negative real numbers (Ci(w) ∈ R+

0

for any w and i) from the point of view of the definitions. Some of the theorems
will, however, require that they are non-negative integers—which requirement
is met by most applications in practice.

As mentioned in section 3.1, a crucial feature of Optimality Theory is strict
domination: if a candidate is suboptimal for a higher ranked constraint, it can
never win, even if it satisfies the lower ranked constraints best. Losing a battle
means definitely being out of the game. Prince and Smolensky (2004) present
on page 236 why a harmonic function H(w) satisfying strict domination cannot
be realised with a real-valued function.

Suppose first that there exists an upper bound q − 1 > 0 on the violation
level a candidate can incur: for all i ∈ {N, ..., 1, 0} and for all w ∈ GEN(UR),
0 ≤ Ci(w) ≤ q−1. (Note that this is exactly the condition required by the finite
state approach of Frank and Satta (1998).) In such a case, the following real-
valued Energy function E(w) realises the Harmony function H(w) perfectly:12

E(w) = CN (w) · qN + CN−1(w) · qN−1 + ...+ C1(w) · q + C0(w) (3.4)

Following definition 3.1.14, we mean by E(w) realising H(w) that for all w1

and w2, E(w1) ≤ E(w2) if and only if H(w1) � H(w2). In other words, optim-
ising the Harmony function is equivalent to minimising the Energy function.

Indeed, equation (3.4) assigns candidate w a number E(w) in a number
system of base q whose digits are the violation levels. Informally speaking,
this observation already proves that E(w) defined accordingly realises strict
domination.

Formally, we demonstrate this fact in two steps.

Lemma 3.2.1. Given a hierarchy H (CN � .. � C1 � C0), suppose that
some q ∈ R exists such that for all constraints Ci and for all candidates w,
the inequality 0 ≤ Ci(w) ≤ q − 1 holds. Moreover, let Ci(w) ∈ N0, while

EH(w) =
∑N

i=0 Ci(w) · qi. Then, with the Harmony function HH(w), as defined
in (3.2), for any two candidates w1 and w2: if HH(w1) � HH(w2), then

EH(w1) < EH(w2) .

Proof. Following the definition 3.1.6, if HH(w1) � HH(w2), then there exists a
k ∈ {N, ..., 0} such that

EH(w1)−EH(w2) =

k∑

i=0

(
Ci(w1)− Ci(w2)

)
· qi (3.5)

12On page 61 we mentioned that the domains (the first component of the temperature, the
indices of the constraints) are not necessarily consecutive integers, but can be arbitrary real
numbers. Hence, a more general formulation of the real valued representation of a violation
profile could be thus:

E(w) =
X

i∈I
Ci(w) · qi

where I is a finite set of real valued indices. We could but we shall not use this notation.
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Moreover, Ck(w1)− Ck(w2) < 0. As the violation levels are integers,

Ck(w1)− Ck(w2) ≤ −1 (3.6)

Recall the sum of a geometric series:

k−1∑

i=0

qi =
qk − 1

q − 1
(3.7)

Therefore, and because 0 and q − 1 are lower and upper bounds on the
number of violation marks (Ci(w1)− Ci(w2) ≤ q − 1):

k−1∑

i=0

(
Ci(w1)− Ci(w2)

)
· qi ≤ (q − 1)

qk − 1

q − 1
(3.8)

Summarising, from (3.5), (3.6) and (3.8), we obtain:

EH(w1)−EH(w2) ≤ −qk + qk − 1 < 0 (3.9)

That is, EH(w1) < EH(w2).

Next, we can prove that the Harmony function can be realised with real
numbers under some specific conditions:

Theorem 3.2.2. Given a hierarchy H (CN � .. � C1 � C0), suppose that
some q ∈ R exists such that for all constraints Ci and for all candidates w, the
inequality 0 ≤ Ci(w) ≤ q − 1 holds. Moreover, Ci(w) ∈ N0. Then, the energy
function

EH(w) =

N∑

i=0

Ci(w) · qi

realises the Harmony function HH(w), as defined in (3.2). That is, for any two
candidates w1 and w2,

• HH(w1) = HH(w2) iff EH(w1) = EH(w2)

• HH(w1) � HH(w2) iff EH(w1) < EH(w2)

Proof. This theorem comprises four statements. We have already demonstrated
in lemma 3.2.1 that if HH(w1) � HH(w2) then EH(w1) < EH(w2).

Furthermore, if HH(w1) = HH(w2) then EH(w1) = EH(w2). Namely, due
to the second part of definition 3.1.6, each coefficient in the definition of EH(w1)
and of EH(w2) are equal.

Suppose now that EH(w1) = EH(w2). By the low of trichotomy (theorem
3.1.8), either HH(w1) � HH(w2) or HH(w2) � HH(w1) or HH(w1) = HH(w2).
We have already demonstrated that the first two possibilities would involve
EH(w1) 6= EH(w2), which leaves us the only possibility of HH(w1) = HH(w2).

Similarly, suppose now that EH(w1) < EH(w2). Because the low of tricho-
tomy also applies on the set of real numbers with the usual > relation, this
supposition would be contradicted if HH(w1) � HH(w2) did not hold, but one
of the two other possibilities in theorem 3.1.8.
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3.3 Violation profiles as polynomials

However, nothing in the general theory of Optimality Theory guarantees that
such an upper bound q − 1 exists.13 The behaviour of an energy function (3.4)
with some q only approximates the behaviour of the Harmony function.14

Then, why not consider the behaviour of this polynomial as q goes to in-
finity?15 We propose to see the violation profiles as a polynomials of q ∈ R+

(q > 0):16

E(w)[q] = CN (w) · qN + CN−1(w) · qN−1 + ...+ C1(w) · q + C0(w) (3.10)

This equation defines the polynomial representation of a violation profile:
each candidate, or each violation profile is realised as a real-valued polynomial
of q. The energy or the Eval-function E(w) is not any more a real number, but
a function mapping R to R. It is E(w)[q], but not E(w) which is in R.

This proposal is opposed to seeing a violation profile as a real number, as
a vector, or as some other construct. Namely, equations (2.10) and (3.2) in-
troduced the vector representation of a violation profile. Equation (3.4), for
a constant q, attempted to introduce a real valued representation (different qs
would correspond to different representations); even though we have just seen
that this approach would not work in the general case. The next section presents
how to realise a profile as an ordinal (”infinite”) number (cf. equation (3.19)).
All these representations correspond to different ways of defining the rightmost
set (

{
E(w)

∣∣ w ∈ GEN(UR)
}

) on Fig. 3.1.

3.3.1 Comparing polynomials

This new representation now requires us to introduce the relations ≺ and =
on the range of the representation E. As the = relation is simply the identity
relation, introducing the order ≺ is always the less trivial task. So far, we used
the lexicographic order on the vector representations, and the everyday “less
than” relation on the real valued representation. How shall we deal now with
the polynomial representations?

Obviously, E(w)[q] goes to infinity as q grows without bound:

lim
q→+∞

E(w)[q] = +∞

Therefore, observing directly the limit of E(w)[q] will not work, whatever
we would like to do with the violation profiles. (First, we will aim at defining
the ≺ relation in order to prove the soundness of our approach. And then, we

13Notice that this problem arises only if the candidate set corresponding to a certain input is
infinite. Otherwise the real valued representation would work, even if different inputs required
different qs. In unidirectional Optimality Theory, the candidate sets of different inputs may
overlap, but do not interact with each other.

14For cases when any monotonically decreasing series of weights can be used, see Prince
(2002).

15The idea of using polynomial arithmetics originates from Balázs Szendrői.
16The more general formulation mentioned in footnote 12 looks as:

E(w)[q] =
X

i∈I
Ci(w) · qi
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shall interpret Eq. (2.2) for SA-OT.) The trick will always be first to perform
an operation, or first to check the behaviour of the energy function, and only
subsequently bring q to the infinity. In using continuous operations, it makes
sense to change the order of the operation and of the limit to infinity.

First, how shall we compare two violation profiles seen as polynomials? The
following definition—comparing the limits—is useless: E(w1) ≺ E(w2) if and
only if

lim
q→+∞

E(w1)[q] < lim
q→+∞

E(w2)[q]

We may, however, consider the limit of the comparisons, instead of the com-
parison of the limits. The following definition works consequently perfectly, that
is, it realises the harmony function:

Definition 3.3.1. E(w1) ≺ E(w2) if and only if either

lim
q→+∞

(E(w2)[q]−E(w1)[q]) > 0

or
lim

q→+∞
(E(w2)[q]−E(w1)[q]) = +∞

Furthermore, E(w1) = E(w2) if and only if E(w1)[q] = E(w2)[q] for all q ∈ R+.

By using the definition of the limits and the properties of polynomials,17 we
may reformulate the first part of this definition thus:

Corollary 3.3.2. E(w1) ≺ E(w2) if and only if there exists a q0 ∈ R such that
for all q ∈ R+: if q > q0 then E(w2)[q]−E(w1)[q] > 0.

In other words, for any two candidates one can choose a q that is high enough
so that we can simply compare the “energies” as real values. The problem with
the real valued representation was that no single q exists that would always work
perfectly. But the polynomial representation allows for choosing different qs for
any two candidates w1 and w2, and hence we have circumvented the problem.

Indeed, energy-polynomials with this definition realise the Harmony func-
tion: E(w1) ≺ E(w2) if and only if H(w1) ≺ H(w2). Similarly, H(w1) = H(w2)
if and only if E(w1) = E(w2) (that is, E(w1)[q] = E(w2)[q] for all q ∈ R+).
We are going to prove this equivalence of the Harmony function to the energy
polynomials in three steps.

First we demonstrate the law of trichotomy on the set {E(w)|w ∈ GEN(UR)}
with respect to the relation ≺. Namely:

Theorem 3.3.3. Law of trichotomy for the energy polynomials: for
all candidates w1 and w2 ∈ GEN(UR), exactly one of the following three state-
ments hold: either E(w1) ≺ E(w2), or E(w2) ≺ E(w1), or E(w1) = E(w2).

Proof. First, recall first that polynomials are continuous functions, and that
a basic property of continuous functions is that they map an interval onto an
interval. In other words, if the continuous function f(x) is defined on the interval
[a, b], and X is in the interval [f(a), f(b)] (or [f(b), f(a)], depending on whether

17Namely, the fact that if a real valued polynomial P (x) is not constant, then it converges
to infinity: limx→+∞ = ±∞.
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f(a) ≤ f(b) or f(b) ≤ f(a) holds), then there exists an x ∈ [a, b] such that
f(x) = X .

If E(w1) = E(w2), then by definition, limq→+∞ (E(w2)[q]−E(w1)[q]) = 0,
so neither E(w1) ≺ E(w2) nor E(w2) ≺ E(w1).

Suppose now that E(w1) 6= E(w2), thus we have to demonstrate that exactly
one of the first two statements applies. In this case, P [q] := E(w1)[q]−E(w2)[q]
is a polynomial, which is not constant zero, and whose order is maximally N
(the order of E(w1)[q] and E(w2)[q]). Such a function may have maximally N
different roots, that is q(i) values rendering it zero: P [q(i)] = 0.

If no such real valued root exists, P [q] is either positive or negative for all
qs. Otherwise, P [q1] > 0 and P [q2] < 0 for some q1 and q2 would force P [q] to
have a root, due to the property of the continuous functions mentioned at the
beginning of this proof. In turn, any q0 ∈ R can be chosen to show by corollary
3.3.2 that E(w1) ≺ E(w2) if P [q] is always negative, and that E(w2) ≺ E(w1)
if P [q] is always positive.

If, on the other hand, P [q] does have at least one root, let q0 be the greatest
root. Now, for all q > q0 the value of P [q] has the same sign (always positive, or
always negative): if there existed a q1 > q0 such that P [q1] > 0 and another q2 >
q0 such that P [q2] < 0, then P [q] would have a root greater than q0, between
q1 and q2, again because P [q] is a continuous function. Consequently, either
P [q] = E(w1)[q] − E(w2)[q] > 0 for all q > q0, proving that E(w2) ≺ E(w1);
or P [q] = E(w1)[q] −E(w2)[q] < 0 for all q > q0, and then E(w1) ≺ E(w2), by
corollary 3.3.2.

In the next step, we demonstrate that

Lemma 3.3.4. If H(w1) � H(w2), then E(w1) ≺ E(w2).

Proof. If H(w1) � H(w2), then, by definition, there exists an integer k ∈
[N,N − 1, ..., 1, 0] such that

1. Ck(w2)− Ck(w1) > 0, and

2. for all i ∈ [N,N − 1, ..., 1, 0]: if i > k, then Ci(w2)− Ci(w1) = 0.

If k = 0 then for all q

E(w2)[q]−E(w1)[q] =

N∑

i=0

[Ci(w2)− Ci(w1)]qi = Ck(w2)− Ck(w1) > 0

Therefore E(w1) ≺ E(w2), and any q0 ∈ R may be chosen.
In the case, however, when k > 0, let us define c such that for all i < k:

c > Ci(w1), Ci(w2) ≥ 0. Such a c exists because a finite number of violation
levels always have a finite upper bound. First note that for all i < k:

c > Ci(w2)− Ci(w1) > −c (3.11)

Second, remember the sum of a geometric series (q 6= 1):

k−1∑

i=0

qi =
qk − 1

q − 1
(3.12)
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Now let q0 = max( 2c
Ck(w2)−Ck(w1) , 2). For all q > q0, then

E(w2)[q] − E(w1)[q] =

N∑

i=0

[Ci(w2)− Ci(w1)]qi =

= [Ck(w2)− Ck(w1)]qk +

k−1∑

i=0

[Ci(w2)− Ci(w1)]qi (3.13)

due to the definition of the fatal constraint Ck . Because q > q0 ≥ 2c
Ck(w2)−Ck(w1) ,

in the first component of the sum we can use Ck(w2)−Ck(w1) > 2c/q. For the
second component, we may use equations (3.11) and (3.12). In turn, we obtain:

E(w2)[q]−E(w1)[q] >
2c

q
qk − cq

k − 1

q − 1
=

=
c

q − 1
[qk − 2qk−1 + 1] > 0 (3.14)

because q > q0 ≥ 2.
In sum, either k = 0 or k > 0, we have shown that there exists a q0 such

that for all q > q0: E(w2)[q]−E(w1)[q] > 0. Therefore, E(w1) ≺ E(w2).

Observe that the present proof did not require Ci(w) be an integer, unlike the
proof of the corresponding lemma for the real-number representation (Lemma
3.2.1). The reason of this difference is that now, if Ck(w2)−Ck(w1) < 1, we could
simply increase q0. Similarly, Lemma 3.2.1 (and hence, Theorem 3.2.2) could
be generalised, if a positive lower bound existed for the difference of different
violation levels of the constraints. Nevertheless, the real-number representation
requires a universal upper bound on the violation levels and a global lower bound
on the difference of the violation levels in order to specify some q, the base of
the exponential weight system. The advantage of the polynomial approach is
that q is handled in a flexible way, and thus a different q0 (or any q > q0) can
be used for any pair of candidates. A pair of candidates has a finite number of
violation levels, which guarantees the existence of the required upper and lower
bounds.

Third, we can formulate and prove that energy polynomials realise Harmony
function, if using definitions 3.1.6 and 3.3.1:

Theorem 3.3.5. Energy polynomials realise the Harmony function:
E(w1) = E(w2) if and only if H(w1) = H(w2);
E(w1) ≺ E(w2) if and only if H(w1) � H(w2).

Proof. This statement includes four substatements. First, if H(w1) = H(w2),
then, by definition, Ci(w1) = Ci(w2) for all i ∈ [N,N−1, ..., 1, 0]. Consequently,
for all q ∈ R+, E(w1)[q] = E(w2)[q].

Second, if H(w1) � H(w2), then E(w1) ≺ E(w2), as demonstrated by the
previous lemma.

Third, if E(w1) = E(w2), then H(w1) = H(w2). This is true, because
either H(w1) = H(w2), or H(w1) � H(w2), or H(w2) � H(w1), due to the
law of trichotomy on vectors (theorem 3.1.8). Using an indirect proof, suppose
H(w1) � H(w2). As just shown, E(w1) ≺ E(w2) would follow, which would
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contradict the law of trichotomy for the energy polynomials (theorem 3.3.3).
Similarly, H(w2) � H(w1) is also impossible, leaving us the only possibility
H(w1) = H(w2).18

Fourth, if E(w1) ≺ E(w2), then H(w1) � H(w2). This can be demon-
strated similarly to the third case, by referring to the laws of trichotomy for the
Harmony function and for the energy polynomials. Namely, H(w2) � H(w1)
would require E(w1) � E(w2) by the statements of the present theorem already
demonstrated, which would contradict the law of trichotomy on polynomials
(Theorem 3.3.3).

3.3.2 Simulated annealing with polynomials

So far, we have seen that energy polynomials can be used to model the beha-
viour of the Harmony function of Optimality Theory: their definition is sound
and they realise the Harmony function. The trick was first to compare two
candidates, and only then take the q →∞ limit.

Can we use energy polynomials to formulate simulated annealing for Op-
timality Theory? The recurring problem has been how to define the transition
probability P (w → w′) from candidate w to a worse candidate w′ in a form
that is reminiscent of the traditional expression e(E(w′)−E(w))/T . How would we
define the transition probabilities in the polynomial representation of violation
profiles?

Using the polynomial representation of two violation profiles, translating the
expression E(w′)−E(w) is straightforward. It is simply another polynomial of
q, namely P [q] = E(w′)[q]−E(w)[q]. The difference of two real valued function
is given for free by elementary school arithmetic. Observe that if Ck is the
fatal constraint, the highest ranked constraint—the constraint with the highest
index—that assigns different violation levels to w and w′, then the dominant
component in P [q] is qk.

Temperature in OT simulated annealing, as explained in section 2.2.3, should
have a structure similar to that of the difference of two violation profiles. If
presently the difference E(w′) − E(w) is a polynomial of q ∈ R+, so must the
temperature T = 〈K, t〉 be, as well:

T [q] = 〈K, t〉 [q] = t · qK (3.15)

The attentive reader will notice that this formulation allows K to be a real
number, not only an integer, if q > 0.19 Nonetheless, we shall not really exploit
this opportunity, besides the fact that we theoretically allow any real K values
in the outer cycle of the SA-OT algorithm (Fig. 2.8).

18An alternative proof of this third substatement would employ the fact that a constant
zero polynomial—such as P [q] := E(w1)[q] − E(w2)[q] in the case E(w1) = E(w2)—must
have but zero coefficients. Thus, Ci(w1) − Ci(w2) = 0 for all i ∈ [N,N − 1, ...,1, 0], yielding
H(w1) = H(w2) by Definition 3.1.6.

19The polynomials proposed to represent violation profiles have been defined on the domain
of positive real numbers (q ∈ R+). Although this restriction might have appeared to be
unnecessary, now we can see its advantage. Besides, this restriction also allows generalising
the polynomial representation to the case if the indices of the constraints are real numbers.
Furthermore, q was originally the base of an exponential weight system in (3.4), which makes
sense only if q > 1. In any case, as only the q → +∞ limit will be of interest, we can always
remove a lower subset of q’s domain.
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The last step is to formulate the probability of moving from candidate w
to a neighbour candidate w′. If w′ � w, the probability is 1. Otherwise, we
shall repeat the trick: first perform the operation, and only afterwards take the
q →∞ limit.

Thus, the probability of moving from a candidate w to a worse candidate w′

shall be defined as:

P (w → w′) = lim
q→+∞

e−
E(w′)[q]−E(w)[q]

T [q] (3.16)

Analysing the defining equation (3.16), one can quickly check that this defin-
ition yields the rules of moving on page 63, which we have been hoping for:

• If w′ better than w: move w → w′ !

• If w′ loses due to constraint Ck > K: don’t move (P = 0)!

• If w′ loses due to constraint Ck < K: move (P = 1)!

• If w′ loses due to the constraint Ck = K: move with transition probability
P (w → w′) = e−(Ck(w′)−Ck(w))/t.

This is so because the mathematical operations involved are continuous.
Further, as q grows very large, the dominant component in E(w′)[q] −E(w)[q]
will be the highest non-zero component, which is (Ck(w′)−Ck(w))qk where Ck
is the fatal constraint when comparing these two candidates:

P (w → w′) = lim
q→+∞

e−
E(w′)[q]−E(w)[q]

T [q] =

= lim
q→+∞

e
− (Ck(w′)−Ck(w))qk

tqK

=

[
lim

q→+∞
e

(
−qk−K

)]Ck(w′)−Ck(w)

t

=





0 if k > K

e−
Ck(w′)−Ck(w)

t if k = K

1 if k < K

(3.17)

For a visualisation, recall Fig. 2.6. The expression e(−qα) is equal to e−1 if
α = 0. If however α < 0, then it converges to 1 with q → +∞, similarly to the
function e−1/x = e(−x−1) on Fig. 2.6. In the third case, that is when α > 0, the
expression e−q

α

converges to 0, because this case corresponds to the x → +0
limit of the function e−1/x (replace x with q−α).

In (3.15), we could have used a more complex expression as the definition of
T [q], but the form t · qK will be good enough. As we take the q → +∞ limit,
where only the highest component of a polynomial plays a role, adding lower
components would not influence the behaviour of the system. Temperature
could also have been defined not as a polynomial, but as a different function of
q. Nevertheless, if T [q] did not converge like some polynomial (T [q] = O(qK)),
it would not turn useful in the equation 3.16 defining the transition probability,
for the latter would always be 0 (if T [q] = o(qK)) or 1 (if T [q]/(qK)→∞). This
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is the reason why we required T [q] to be a polynomial of the form appearing
in (3.15). In sum, the polynomial approach also advocates temperature to be a
pair T = 〈K, t〉, similarly to the approach proposed in section 2.2.3, on page 58.

3.4 Violation profiles as ordinal numbers

In the present section, an alternative way is presented to introduce Optimality
Theory Simulated Annealing. Instead of considering real-valued polynomials
E(w)[q] in the limit q → +∞, we immediately take infinite weights for q.

As demonstrated, no finite weights can reproduce, in the general case, the
strict constraint ranking postulated by Optimality Theory. A series of exponen-
tial weights, such as in

E(w) :=

N∑

i=0

Ci(w)qi (3.18)

realises the constraint hierarchy CN � .. � C1 � C0 only if each constraint
can assign at most q − 1 violation marks to any candidate.

However, the number of violation marks assigned by most constraints used
in linguistics does not have any upper bound theoretically. Even if one argues
that performance usually limits the length of words and sentences that can be
uttered, still, linguistic models can require generating never winning candidates
of an unbounded length. It would be nice consequently to allow unbounded
weights in (3.18). In other words, to let equation (3.18) introduce a value E(w)
in a number system of infinite base.

Axiomatic Set Theory proposes a solution to carry out this idea in a math-
ematically sound framework. When the possible levels of violation formed the
well ordered set {0, 1, 2, ..., q− 1}—which is the definition of the integer q (Holz
et al., 1999, p. 19).—, we used q as the base of an exponential weight system.
In the case of unbounded violations, the possible levels of violation most often
form the ordered set {0, 1, 2, ...}. This well ordered set is called ω, the first limit
ordinal (Suppes, 1972; Holz et al., 1999). In other words, ω is the upper limit
of the set of the natural numbers N .

Arithmetic can be defined on ordinal numbers, including comparison, as well
as addition and multiplication (Holz et al., 1999).20 These latter operations are
associative, but not commutative. Therefore, we can redefine the E function
as:21

20See also references under: Eric W. Weisstein: Ordinal Number, From MathWorld–A
Wolfram Web Resource, http://mathworld.wolfram.com/OrdinalNumber.html.

21Footnotes 12 and 16 proposed a more general formulation, which would translate now as:

EH(w) =
X

i∈I
ωi · Ci(w)

with the important caveat that the elements of the finite set of indices I are ordinal numbers
(practically: non-negative integers). Further, as ordinal addition is not commutative, we have
to specify that the elements of I are read in a decreasing order. This formulation naturally
allows us not using certain numbers as indices; whereas in (3.19) one has to stipulate Cj = 0
in the case we would like to associate no “real” constraint with the index j.
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EH(w) = ωNCN (w) + ...+ ωC1(w) + C0(w)

=

0∑

i=N

ωiCi(w) (3.19)

This expression introduces the ordinal number representation of a violation
profile for hierarchy H. We will nonetheless dismiss the index H, as long as we
work with a constant constraint ranking. Observe that unlike in the polyno-
mial representation, the violation levels must be ordinals, such as non-negative
integers, in order to 3.19 be meaningful.

Because ω is the upper limit of the natural numbers, ωin < ωi+1 for any
finite n. This property will guarantee that if candidate w1 is less harmonic than
candidate w2 then E(w1) > E(w2). In other words, ordinal arithmetic furnishes
us with the relation < and = for free in the ordinal number representation of a
violation profile.

3.4.1 Ordinal numbers can realise violation profiles

We heavily rely on results demonstrated by Holz et al. (1999), while we are
proving trichotomy and representation:

Lemma 3.4.1. Trichotomy on ordinal numbers: Let σ and τ be ordinal
numbers. Then exactly one of the following three statements hold: 1. σ < τ ; 2.
σ = τ ; 3. τ < σ.

Proof. Lemma 1.2.3 in Holz et al. (1999, p. 16) demonstrates that for any two
ordinal numbers at least one of the three statements holds. Lemma 1.2.1.c states
that σ ≮ σ; hence statements 1 and 2, as well as statements 2 and 3 cannot
simultaneously hold. Similarly, by the latter lemma and by the transitivity of
the < relation, statements 1 and 3 cannot hold in the same time.

Lemma 3.4.2. Let w1 and w2 be two candidates, and let E(w1) and E(w2) be
the ordinal number representation of their violation profile with respect to some
hierarchy H. If H(w1) �H H(w2), then E(w1) < E(w2).

Proof. As H(w1) �H H(w2), and violation levels are integers, there is a con-
straint Ck such that

[1 ] Ck(w1) + 1 ≤ Ck(w2), and

[2 ] Ci(w1) = Ci(w2) for all i > k.

Lemma 1.4.3 in Holz et al. (1999, p. 33) contains among others the following
properties, if α, β and γ are cardinal numbers:

[3 ] if 0 < α and β < γ, then α · β < α · γ

[4 ] if β < γ, then α+ β < α+ γ

[5 ] αβ+γ = αβ · αγ

[6 ] if 1 < α and β < γ, then αβ < αγ
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[7 ] α · (β + γ) = α · β + α · γ

[8 ] α · 1 = α = 1 · α

From properties [1] and [3] it follows that ωk
(
Ck(w1) + 1

)
≤ ωkCk(w2).

Therefore, and due to [2], [4], [7] and [8],

k∑

i=N

ωiCi(w1) + ωk ≤
k∑

i=N

ωiCi(w2) (3.20)

Furthermore, from 0 ≤ Ci(w1) < ω, by [3] and [5], follows that ωj ·Ci(w1) <
ωj ·ω = ωj+1 for any i and j. Hence, due to [6], ωj ·Ci(w1) < ωk for any j < k
(that is, j + 1 ≤ k).

From Lemma 1.4.7.b of Holz et al. (1999, p. 37) follows that for all j and
α < ωj , α + ωj = ωj . Now, if both α < ωj and β < ωj , property [4] ensures
that α + β < α + ωj = ωj . That is, the sum of any two ordinals smaller than
ωj is smaller than ωj . Using this observation recursively in the case of j = k,
we obtain:

0∑

i=k−1

ωiCi(w1) < ωk (3.21)

From (3.21) and (3.20), by using repeatedly [4]:

E(w1) =

k∑

i=N

ωiCi(w1) +

0∑

i=k−1

ωiCi(w1) <

<

k∑

i=N

ωiCi(w1) + ωk ≤

≤
k∑

i=N

ωiCi(w2) ≤

≤
0∑

i=N

ωiCi(w2) = E(w2) (3.22)

Now, we can formally prove that the representation of a violation profile
using ordinal numbers is isomorphic to the vector representation:

Theorem 3.4.3. Ordinal numbers realise violation profiles: Let w1

and w2 be two candidates, and let E(w1) and E(w2) be the ordinal number
representation of their violation profile with respect to some hierarchy H. Then,

• E(w1) = E(w2) if and only if H(w1) = H(w2);

• E(w1) < E(w2) if and only if H(w1) �H H(w2).

Proof. This theorem contains four substatements. If H(w1) = H(w2), then
by definition, Ci(w1) = Ci(w2) for all i, and therefore E(w1) = E(w2) follows
directly.
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If H(w1) �H H(w2), then we have just demonstrated in the previous lemma
that E(w1) < E(w2).

If E(w1) = E(w2), then Theorem 1.4.6 of Holz et al. (1999, p. 36) (Cantor
Normal Form for the base ω) ensures that Ci(w1) = Ci(w2) for all is. Namely,
from the theorem follows that if

ωN · aN + ωN−1 · aN−1 + ...ω0 · a0 = ωN · bN + ωN−1 · bN−1 + ...ω0 · b0
then ai = bi for all is. Consequently, H(w1) = H(w2).
Last, if E(w1) < E(w2), then H(w1) � H(w2). Suppose this does not hold.

Then H(w2) � H(w1) should be true, because of the trichotomy on the set
of violation profile-like vectors (Theorem 3.1.8). This, however would involve
E(w2) ≤ E(w1) due to the previously proven parts of the present theorem,
which in turn would contradict the trichotomy on the class of ordinal numbers
(Lemma 3.4.1). (A similar proof is also possible for the third substatement of
the present theorem, if you would like to avoid the Cantor Normal Forms; cf.
the relevant part of the proof of theorem 3.3.5.)

3.4.2 SA-OT with ordinal numbers

The next step towards SA-OT is the definition of the difference of two E(w)
values, which will pave the way for the introduction of temperature, necessary to
interpret the expression e−(E(w′)−E(w))/T in the context of Optimality Theory.

On the class ON of all ordinal numbers, subtraction is not defined as it is
defined on the set Z of the integers, or on the set R of the real numbers. The
class ON of all ordinal numbers can be seen as a generalisation of the natural
numbers (non-negative integers), and observe that the difference a − b of two
natural numbers a and b is defined on the set N only if a ≥ b.

(Holz et al., 1999, p. 34) proves the following

Lemma 3.4.4. Subtraction Lemma If α ≤ β are ordinal numbers, then
there is a unique ordinal γ such that α+ γ = β.

Based on this lemma, we introduce the notation ∆(a, b) for ordinals a ≥ b,
to denote the unique ordinal x that satisfies a = b + x. As addition is not
commutative on the class of ordinals ON, a = ∆(a, b) + b does not follow (and
usually does not hold) from a = b + ∆(a, b). The notation a − b and the term
“subtraction” will be avoided in order to remind us this caveat, as well as the
fact that ∆(a, b) is defined only if a ≥ b.

Violation profiles are represented with a subset of ON, namely, with ordinals
of the form a =

∑0
i=N ω

iai, where ai ∈ N0 (ai is a non-negative integer). Thus,

the elements of the set
∑0
i+n ω

iN0 will be referred to as violation profile-like
ordinal numbers.

The following proposition sheds light on how ordinal numbers represent vi-
olation profiles:

Proposition 3.4.5. Given violation profile-like ordinals a =
∑0

i=N ω
iai and

b =
∑0
i=N ω

ibi, such that a > b,

∆(a, b) =
0∑

i=N

ωiδi



98 Chapter 3. Formal approaches to SA-OT

where for all 0 ≤ i ≤ N

δi =

{
ai − bi if aj = bj∀j.(j > i ∧ j ≤ N)

ai otherwise

Proof. As the Subtraction lemma 3.4.4 proves uniqueness, it is satisfactory to
show that a = b+

∑0
i=N ω

iδi.
Recall that ordinal addition is associative (Lemma 1.4.3.a.(v) in Holz et al.

(1999, p. 33)), as well as that ωia+ ωjb = ωjb if i < j.22

Let k be the lowest index to which ∀j > k : aj = bj holds (in the case
of violation profiles, this is the index of the fatal constraint). Such a k exists,
because the set {0, ..., N} is finite, hence well-ordered: each set, for instance the
set
{
i ∈ {0, ..., N}

∣∣ ∀j ∈ {0, ..., N} : (j > i) ⇒ (aj = bj)
}

, has a least element.
Then,

b+ ∆(a, b) =

0∑

i=N

ωibi +

0∑

i=N

ωiδi =

=

k∑

i=N

ωibi +

( 0∑

i=k−1

ωibi + ωkδk

)
+

0∑

i=k−1

ωiδi =

=

k+1∑

i=N

ωiai + ωkbk + ωk(ak − bk) +

0∑

i=k−1

ωiai = a (3.23)

In the case of violation profile-like ordinal numbers, the co-efficient δk of the
highest non-zero term in ∆(a, b) is the difference of the respective terms in a and
b. In OT, this co-efficient will reflect the difference of violation marks (i.e. the
uncancelled marks) of the constraint Ck where the fatal violation takes place
when comparing these two candidates. All the lower terms ωiδi are equal to the
respective terms in a.

By neglecting the lower terms, which are negligible compared to the highest
one, we can define another difference-like function, which better reflects what is
relevant for OT. In addition, its use saves us from some unnecessary calculation.

Definition 3.4.6. Given a =
∑0

i=N ω
iai and b =

∑0
i=N ω

ibi, where a > b, let

be ∆′(a, b) =
∑0

i=N ω
iδ′i such that

δ′i =

{
ai − bi if aj = bj∀j.(j > i ∧ j ≤ N)

0 otherwise

This function returns the difference of violations of the constraint where
the fatal violation takes place when we compare the two candidates. It is still
somehow a sort of difference, because b + ∆′(a, b) differs from a only in lower
terms than what is relevant when comparing the two violation sets.

First, SA-OT will be introduced by using some intuitive conventions, as a
short cut, and then we argue for using this conventions.

22By Lemma 1.4.3.c.(iii) in Holz et al. (1999, p. 33), ωi < ωj . Furthermore, due to Lemma
1.4.7.b in Holz et al. (1999, p. 37), α+ ωj = ωj for all α < ωj .
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Thus, I propose the following notations, reflecting the idea that ω is a form
of “infinity”:

e−
ωia

ωjb := e−ω
i−j a

b :=





1 if i < j

e−
a
b if i = j

0 if i > j

(3.24)

e−
x+y
z := e−

x
z e−

y
z (3.25)

where a, b, i and j are positive natural numbers, while x, y and z are ordinal
numbers.

Employing these notational conventions, we can directly introduce the trans-
ition probabilities required by simulated annealing:

If E(w) ≥ E(w′) then P (w → w′ | T ) = 1, otherwise

P (w → w′ | T ) := e−
∆(E(w′),E(w))

T = e−
∆′(E(w′),E(w))

T (3.26)

Therefore, temperature T is also an ordinal number of the form:

T = 〈KT , t〉 = tωKT (3.27)

One can simply check that both notions of difference, ∆(E(w′), E(w)) and
∆′(E(w′), E(w)), define the same probability. Using the second notion is some-
what farther from the traditional idea in SA (it is not exactly the difference of
the energy levels), but it is closer to the philosophy of OT (ignore the constraints
below the fatal constraint), and it is simpler to calculate.

By representing the Harmony function as an ordinal-valued energy function,
we could formulate equation 3.26, which has a form that is fully analogous
to the traditional transition probability equation used in real-valued simulated
annealing:

P (w → w′ | T ) = e−
∆E
T = e−

E(w′)−E(w)
T (3.28)

The interpretation of equation 3.26, in turn, leads to the same rules determ-
ining transition probabilities (the Rules of moving on page 63) that we have
formulated earlier, in section 2.2.3. Namely, if temperature is T = 〈KT , t〉,
then:

• If w′ is better than w (w′ � w, that is, Ck(w′) < Ck(w)), then move from
w to w′.

• If w′ loses due to the critical constraint Ck > KT : don’t move!

• If w′ loses due to the critical constraint Ck < KT : move!

• If w′ loses due to the critical constraint Ck = KT : move with probability
P (w → w′) = e−d/t, where d = Ck(w′)− Ck(w).
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3.4.3 Arguing more for the definition of e−d/t

Conventions (3.24) and (3.25), on the one hand, “make sense” because ω is
but a mathematically sound way of saying “infinite”, and these proposals lead
directly to a formulation of SA-OT in the ordinal representation of the violation
profiles. On the other hand, they might nonetheless seem to the reader as ad
hoc, and therefore spoil the mathematically precise underpinning of SA-OT. In
the remaining pages of the present section we argue for this short-cut.

First, we quote another lemma from Holz et al. (1999, p. 34). Not only does
the Subtraction Lemma holds on the class of ordinals, but also the Division
Lemma and the Logarithm Lemma. The former states the following:

Lemma 3.4.7. Division Lemma: Let a and b be ordinals. If b 6= 0, then there
are unique ordinals q and m satisfying a = b · q +m and m < b.

For ordinals a and b 6= 0, let q(a, b) and r(a, b) therefore denote the unique
ordinals such that a = b · q(a, b) + r(a, b) and r(a, b) < b. q(a, b) will be referred
to as the quotient, and r(a, b) as the remainder of a and b.

Our goal is to translate the expression e−
E(w′)−E(w)

t into ordinal arithmetic.

The quotient E(w′)−E(w)
t can be easily rewritten as q

(
∆
(
E(w′), E(w)

)
, T
)

if

E(w′) ≥ E(w)—that is, exactly in the case we actually need this expression for
the transition probabilities (if w � w′). But we are still not able to interpret
the expression e−(E(w′)−E(w))/t, because of the negative sign and because e is
not an integer. Not surprisingly, for the value of this expression, a real number
between 0 and 1, is unquestionably beyond the scope of ordinal arithmetic.

However, the following two observations can help us overcome this difficulty.
First, observe that the expression e−d/t can be replaced by the expression

a−d/t for any real number a 6= 1, by simply rescaling temperature (or the viol-
ation levels), because23

e−
d
T = a−

d
T ln a (3.29)

The concept of rescaling originates from physics. One can measure a quantity
using different scales—e.g., metres, kilometres, feet, yards, lightyears, etc. for
distance—and the difference is but a constant multiplicative factor. Now, T ′ =
T ln a will replace the earlier T , and then the form of the equations can be kept
unchanged.

In turn, ordinal exponentiation can be used by replacing e with an arbitrarily
chosen integer base a > 1—for instance a = 2 or a = 3 in order to remain close
to the original exponentiation of base e ≈ 2.71.

Second, we can also get rid of the − sign in the exponent. A transition
probability p = e−d/t means that first we generate a random number r in the
interval ]0, 1[ with an equal distribution, and then we move the random walker
iff r < p = e−d/t. The transition probability is the measure of the set of the r
values that result in moving—that is, of the r values that satisfy this inequality.
Now, the negative sign can be removed by rewriting this inequality. We can say
therefore that we move iff r−1 > ed/t; that is, if and only if for all α > 0

r−α > e
d·α
T (3.30)

23Recall that loga b =
logc b
logc a

, that is, loga e = 1
lna

, if a 6= 1.
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If P is a probability measure on {r|0 < r < 1} (specifically, we use an equal
distribution: P ({r|a < r < b}) = b− a), then

P (w → w′|T ) = P ({r|∀α > 0 : r−α > e
d·α
T }) (3.31)

Introducing the arbitrary multiplier alpha will help us in the case d is not
dividable by T in integer arithmetic.

In order to be able to compare formally a real number, such as r−α, with an
ordinal derived from the representation of the violation profiles, we introduce
the following

Definition 3.4.8. Let R∞ := R ∪ {∞}, the enlargement of the set of the real
numbers with +∞.24 Let the relation >′ be the enlargement of the usual order
>⊂ R× R on R∞:

>′:=
{

(a, b) ∈ R× R
∣∣∣ a > b

}
∪
{

(∞, a)
∣∣∣ a ∈ R

}

If O is a set of ordinal numbers, then the function R : O → R∞ is defined as

R[a] :=

{
a if a < ω

∞ if a ≥ ω

On can simply demonstrate that the relation >′ in indeed a total order on
R∞. The symbol> is usually used both on the set R and on the class of ordinals,
whereas we rather use >′ on R∞ in order to avoid confusion.

The definition of the function R makes use of the fact that the integers are
defined as ordinals less than ω, and then they are injected into R. The class of
all ordinals is not a set, yet we can for instance take the set O = ωω for our
purposes, which contains all violation profile-like ordinals.

After all these remarks and definitions, we can reformulate within ordinal
arithmetic how to decide in SA-OT whether to move from candidate w to can-
didate w′, if w � w′, that is, if E(w) < E(w′).

The straightforward solution would be to generate a real number r between
0 and 1 with equal distribution, and then move if and only if

1

r
>′ R

[
2
q

(
∆
(
E(w′),E(w)

)
,T

)]
(3.32)

The problem with this proposal is that the division is performed in a coarse
way, similarly to division in integer arithmetic. Suppose for instance that T =
ωk · 3. Then, no distinction is made between ∆

(
E(w′), E(w)

)
being ωk · 5 or

ωk · 3, for in both cases q
(

∆
(
E(w′), E(w)

)
, T
)

= 1 and only the remainders

are different. Even though the empirical predictions of such a model might be
worth investigating, this is probably not what we want. Namely, this model
could not make the difference between a step that increases the violation level
of constraint Ck by 3 or by 5.

The problem is that we cannot make use of the remainder of the division.
How do you get a higher precision if you are forced to use exclusively integer
division? You multiply the numerator by 10 or by 100, and then you consider

24Compare to the addition of the point at infinity to each line in projective geometry.
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the last digits of the quotient as being beyond the decimal point. Applying this
trick has been the purpose of introducing the arbitrary positive multiplier α in
equation (3.30).

Therefore, we rather propose moving from w to w′ if and only if

∀α ∈ N+ : r−α >′ R

[
2
q

(
∆
(
E(w′),E(w)

)
·α,T
)]

(3.33)

What follows from this definition? Let T = ωK · t, and ∆′
(
E(w′), E(w)

)
=

ωk · d. In words, the fatal constraint is Ck, and d = Ck(w′)−Ck(w) > 0. Then,
we consider the following cases:

1. Suppose K > k (informally, TT � ∆
(
E(w′), E(w)

)
, cf. definition 2.2.5).

Then, for all α ∈ N+, q
(

∆
(
E(w′), E(w)

)
· α, T

)
= 0, because the divider

is always larger than the numerator (ωj · α < ωj+1). It follows that for
all r < 1, rule (3.33) prescribes to move to w′. That is, the measure of
the set of the r values resulting in move—the transition probability—is
P (w → w′|T ) = 1.

2. Suppose now K = k (informally, TT ≈ ∆
(
E(w′), E(w)

)
, cf. definition

2.2.5). Then for all α ∈ N+,

R
[
q
(

∆
(
E(w′), E(w)

)
· α, T

)]
=
[dα
t

]
≤ dα

t
(3.34)

where [dαt ] denotes the integer part of dα
t .

Hence,(3.33) holds if and only if r < 2−d/t. Namely, if r < 2−d/t, then for
all α ∈ N+,

r−alpha > 2
dα
t ≥ 2

[dα
t] = R

[
2
q

(
∆
(
E(w′),E(w)

)
·α,T
)]

(3.35)

Further, if r ≥ 2−d/t, then choose α = ct (for any positive integer c) to
show that the condition for moving is not satisfied anymore:

r−α ≤ 2dα/t = 2
q

(
∆
(
E(w′),E(w)

)
·α,T
)

(3.36)

As r is chosen with an equal distribution, the measure of the set of the r
values causing the system to move is thus 2−d/t. By rescaling temperature,
we obtain the usual rule for this case: “move with probability P (w →
w′|T ) = e−d/t!”

3. Suppose finally K < k (informally, TT � ∆
(
E(w′), E(w)

)
). Then

q
(

∆
(
E(w′), E(w)

)
· α, T

)
≥ ωk−K · (dα) ≥ ω (3.37)

Hence, the exponentiation in (3.33) returns an infinite ordinal (2ω = ω) in
the present case. As r−α ≯′ ∞ by the definition of >′, the consequence is
that no r ever results in moving. Thus, the measure of the set of r values
causing the system to move is zero: P (w → w′|T ) = 0.

Summarising, we have again derived the Rules of moving from page 63.
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3.5 Summary of the formal approaches

When we introduced the idea of applying simulated annealing to Optimality
Theory, many different options could have been followed. Indeed, we saw in
section 2.3.2 that the proposed solution does not always work. Due to the
Strict Domination Hypothesis, some models are always stuck in local optima,
and the algorithm’s precision—the likelihood of finding the global optimum—
does not converge to 1 as the number of iterations grows infinite. There, we
speculated about possible ways to solve this problem, without much success.

I will therefore argue that these failures are inevitable in SA-OT, and actually
we can make use of them in building linguistic models. Yet, before making these
statements, I have to convince the reader that the proposed SA-OT is indeed
the most appropriate implementation of simulated annealing for Optimality
Theory. This has exactly been the goal of the present chapter. Already section
2.2.3 contained a train of thought that introduced SA-OT, whereas the present
chapter formally showed how the Strict Domination Hypothesis leads directly
to the same Rules of moving—twice, at that.

In sum, we may conclude that the transition probabilities driving OT-SA
are well-founded: we have seen several ways in which they may be derived from
the basic ideas of Optimality Theory. The bottom line was in both cases the
same Rules of moving.

One may ask what the polynomial approach and the ordinal number ap-
proach can contribute to each other. The answer is manyfold. Firstly, the two
approaches are based on very different mathematical concepts, and yet, they
led to the same algorithm. Secondly, the mathematical beauty of a model is a
very subjective feature, hence, different readers may prefer one or the other ap-
proach. For instance, one may not like the way calculating the limit is proposed
in (3.16), or not be convinced of the necessity of introducing an arbitrary α in
(3.33). Additionally, the beauty of transfinite arithmetic (analysed as concep-
tual blending by Núñez, 2005) may arguably be an additional subjective value
of the cardinal approach in the eyes of some readers. Indeed, the contradicting
reviews I received to my article (B́ıró, 2005b) demonstrated that different people
are more convinced by one or the other approach.

Formal arguments can also be made why to introduce both approaches in
this dissertation. In most linguistic models, violation profiles are non-negative
integers (represented as a certain number of stars in a tableau). These are
exactly the values allowed the Ci(w)s to take by the representation of violation
profiles as ordinal numbers in (3.19). If the range of Ci(w) is some other well-
ordered set (such as the set of the consonants ordered according to sonority in
the Berber example of Prince and Smolensky, 2004), an isomorphy could be
applied to map this set onto some ordinal numbers. Indeed, definition 3.1.1
(page 76) requires the set {Ci(w) | w ∈ UR} be a well-ordered set in order
to make definition 3.3 introducing the main idea of OT (page 82) well-founded.
This observation invites the generalisation to allow constraints that can take any
ordinal numbers as values. Such an approach would naturally prohibit ganging
up effects for most phenomena (if Ci(w) < ω), and allow them in some special
cases by stipulating Ci(w) ≥ ω.25

25Similarly to the way we propose here to generalise the range of the constraints from N0

to larger sets of ordinal numbers, further research might also enlarge the set of constraints.
Indeed, the main restriction of the constraint set is that it must be a totally ordered set such
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Nonetheless, the polynomial representation in (3.10) furnishes us with more
flexibility, as the only requirement is that Ci(w) take real values—even if the
formal definition of OT (3.3) was based on the definition 3.1.1 of a constraint
requiring its range to be well-ordered. And indeed, the SA-OT algorithm in
Fig. 2.8 follows the idea that the violation levels are real numbers.

Even though both approaches have been introduced in order to faithfully
realise the Strict Domination Hypothesis, both of them point towards a pos-
sibility of representing situations that do not satisfy this hypothesis. In the
polynomial approach, one may decide not to perform the q → ∞ limit, but to
replace it by stipulating a high value for q, as an approximation of the q → ∞
limit. Then, even if most constraints follow the Strict Domination Hypothesis,
some special cases can display cumulativity effects. In the ordinal approach, one
can argue for using non-finite violation levels (Ci(w) ≥ ω) if forced to account
for cumulativity phenomena.

The advantage of both approaches—especially of the ordinal approach—over
the traditional real valued realisation is that the Strict Domination Hypothesis
can be saved as categorically true for the cases where it really applies; and
towards the cases where it does not, the border is sharp.

that each subset have a unique maximal element. Take for instance Prince and Smolenksy’s
“bag of violation marks” approach and their Cancellation Lemma: after cancelling the shared
violations, the task is to identify the unique highest ranked constraint that still has a violation
in one of the bags.

By reversing the direction of the ranking relation among the constraints, we could therefore
propose simply a constraint set {Ci | i ∈ I} where I can be any well-ordered set (hence,
even larger than ω). The indices i of the constraints would then be ordinal numbers. The
problem is that the inverse of the indices would be needed in equation (3.19) (page 95) due
to the reversion of the constraint ranking relation, which operation is not defined among
ordinal numbers. Nevertheless, this observed “duality” of the range of the constraints and
the constraint set is probably worth analysing further, and might have consequences for the
relationship of generation and learning in OT in general (cf. Turkel, 1994).



Chapter 4

The Linguistic Context of
SA-OT

4.1 A few words about the lexicon

The goal of the present section is three-fold. First, it aims at saying something
about the way the lexicon can be seen from the point of view of Simulated
Annealing Optimality Theory. Linguistics has failed to get round the questions
related to the lexicon such as lexical exceptions, and interest has recently in-
creased in lexicalist approaches. Within OT, the language specificity of the
lexicon seems at first view to conflict with the Richness of the Base principle
(all inputs are possible in all languages, cf. Prince and Smolensky, 2004, p.
225). According to another principle, Lexical Optimisation (ibid), the language
learner should choose the input that corresponds to the most harmonic output
among the possibilities given the surface form observed (cf. also the Robust
Interpretive Parsing of Tesar and Smolensky, 2000).1

In particular, and this is the second goal of the present section, we point to
the way that the complex lexicon model of Burzio (2002) could be realised in
practice using SA-OT. Concrete realisation of this model drawn on physics is
left to future work, nevertheless.

The main component of this model, Output-Output Correspondence (OOC,
Output-Output Faithfulness) proposed by Benua and Burzio has been a widely
used constraint within Optimality Theoretic phonology, and yet, it lacks a pre-
cise workable definition to my best knowledge. To be more precise, Burzio
(2002) seems to have not fully worked out the details of his proposal, so that
even though most linguists use OOC (successfully) in an even less formal way,
this practice does not work for SA-OT which requires the exact number of viol-
ation marks assigned to any candidate. Consequently, and this is the section’s
third goal, a more formal definition of an Output-Output Correspondence-like
constraint will be introduced, in order to employ it in Chapter 5.

Subsequently, the second section of the present chapter includes a few notes
on learnability in SA-OT. Learnability issues have been successfully tackled both
in standard OT (Tesar and Smolensky, 2000), as well as in Stochastic Optimality

1For the role of the lexicon in OT syntax, see for example van der Beek and Bouma (2004)
and references therein.
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Theory (Boersma and Hayes, 2001), a fact that provides a strong argument in
favour of Optimality Theory, as opposed to many previous linguistic models.
Therefore, the reader would naturally ask whether SA-OT has anything to say
about learnability.

4.1.1 English Past Tense

One of the most investigated issues related to rules, minor rules and lexical
exceptions is the case of English past tense. As is well known, the productive
major rule is to add the suffix <ed>,2 while minor rules may prescribe changing
<ing> to <ang> (like in sing – sang and ring – rang) or the last coda to
<ought> (e.g. in bring, think, seek). Some cases, such that of the verb to be or
to have are fully irregular.

Several approaches have been presented to tackle the problem, starting with
connectionist approaches (Rumelhart and McClelland, 1986), to output-output
correspondence (Burzio, 2002) or ACT-R models (Taatgen and Dijkstra, 2003).
Within OT, the first approaches have been proposed by Boersma (1998b) and
by Burzio (1999). The latter was finally published as Burzio (2002), and we
shall turn back to it soon.

In fact, a major debate emerged from this phenomenon, the so-called Past
Tense Debate, when Pinker and Prince (1988) reacted to Rumelhart and Mc-
Clelland (1986): the connectionist camp (McClelland, Plunkett, Seidenberg,...)
argued for a single mechanism for both regular and irregular verbs, whereas the
proponents of symbolic computation (Pinker, Ullman,...) fought for a dual route
mechanism. For a recent, two-sided overview of the debate, see both Pinker and
Ullman (2002) and McClelland and Patterson (2002). For recent neurolinguistic
arguments for the dual route model based on double dissociation, see the work
of William Marslen-Wilson and his colleagues (e.g. Tyler et al. (2002) and
Stamatakis et al. (2004)). This debate goes much beyond the issue of English
past tense, the latter being only a test case: the question of debate is the role of
symbolic rules as opposed to connectionist approaches in language processing,
or even in cognition in general.

Although its details may have been debated, a pattern called U-shaped de-
velopment can be (more or less) observed in children’s acquisition of English
past tense forms (Brown (1973), pp. 333; Kuczaj (1977); Harley (2001), p.
96 and 125-126, and references therein, including an introduction to the Past
Tense Debate). Even if using only a very restricted vocabulary, the youngest
children perform quite well in producing the past tense of verbs. In a second
stage, however, performance drops, before improving again in the third stage.
Roughly speaking, we may say that the child memorises all forms in the first
stage; later, the growing vocabulary allows making generalisations, and the drop
in performance is due to over-generalisation, so forms such as *bringed or singed
appear beside the correct ones; in the third stage, nevertheless, these cases of
over-generation are learned to be errors, that is, exceptions are (re)-learned.

A further interesting phenomenon is the acquisition of the so-called minor
rules. For instance, such a minor rule, inferred from sing – sang and ring – rang
may require changing the coda of a monosyllabic verb from <ing> into <ang>.

2For the sake of ease, I use the written form of the segment strings, and not the underlying
representation or some surface allomorphs.
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Child speech indeed produces, although with a very low frequency, forms such
as *brang, which can be seen as the result of overgeneration from this minor
rule (Xu and Pinker, 1995; Taatgen and Dijkstra, 2003).

One may speculate about minor rule forms corresponding to local optima in
the SA-OT search space; but only future work can tell whether such an approach
to account for these phenomena—including those in acquisition—will turn to
be fruitful.

4.1.2 Burzio’s physical model of the mental lexicon

Burzio (2002) attempts at giving an Optimality Theoretical compromise to the
English Past-Tense Debate, by using a model based on an idea taken from
(classical) physics; namely, on the concept of forces and fields. In what follows,
I am making these physical analogies more explicit than as found in Burzio
(2002) itself.

His aim is to explain why “[l]exical sectors that are morphologically irregular
tend to be phonologically regular, and vice-versa”. He proposes that whenever
morphology is irregular and phonology is regular (“level 1” affixes in Kiparsky’s
Lexical Phonology), then the phonological markedness constraints dominate.
For instance, the vowel of the verb keep is shortened in the past tense form
kept in order to meet the limitations on syllable size. But in other cases, mor-
phology is regular and phonology turns to be irregular (“level 2” affixes): for
instance, the regular past tense form beeped includes a syllable that is so long
that it would be otherwise prohibited. Then, the analogy in the paradigm acts
as an attraction between the forms, overranking phonological well-formedness
requirements. This attraction is described by Output-Output Correspondence
(or Faithfulness), and is seen as some sort of gravitational force between the
lexical items.

In physics, bodies with a mass create gravitational fields around themselves,
bodies (or particles) with an electric charge create additionally an electric field,
and so on. The fields thus created by the individual bodies are summed up to
form the field in which (the same or different) bodies follow their trajectories.
The movements of the bodies are driven by the forces derived (literally) from
the overall field, whereas this field in each moment is a function of the loca-
tion (and speed, for magnetism) of the bodies. Two additional forces can be
present: friction hinders any changes of position, whereas external forces (e.g.
a gravitational field) favour some positions over others.

A field can be seen either as a scalar-valued function (energy, or rather
potential) or a vector-valued function (force) of space (and time). If you put a
given body at a given point in space and time, the properties of that body (e.g.
its mass in the case of gravitation, its electric charge for electric interaction, its
charge and speed for magnetic interaction, etc.) and the field (as a function
of all the bodies or particles around) will determine what the energy of that
body is, and what force the field exerts on that body. Moreover, the force is the
negative gradient of the energy: a vector pointing into the direction in which
energy declines the most, and the length of the vector is proportional to the
steepness of the energy function in that direction. Indeed, the idea is that the
physical force influences the body to move towards the minimal energy state. In
other words: it is sufficient to define the energy (potential) as a scalar function
in space, for its negative gradient (a spatial derivative) in each point gives the
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force acting upon some particle there.
We can now summarise the picture thus far: the position and speed of

a particle in the next moment is determined—besides its mass, position and
speed in the previous moment—1. by friction, 2. by the external forces, as well
as 3. by the aggregate force exercised by the other bodies. The latter can be
calculated from the position of the bodies and their mass or charge. If xi and
mi are the position and mass of particle i, while F (j → i) and V (j → i) are
the force acting on particle i and the energy of particle i in the field created by
particle j (the influence of j on i), then the differential equation describing the
trajectory of particle i is by Newton’s second law:

mi ·
d2

dt2
xi = Ffriction + Fexternal +

∑

j 6=i
F (j → i) =

= Ffriction + Fexternal −
d

dx

∑

j 6=i
V (j → i) (4.1)

In Burzio’s model, lexical items are the bodies in a multidimensional space,
whose dimensions correspond to phonological, syntactic and semantic features.
The distance of two words can be measured in the number of features they
differ from each other. As Burzio writes (p. 11): “[t]his model performs a
simple calculation in which the input is the position at which the object is
originally placed, and the output is the ultimate resting position”. Thus, friction
will correspond to Input-Output Correspondence, the force that acts against
changing position. External forces correspond to the markedness constraints:
independently of the position of the different bodies, they pull each of the bodies
towards some preferred positions. Finally, the force exercised by the other bodies
translates to into Output-Output Correspondence (OOC)—we shall return to
this point in the next subsection.

So for instance, most constraints used in linguistics can be seen as external
factors, such as the Earth’s gravitational field in which everyday objects with
mass follow a certain trajectory. Similarly to gravitation, which favours some
positions over other ones, markedness constraints favour certain feature com-
binations, that is, specific positions in the space. Remember that the linguistic
features (the phonological content, the syntactic class, semantic properties) of
lexical items are encoded as the dimensions of the space. If, for example, some
constraint disfavours front rounded vowels, harmony improves by moving to-
wards [-round] in the [round] dimension—just like gravitation, which prefers
the butter side of slices of bread and butter to be lower in the vertical dimen-
sion.

In OT terms, the points of the multidimensional space are the candidates,
while the output, the “ultimate resting position” is the winning candidate where
the forces neutralise each other. In physics, such a stable resting point is a local
minimum of the energy: there the spatial derivative (the gradient) of the energy
is zero, so no force acts upon the body, and moving away from that point would
increase the energy. Consequently, the OT Harmony function will correspond
to the (negative) energy in the physical analogy, and the goal is to find the
position (the candidate) that minimises energy (maximises harmony).

Here, energy includes not only the energies from the interactions with each
of the other particles, but the external forces and friction are also integrated
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(literally) into energy. Actually, friction should rather be replaced by springs,
also mentioned by Burzio. The more the spring is pulled, the larger its energy,
which corresponds to a larger force pushing the particle back to the origin. In
turn, candidates or lexical items are strings stretching between the input form
and the output form. A candidate’s energy (or harmony) is the sum of the
spring’s energy (Input-Output Faithfulness or Input-Output Correspondence),
of the energy from the external field (markedness constraints) and of the energy
from the interaction with the other lexical items (Output-Output Correspond-
ence).

It is unclear how precisely this sum has to be calculated in Burzio’s model. As
he later employs an OT-model referring to strict constraint ranking, I suggest
the polynomials or ordinal numbers as representations, following Chapter 3.
Thereby, it will be possible both to interpret the physical analogy (involving
sums and derivatives), and to save the connection to Optimality Theory.

Burzio does not elaborate either on what the “ultimate resting position”
is, he simply supposes that it is the global minimum of the energy (harmony),
following the principles of standard Optimality Theory. Indeed, in quantum
physics, a non-global local minimum is only a metastable position, as sooner or
later (this time range is called the half-life) the particle jumps to some lower
minimum. But if the half-life is very long, as well as in classical mechanics, local
minima can also be quite stable. Therefore, if the “ultimate resting position”
is only required to be some local minimum (following the physical analogy), we
obtain a similar picture to that used in SA-OT: possible surface forms are local
optima, among which the global optimum is (usually) the most frequent one.
Indeed, “local optimum” is the central concept, and the global optimum is but
a special local optimum.

Additionally, the parallel between Burzio’s model and the topology in SA-OT
becomes even stronger if we make explicit that in Burzio’s model neighbours—a
concept required in the definition of local optima—are points whose distance is 1,
that is, candidates that differ exactly in one feature, in one basic transformation.
Alternatively, a quantum physics-like model, in which non-global local optima
may be metastable if the half-life is very long, corresponds to another type of
SA-OT topology: to the definition in which any two candidates are neighbours,
but the a priori probability diminishes with distance. In this case, a candidate
can be attested because it is a “metastable local optimum” in the sense that
jumping to a better one is extremely improbable, because better candidates are
very far away (so SA-OT will be stuck there); similarly to radioactive isotopes
found in nature whose half-life is comparable or longer than the age of the
universe, so that they have not decayed yet.

In brief, Burzio’s search space is a special case for the search space employed
in SA-OT. A special case, but a very self evident and general one. He does not
specify the way he would perform the search for the “ultimate resting position”.
(Would he calculate step by step the trajectory of each item from the input
form to the output form? Does anything guarantee that such a trajectory ends
in a resting position?). And yet, the physical systems that motivated simulated
annealing (including the e−∆E/T factor) are the same as those inspiring Burzio.
Hence, the close connection between the two proposals, I believe, is worth further
research.
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4.1.3 Burzio’s Output-Output Correspondence

Let us turn our attention now to the way Burzio (2002) introduces the most
interesting type of force present in his model, Output-Output Correspondence,
that is, the interaction between particles. This “gravitational force” between
pairs of words is argued to be responsible for phenomena such as analogical
effects.

To sum up what we have discussed so far, the lexicon of a language is com-
posed of lexical items that optimise locally their “energy” (i.e., their harmony
function). The energy of an output form depends on its well-formedness (phon-
ological markedness constraints), on its distance from the input form (Input-
Output Correspondence), as well as on its interaction with the other output
forms (OOC). Hence the Saussurian concept of the language as a complex sys-
tem: altering one surface form influences all other outputs through their inter-
action.

Burzio introduces the notion of representational entailments (on p. 176),
which, he argues, is cognitively plausible. The position vector of some word A =
(a1, ..., an) can be seen as a set of entailments of the form “if position i has ai,
then position j has aj” for all possible i’s and j’s. Take now a second lexical item,
B, whose coordinates equal those of A in k out of the n dimensions (features),
and differ in n−k dimensions. Given this, B violates k(n−k) entailments of A:
there are k different positions i and n− k different positions j, such that B has
ai in position i, and yet, not aj in position j. Hence, Burzio’s proposal—the way
I interpret the August 1999 version of his paper, which is slightly more explicit
(Burzio, 1999)—defines the “gravitational” potential V (A → B) exercised by
word A upon word B as the number of entailments of A violated by B. This
potential as a function of the non-Euclidian distance k is:

V (k) = k(n− k) = nk − k2 (4.2)

The “gravitational” force with which A attracts B is the spatial derivative
of this potential:3

F (k) =
∂V (k)

∂k
= n− 2k (4.3)

The direction of this force points towards word A.
It becomes clear that the closer the two words (that is, the smaller the k),

the stronger they attract each other. In that property, Burzio’s inter-word force
resembles vaguely gravitation and electrostatic force. If the two words are very
far, attraction vanishes; even further (k > n/2), the force turns into repulsion
(“anti-gravitation”).

Subsequently, a trick often used in physics is employed by Burzio. A body
composed of many particles can be replaced by its mass centre (“centre of grav-
ity”) for the purpose of calculating its gravitational attraction. This is so,
because the gravitational force exerted by each particle can be decomposed into
two components: when summing up the forces exerted by all the particles, the
first components cancel each other, whereas the second components sum up as
if all the mass were concentrated in the mass centre. This trick helps Burzio to
understand the effect of a group of words on a particular word.

3To be more precise, the negative derivative is the repulsive force. To increase clarity, we
concentrate on attraction, however. Cf. the right hand side of equation (4.1).
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Suppose that a group of words share some representational entailments: in
Burzio’s example, parental, natural, etc. all share the entailment according to
which “the ending al must be preceded by a noun”. Other entailments that are
not shared include “the ending al must be preceded by the string parent” or
“the ending al must be preceded by the string atur”. When summing up the
entailments of these words, (hence, the force, since the derivative in Eq. (4.3) is
additive), the effect of the latter entailments will neutralise each other. Yet, the
group of words will yield the macro-entailment “the ending al must be preceded
by a noun”. This is the way Burzio hopes to explain paradigmatic effects.

Consider an arbitrary word. The gravitational force exerted on it by most of
the lexicon is negligible, partially because most of the words are far enough away
(having many different features), and partially because their effects neutralise
each other—unless the word is located “outside” of the majority of the lexicon,
such as in the case of a foreign word whose phonological features have not been
assimilated into the general phonological system of the language. In the latter
case, the lexicon as a whole exerts some attracting force. In the most frequent
case, however, only particular words in the neighbourhoods will exert attraction:
assimilation to a set of similar words, paradigmatic levelling, etc. Furthermore,
the closest existing lexical items to a derived word are its root and the outputs
of the previous cycles of the derivation. Through this idea, Burzio’s Output-
Output Correspondence is able to account for phenomena previously accounted
for by cyclical derivation.

Burzio is even able to explain why the root has more influence on the derived
form than vice versa. He argues that more representational entailments of the
shorter root are satisfied by the derived form than vice-versa. For example,
parent violates parental ’s entailment “if the word’s first segment is a p than its
eighth segment is an l”, while all entailments referring to the segments of parent
are satisfied by parental. In turn, parental is more influenced by parent than
vice versa. The only problem with this argument is that we become uncertain
about the exact representation of a lexical item as an n dimensional vector, with
always nsegm dimensions corresponding to phonological segments.

Finally, turning back to the Past-Tense Debate, what is Burzio’s explana-
tion of the different behaviour of Level 1 (highly irregular morphology, highly
regular phonology) and Level 2 (highly regular morphology, yet often irregular
phonology) word derivations? The difference is the place where Output-Output
Correspondence is ranked, relative to phonological markedness constraints and
to Input-Output Correspondence. Moreover and most importantly, the different
ranking results from the significantly different numbers of stems belonging to
a certain derivational paradigm (Burzio (2002), p. 195). Level 1 affixes take
relatively few stems, and therefore gravitation’s morphological levelling effect
is weak: Output-Output Correspondence is ranked below phonological marked-
ness, yielding irregular morphology and regular phonology. On the other hand,
the possibly infinite number of stems to which Level 2 affixes can be applied
boosts the effect of Output-Output interaction over the phonological markedness
constraint—resulting in a regular morphology, and an irregular phonology.

By (literally) deriving grammatical effects (output-output constraints) from
the words in the lexicon, Burzio reverses—as he himself remarks—the one-way
relation from the (adult) grammar to the output dominant in the generative
tradition.
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4.1.4 Burzio’s model and SA-OT

A very important question is still open, however. How precisely are the different
forces summed up? Equation (4.3) gives the “force” with which lexical item A
attracts word B. Without asking crucial details about the exact number and
nature of the dimensions, and supposing that the different forces are simply
summed up, it is still unclear how this effect is translated into a position of
Output-Output Correspondence within the hierarchy. And this last issue seems
to be the major point in assessing Burzio’s proposal.

Although we are not going to come up with concrete proposals, the differ-
ent ways of representing the Harmony function introduced earlier allow us to
speculate about possible directions of future work.

Notice that Burzio’s proposal gets tangled up where it has to accommodate a
traditional Optimality Theoretical framework. Supposing that representational
issues—the exact form of the feature vectors—are solved, and accepting the
neural plausibility of representational entailments, the potential introduced in
Eq. (4.2), as well as the derived force in (4.3) are well-founded and elegant. And
yet, are we sure and certain how many stars to assign to a particular candidate
in any case?

This question might be avoidable in SA-OT, however. Do we really need to
translate Burzio’s formalism into terms of standard Optimality Theory? Ob-
serve that what we did in earlier chapters was the opposite translation: trans-
forming constraint violations into some energy (potential, harmony) function to
be optimised. As a simple real-valued function would not work for Optimality
Theory in the general case, we have introduced the polynomial representation
and the ordinal number representation of the Harmony function—both having
the form of a sum.

Consequently, Burzio’s “gravitational” potential, once well formulated, can
be added directly to some formulation of the Harmony function. This new ad-
dend does not necessarily have to have the exact form of the addends obtained
from the traditional constraints: we may give up on seeing the gravitational
effect as a constraint. Yet, the gravitational potential should be formulated
within a similar formalism, so that it can be added to the representation of
the constraints. Not bad news in itself, as probably Burzio’s “gravitational”
potential is not really suited for a real-valued representation, for the simple
reason that it requires the sum over an indeterminably large lexicon. Further-
more, although the gravitational effect in the harmony function will not have the
form of a constraint, yet its magnitude within the summands probably can be
estimated—and be interpreted as Output-Output Correspondence being ranked
higher or lower than markedness constraints.

As a speculation, remember how Burzio explained the different ranking of
Output-Output Correspondence for Level 1 and Level 2 derivations: in the
first case the effect of at most a few hundred words are summed up, whereas
the summation in the second case takes place on an open class of words. If
the mean potential obtained from a single word in the class is v, then one
hundred words provide a potential of v ·100. Yet, in the case of fully productive
morphological processes in Level 2 derivations, the open set has the cardinality
of a countably infinite set (ℵ0): in turn, is the summed up potential v ·ω? If so,
the corresponding addend is of a higher magnitude in ω and we have understood
why Burzio argued for promoting Output-Output Correspondence higher in the
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case of Level 2 morphology.

Let us now step back from speculations. Burzio’s model is undoubtably
attractive—at least to a person with a background in physics. However, the
model is very hard to implement. In practice, the phonologists using Output-
Output Correspondence define a priori which other output the given form must
be compared to, and do not demonstrate that the interactions with all the other
words in the lexicon are negligible, and indeed extinguish each other.

Consequently, we recommend replacing Output-Output Correspondence with
correspondence constraints that refer explicitly to the process of morphological
derivation. One such constraint could be Kenstowicz’s Base-Identity (Ken-
stowicz, 1995). However, in the following section, we demonstrate that very of-
ten it is not the base, but the output of the previous cycle of the derivation that is
relevant, a fact well known in the Lexical Phonology of Kiparsky (1982). There-
fore, we recommend introducing a constraint named Component-Output
Correspondence / Constituent-Output Correspondence (COC). If I
keep the original name OOC in the next chapter while I mean in fact COC, it
is because I would like to retain readability for phonologists.

4.1.5 Constituent-Output Correspondence

In this subsection, we define COC, so that it can serve us in Chapter 5 on
metrical stress in Dutch fast speech.

By way of introduction, I must express my reservations with regard to the
general way of defining a constraint in the OT literature. It is true that originally
constraints were requirements that a linguistic form either met or did not, and
therefore, introducing a constraint meant defining the condition that a form
had to meet (for instance: “each syllable has an onset”, “no syllable has a
coda”). Nevertheless, with the advent of violable constraints, and, especially
since more levels of violation could be distinguished, a constraint is rather seen
as a function mapping each linguistic form to a numerical value (usually, the
number of violation marks). Consequently, the definition of a constraint must
tell how many violation marks are assigned to a given candidate (for instance:
“the number of codas in the word”, or “one star per syllable with a coda”).

We particularly have to emphasise this here, because this task is especially
difficult in the case of OOC and COC. The authors of most articles are lucky
enough to be able to point intuitively to the fact that the optimal candidate is
“clearly” better with respect to OOC than its competitors, so they can eschew
giving an exact definition of OOC. Yet, Simulated Annealing Optimality Theory
has to be able to compare the violation levels of any two neighbouring candid-
ates. In turn, the number of violation marks incurred by a candidate should be
defined exactly; or, at least, the difference in the violation levels ought to be
given for any pairs of neighbouring candidates. The second way, undoubtedly
challenging, assigns a violation difference to each of the possible basic steps.4

4For instance, in the case of metrical stress assignment to be presented in Chapter 5, moving
the unobservable foot borders should not introduce any changes with respect to OOC (COC).
Nonetheless, deleting and inserting a stress (a foot), as well as moving the position of a stress
(changing the head syllable of a foot) may involve some changes in violating OOC (COC). One
parameter will define the possible change due to deletion or insertion, and another parameter
will describe the role of changing the place of a stress. These two parameters, nevertheless,
correspond to the parameters used in the approach described presently.
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In the following, nonetheless, we follow the first way, for its being simpler and
consistent with the general claim of defining each constraint as a function.

Correspondence Theory was introduced in the early years of Optimality The-
ory by McCarthy and Prince (1993b) (p. 67) for the sake of reduplicative phe-
nomena. (We shall use it also in section 6.3.) In later developments, the cor-
respondence relation Cw maps the segments of the underlying form to the “cor-
responding” segments of the candidate string w. Then, constraints may require
that each underlying unit have a corresponding image in the candidate (con-
straint Max—originally called Parse with a different philosophy—prohibiting
the underparsing, i.e. the deletion of parts of the input); each surface element
be the correspondent of an underlying segment (constraint Dep—Fill in Prince
and Smolensky (1993)—punishing epenthesis); and that input and output seg-
ments be the same (further types of faithfulness constraints).

Unlike in the general case, pairing the basic units of the input and the output
string is easy in stress assignment, for GEN adds some structure (namely, the
metrical structure) on the top of the input string without altering the latter.
Hence, the input string and the output string are composed of the same number
of syllables, and the nth syllable of the input string corresponds to the nth
syllable of the output string.

Thus, we focus on the correspondence of the metric structure (stress pat-
tern). Yet, we employ Output-Output Correspondence, or Component-Output
Correspondence, and not Input-Output Correspondence. When assessing a can-
didate w with respect to Output-Output Correspondence (Component-Output
Correspondence), we will compare it to a string σ of the same length. In the
case of Output-Output Correspondence, σ has to be derived from the stress pat-
tern of any word in the lexicon, which does not necessarily has the same length
as w. Yet, as previously argued, I propose to replace Output-Output Correspond-
ence with Component-Output Correspondence, and in this case σ is the stress
pattern derived from the stress patterns of the morphological constituents of w.

In the simplest case, if w (actually, GEN−1(w), the corresponding underly-
ing representation) is the concatenation of a number of morphemes, then σ is
the concatenation of their stress patterns. To be more precise, the candidate
(the output form-to-be) is compared to the way its components are realised
as independent words (output forms) in the language—hence the name of the
constraint. Affixes are not independent words of the language with some stress
pattern, yet they may act as if they were: in Burzio’s approach, all the words
with a given affix and a given stress pattern on that affix would jointly have
such an analogy effect.

Burzio’s paradigmatic example is condensation as opposed to compensation.
The word còmpensátion is derived from cómpensàte, and the vowel of the un-
stressed second syllable may be reduced to a schwa. Yet, còndensátion is derived
from condénse, and the stressed second syllable in the root adds a tertiary stress
to the second syllable of condensation, prohibiting its reduction to schwa.

A similar example has been proposed by Dicky Gilbers and Maartje Schreuder
(personal communication). The six-syllable-long Dutch words sèntimentàlitéit
(‘sentimentality’) and ı̀ndiv̀ıduaĺıst (‘individualistic person’) have seemingly very
similar syllable structure: only their third syllables differ in weight, but if the
weight-to-stress principle were active, it would predict the opposite pattern.
Nevertheless, their morphological derivation is different:
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Cycle 1 sèn.ti.mént ı̀n.di.vi.dú
Cycle 2 sèn.ti.men.téel ı̀n.di.v̀ı.du.éel
Cycle 3 sèn.ti.men.tà.li.téit ı̀n.di.v̀ı.du.a.ĺıst

(4.4)

Observe that it is cycle 2 which determines the stress pattern of cycle 3.
If the root were the decisive factor, sentimentaliteit should have a stress on
its third syllable, and individualist on its fourth one, but the change of the
stress pattern in cycle 2 causes the opposite constellation. Interestingly, the
native speaker of Dutch observes that the misplacing of the stress changes the
semantic field of the (non-existing) word form: sèntimèntalitéit is conceived of
as some kind of mèntalitéit (‘mentality’), whereas ı̀ndividùaĺıst sounds as some
sort of dualist.

Consequently, the stress pattern to which the different parsings of the input
form individualist are to be compared to is sususs (s meaning stressed syllable, u
referring to unstressed syllable): the stress pattern susus of individueel followed
by the pattern s of the suffix (for the ist ending attracts stress). Similarly,
sentimentaliteit is compared to the concatenation of the stress patterns suus
from sentimenteel and of us from -iteit.

After these preparations, we are ready to define the constraint Component-
Output Correspondence. The number of violation marks assigned to a
candidate w is the number of mismatches with the corresponding string σ,
after a pairwise comparison of the corresponding elements of the (equally long)
strings:

COCσ(w) =
∑

i

∆(wi, σi) (4.5)

where wi and σi represent the ith element (in the present case, whether the ith
syllable is stressed or not) of the candidate w and of the string σ used for the
comparison; and where:

∆(wi, σi) =

{
1 if wi 6= σi

0 if wi = σi
(4.6)

The definition of COC (or, OOC) is thus complete, but not satisfactory.
The result is maybe not exactly what we wish. Intuitively speaking, misplacing
one stress seems to be a smaller difference than missing a stress entirely, or
having extra stresses. If the target string is σ =suus, then w1 =susu seems to
be closer than w2 =suuu or w3 =suss.5 Yet, the above definition will assign two
violation marks to w1, because there is a mismatch in both the third and in the
fourth syllable, whereas only one violation mark will be assigned to w2 and to
w3. Candidate w1 violates constraint COCσ on the same level as the “totally
misconceived” candidate w4 =ssss. Is this situation that we wanted?

In turn, a modification of the constraint may assign additional violation
marks to the difference in the number of stressed syllables. Let ‖ α ‖ denote
the number of stresses in the string α:

‖ α ‖=
∑

i

∆(αi, s) (4.7)

5Again, from this point onwards, s refers to a stressed syllable with either a primary or a
secondary stress, whereas u represents an unstressed syllable.
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Subsequently, the new definition of COC is:

COCz,σ(w) =
∑

i

∆(wi, σi) + z ·
∣∣∣ ‖ w ‖ − ‖ σ ‖

∣∣∣ (4.8)

Notice that the present definition introduces a new parameter, namely z,
which determines the relative weight of the two parts, pointwise mismatch vs.
difference in the global number of stresses. As pointed out by several readers,
here I have combined two standard OT constraints. The first addend corres-
ponds to Ident(stress), and the second one to Max(stress). Instead of having
these two constraints in a strictly dominating rank order, we have just created a
weighted sum in a Harmony Grammar-style. By varying z and keeping it small,
the two addends, that is, constraints Ident(stress) and Max(stress), can create
different interesting landscapes, as the experiments to be described in the next
chapter shall demonstrate.

Last, one would define Component-Output Correspondence as COCσ (or,
COCz,σ) with σ being always the concatenation of the immediate morphological
components (in the present case, their stress pattern), and not the concatenation
of deeper components. This would be how OT could account for the bracket
erasing convention in Kiparsky (1982)’s Lexical Phonology.

On the other hand, one can make use of the above definition of COCσ (or,
COCz,σ) when defining Burzio’s Output-Output Correspondence. Then,
σ can be any element of the lexicon, and the definition should also define how
to sum up the different COCσs:

OOC(w) =
∑

σ∈Lexicon

d(w, σ) ·COCσ(w) (4.9)

with d(w, σ) being some distance measure between the elements of the lexicon,
which acts here as a weighting factor.

In Chapter 5, we shall make use of the Component-Output Correspondence
constraint in the way we just have defined it, including also the z weight. Non-
etheless, we shall call it Output-Output Correspondence, in order to make the
discussion comprehensible to the reader familiar with past and current phon-
ological literature, in which the term Output-Output Correspondence is used
rather in the sense of Component-Output Correspondence, and not really fol-
lowing Burzio’s original proposal.

4.2 Learning with SA OT?

The idea of learning a grammar has already been introduced roughly at the
very end of section 1.1.3. The interest in learning is twofold: from the view-
point of psycholinguistics, the question is whether a certain grammar model
can reproduce language acquisition observations, such as those in child lan-
guage, second language learning, post-traumatic language recovery, etc. The
adequacy of a grammar model is clearly questionable if it cannot be acquired.
On the other hand, natural language processing (NLP) may require machine
learning algorithms (Mitchell, 1997) that can—at least partially—automate the
construction of complex, high-coverage grammars.

In both cases, the goal is to find a grammar that reproduces the observed
data (as well as possible). The problem is reversed compared to what we have
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been dealing with so far: grammar implementation is concerned with producing
the linguistic forms for a given grammar, whereas grammar learning aims at
creating a grammar for given linguistic forms.

The basic philosophy is defined by Chomsky’s Principles and Parameters
(P&P) approach. Both acquisition in psycholinguistics and machine learning
require a framework, otherwise the search for a grammar would be ill-defined.
At this point, we cannot enter discussions about how much this framework has
to be restricted, in what sense it is innate, and how poorly or amply a child is
supplied with input data about her native tongue. What is usually supposed by
linguists is that some of the grammar is universal (these are the principles), and
it is already given to the learner at the beginning of the learning process. These
principles reflect, as a matter of fact, features that are, arguably, characteristic
of all languages of the world, as all human children inherit the same framework.
The cross-linguistic differences are accounted for by the different values assigned
to the parameters, and the task of the learner is to find the parameter setting
reproducing the observed data.6

As discussed in section 1.1.3, traditional Optimality Theory postulates GEN,
as well as the set of constraints to be universal. Applying Principles and Para-
meters to standard Optimality Theory means, therefore, that one searches for
the constraint ranking that accounts for the input data, because it is the hier-
archy that is supposed to be the only source of cross-linguistic variation, cor-
responding to the notion of “parameters” in P&P.

Grammar learning algorithms within standard Optimality Theory, Recursive
Constraint Demotion (RCD) and Error Driven Constraint Demotion (EDCD),
have been developed by Bruce Tesar (Tesar and Smolensky, 2000). A linguist-
ically more informed version of RCD is Biased Constraint Demotion (BSD)
(Prince and Tesar (2004), Tesar and Prince (2003)), used by Ota (2004) and
by Pater (2005b) to learn lexically indexed faithfulness constraints.7 Constraint
Demotion, however, lacks robustness: it presupposes that the data are produced
by an OT grammar, the target of the learning algorithm, and that no noise infilt-
rates the data set. Cases requiring Robust Interpretive Parsing (Tesar (1999),
Tesar and Smolensky (2000)), which inevitably introduce some sort of noise,
may be unlearnable. Eisner (2000b) proposes a generalisation for RCD.8

The most popular of the learning algorithms for variations of OT is the
Gradual Learning Algorithm (GLA) closely connected to Stochastic Optimality
Theory (Boersma and Hayes, 2001), and widely used in recent years.9 Addi-

6Actually, many algorithms rather aim at reproducing the observed data only as well as
possible. The data set may include noise, inconsistencies, errors, etc., and therefore finding a
model that fits all the observed data perfectly is not always feasible. Furthermore, one may
want to avoid overfitting (Mitchell, 1997): the goal, then, to be more precise, is to correctly
predict the behaviour of the system on unseen data.

7Bruce Hayes lists the following learning algorithms with their earliest references in the
manual of OTSoft: A Constraint Ranking Software (available at http://www.linguistics.

ucla.edu/people/hayes/otsoft/, version of January 12, 2004): Classical Constraint Demo-
tion (Tesar and Smolensky, 1993), Gradual Learning Algorithm (Boersma, 1997), Low Faith-
fulness Constraint Demotion (Hayes, 1999) and Biased Constraint Demotion (Prince and
Tesar, 1999). Both of the later two are similar to Classical Constraint Demotion, but they
attempt to place all faithfulness constraints as low as possible.

8For the application of EDCD to a heterogeneous data set, see an early manuscript at
http://www.let.rug.nl/∼birot/publications/t biro clin2002.pdf.

9For example Jäger (2003a) combines GLA with bidirectional OT (Blutner, 2000) in order
to create a language evolutionary model.
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tionally, stratified grammars are learned in Ota (2004) and Pater (2005b).
All these results showing that Optimality Theory is a learnable framework

have significantly contributed to the success of Optimality Theory. The obvious
question arising now is what Simulated Annealing Optimality Theory has to say
about grammar learning. The question is open to further research yet, and here
we can only speculate about the possibilities.

The most important contribution of SA-OT to the Optimality Theoretic
paradigm is probably the topology (neighbourhood structure) of the candidate
set. In section 2.2.2, it has been suggested that the topology should be universal
and reflect the “logic” of GEN and of the inner structure of the candidates.
If this is so, the structure on the candidate set does not have to be learned;
rather, it is given to the learner initially. In a second approach, however, one
could include a few parameters determining the details of the topology. In
Chapter 7, for example, the basic operations transforming a candidate into its
neighbours are supposed to be universal, and yet, the probability of applying a
particular operation may vary. In such a model, a fine-tuning of the parameters
is required to reproduce frequencies similar to those appearing in the learning
data set. Details are postponed to further research.

Concerning the hierarchy, Simulated Annealing Optimality Theory uses a
traditional approach, so the learner may want to use one of Tesar’s constraint
demotion algorithms (EDCD or RCD). Do not forget that SA-OT deals exclus-
ively with the way of calculating the optimal form in a standard OT model.
Hence, you can also propose to build a Stochastic OT model and to learn with
GLA; then, SA-OT is used to produce quickly an output at evaluation time
for each hierarchy that is derived from the current ranks of the constraints
by including noise. In both cases—constraint demotion and GLA—simulated
annealing solves a seemingly elementary step cheaply, unimportant from the
viewpoint of the learning algorithms. And yet, if generating the winner for
a certain hierarchy is otherwise a costly operation, then learning algorithms
calculating the optimal forms for different hierarchies many times would incur
computational troubles. Consequently, a learning algorithm may be speeded up
by using a heuristic technique.

SA-OT is not guaranteed to return the optimal candidate, however, and this
fact introduces some noise into the learning algorithm. Does this observation
disfavour less robust algorithms, such as EDCD? In fact, it most probably does
not. Both EDCD and GLA generate the optimal candidate with respect to the
current hierarchy in order to compare it to the piece of learning data. If the piece
of learning data turns to be suboptimal, then the present hierarchy is altered in
order to get closer to the target hierarchy, which would produce the observable
data. Otherwise, no change is made. What happens, now, if SA-OT fails to
find the optimal candidate for the current hierarchy? If the returned candidate
is still better than the learning data, the detected error helps drive the learning
algorithm (EDCD or GLA)—hopefully, towards the target hierarchy. Else, if
the candidate returned happens to be worse than the piece of learning data, the
learning algorithm mistakenly derives that the present hierarchy can account
for the learning datum: in fact, the algorithm has just missed an opportunity
to learn, and goes further to the next piece of data (unless this misconclusion
causes the algorithm to stop). In sum, the (relatively low) noise introduced
by SA-OT most probably has no other effect than to increase the number of
learning steps required by the learning algorithm. Further experimentation may
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compare the gain in speed due to the use of a heuristic technique to the increase
in the number of steps caused by this noise.

A real SA-OT learning task would be the following: the learning data are
produced using an SA-OT model (with known or unknown parameter setting),
and a hierarchy is sought that reproduces the same distribution of outputs.
Suppose that the topology and the set of constraints are given, and the goal
is to find the association of the constraints with certain indices (domains of
temperature) such that the landscape created by the model has the same local
optima. Either a traditional learning algorithm would work, and once the global
optimum (the grammatical form) is reproduced, the other local optima (the
performance errors) are given for free by the topology; or the performance errors
are also informative, and they provide further information for distinguishing
between hierarchies that return the same global optimum. An additional task
will be then to fine-tune the frequencies.

A third direction for combining simulated annealing, learning and Optimal-
ity Theory is to use simulated annealing not for production, but for learning.
SA-OT performs a random walk in the structured candidate set searching for the
best candidate with respect to a certain hierarchy. The dual (inverse) problem
would be to search the (structured) set of possible hierarchies in order to find
the best hierarchy for a certain set of learning data. Each hierarchy is scored
by the number of learning data it generates correctly, yielding an integer-valued
function to be maximised. Minimal permutations of the hierarchy could be the
operation defining the neighbourhood structure. In fact, already Turkel (1994)
observed the duality of production and learning in Optimality Theory, and he
proposed to use genetic algorithms for both problems, an optimisation tech-
nique not very far from simulated annealing (cf. also section 1.2). Nonetheless,
applying simulated annealing to the two, dual problems, have only few things
in common: very different type of functions have to be optimised on a very
different type of search space. I think that the similarities are too few, actually,
to have a guilty conscience if I also leave that to future research.

The dual problems are much more closely related in the Maximum Entropy
model advanced by Goldwater and Johnson (2003).10 Although simulated an-
nealing and MaxEnt Optimality Theory are closely related at first sight, the two
originate in very different approaches. Yet, some connection could be possible
to be worked out through the polynomials used in section 3.3.

As superficially introduced in section 1.3.5, MaxEnt OT defines the probab-
ility of form o (derived from input i) as

p{rj}(o|i) =
e−
P
j rjCj(i,o)

Z{rj}(i)
(4.10)

Here, rj is the real-valued rank of constraint Cj , which, in turn, assigns
Cj(i, o) violations (not necessarily a non-negative integer) to the input-output
pair (i, o). Z(i) is a normalisation factor, not important for us presently.

Observe that the exponent in this expression is a sum with addends com-
posed of two factors. The dual problems, generation and learning, interconnect
at this point. In production, the ranks {rj} of the constraints are fixed, and
we search for the output o that maximises p{rj}(o|i) for a certain input i. The

10See for instance Mullen (2002) for using MaxEnt for parse selection in Dutch, and for
further references in the field.
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grammar learner, however, varies the ranks {rj}, so that the observed input-
output pairs have the highest probability. See Jäger and Rosenbach (2006) for
an implementation of a simulated annealing-like algorithm to learning in Max-
Ent OT, called there stochastic gradient ascent, and argued to be a modification
of GLA (Jäger, 2003b).



Chapter 5

Stress in Dutch Fast Speech
with SA-OT

The goal of the second half of my dissertation—the goal of this chapter, as
well as of the following two ones—is to present a few applications of Simulated
Annealing Optimality Theory. The previous chapters have introduced the al-
gorithm, and argued for it on theoretical grounds: by showing that different
approaches derived from the philosophy behind Optimality Theory lead to the
same algorithm. We have also seen how SA-OT connects to different aspects
of language, such as the plausible computational complexity of tasks performed
by the brain and possible errors introduced by the production process, as well
as the proposal’s connections with the lexicon and learnability issues. Nonethe-
less, “a theory without an example is like a car without an engine: it may look
gorgeous, but will bring you nowhere.”1

Consequently, three models will be introduced, each of them having some
additional illustrative goal. Indeed, the motivation is more methodological, to
demonstrate how to work with SA-OT, than to account for specific linguistic
phenomena.

This chapter demonstrates that SA-OT can indeed be used as a model of
speech production, and outperforms the existing models. By varying parameter
Tstep, one can achieve different levels of precision, and if the algorithm is run
faster, then fast speech phenomena emerge in the model. Besides, we shall look
into the role of further parameters of the algorithm, in order to get a better
grasp of it.

Subsequently, Chapter 6 applies SA-OT to voice assimilation. The problem
seems to be simple, and yet, the first model to be proposed will not satisfy us,
even if arguments can be brought in favour of it. Therefore, a second model will
be introduced. The latter will show us how Simulated Annealing Optimality
Theory can make use of doomed, never realised, seemingly totally redundant
candidates in order to produce various distributions of the winning forms. With
this second model, an infinite search space will also be introduced for the first
time.

Thirdly, Chapter 7 shows how to syllabify inputs. First, the behaviour of
the definite article in Hungarian is reproduced using SA-OT. Then, we turn to

1Source: advice to the young researcher at ESSLLI 2002, Trento, Italy.
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Basic Syllable Theory, which has been the classical example for OT combinat-
orial typology since Prince and Smolensky (1993). Different implementations
of Optimality Theory have been demonstrated through this model: Tesar and
Smolensky (2000) employ dynamic programming (chart parsing), whereas Ger-
demann and van Noord (2000) uses finite state OT for the same problem. Thus,
the performance of SA-OT on the same task is definitely an interesting question.
Additionally, the model requires inherently an infinite candidate set—a challen-
ging situation we will have encountered in connection with the second model of
Chapter 6, but not earlier. Syllabification will also give us the opportunity to
examine the role of the topology of the search space, the new concept introduced
to Optimality Theory in subsection 2.2.2.

Finally, Chapter 8 closes the discussion of SA-OT by comparing it to the
alternatives mentioned in section 1.3.

5.1 The Schreuder-Gilbers model of Dutch stress

Schreuder and Gilbers (2004) analyse the influence of speech rate on stress
assignment in Dutch (see also Schreuder, 2006). The compound word fototoestel
(‘photo camera’) is assigned in normal (slow, andante) speech a primary stress
on its first syllable and a secondary stress on its third syllable (fótotòestel).
This output is faithful to the stress patterns of the component words: fóto
and tóestel. However, in a laboratory experiment forcing the participants to
produce fast (allegro) speech, Schreuder and Gilbers observed a stress shift in
similar words: the secondary stress moved in a number of cases from the third
syllable to the fourth one, which would yield fótotoestèl in our example.

The words used in the experiments of Schreuder and Gilbers (2004) can
be partitioned into the following groups, exhibiting the following slow speech
(andante) and fast speech (allegro) stress patterns:2

Type 0: andante: susu, allegro: suus, OO-correspondence to: susu
fo.to.toe.stel ’camera’

Type 1: andante: susuu, allegro: suusu, OO-correspondence to: susuu
stu.die.toe.la.ge ’study grant’
weg.werp.aan.ste.ker ’disposable lighter’
ka.mer.voor.zit.ter ’chairman of Parliament’

Type 2: andante: usus allegro: suus, OO-correspondence to: usus
per.fec.tio.nist ’perfectionist’
a.me.ri.kaan ’American’
pi.ra.te.rij ’piracy’

Type 3: andante: ssus allegro: suus, OO-correspondence to: ssus
zuid.a.fri.kaans ’South African’
schier.mon.nik.oog name of an island
uit.ge.ve.rij ’publisher’

2I follow closely the data of Schreuder and Gilbers (2004). Still, I have added as Type
0 the word that they only use to introduce the phenomenon, but did not employ in their
experiments. It will turn out to be useful also for our purposes.
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Type 1.: right shift Type 2.: left shift Type 3.: beat reduction
stu.die.toe.la.ge per.fec.tio.nist uit.ge.ve.rij

‘study grant’ ‘perfectionist’ ‘publisher’
susuu usus ssus

stú.die.tòe.la.ge per.fèc.tio.ńıst ùit.gè.ve.ŕıj
slow: 0.81 slow: 0.20 slow: 0.96
fast: 0.38 fast: 0.13 fast: 0.67

stú.die.toe.là.ge pèr.fec.tio.ńıst ùit.ge.ve.ŕıj
slow: 0.19 slow: 0.80 slow: 0.04
fast: 0.62 fast: 0.87 fast: 0.33

Table 5.1: Observed frequencies per type: The relative frequencies of the
andante and of the allegro forms at fast and slow (normal) tempo, as observed
by Schreuder (2006, pp. 80-82).

Here and henceforth, s refers to a stressed syllable and u to an unstressed
one. We shall return to the role of Output-Output Correspondence presently,
and the above table contains these notes only in order to save us space later.

Importantly, both forms of each word mentioned in the table occur in both
andante and allegro speech (Schreuder, 2006). It does not even necessarily hold
that one of the two forms dominates speech at slower rates whereas the other
form outnumbers the first one at a faster tempo. The andante form of Type 1
(called right shift by Schreuder) is observed in 2/3 of the cases even in allegro
style; whereas the fast speech form of Type 2 words (left shift) is pronounced
four times more often than the slow speech form even in slow speech (Table 5.1
and Schreuder, 2006, pp. 80-82).

The phenomenon is rather a statistically significant shift in the observable
frequencies. What is called the fast (allegro) speech form becomes more frequent
at higher tempo, while the slow (normal, andante) form is characterised by a
relatively higher frequency at a lower pace than at a higher pace. Only in this
sense can we distinguish between andante and allegro forms; and only with this
caveat do we refer to “errors in fast speech”. Indeed, some of these “errors” are
also made in normal speech—very frequently at that, even though less frequently
than in fast speech.

A second argument justifies why we refer to these forms as “erroneous forms”:
why, for instance, the suus stress pattern of Type 2 words can be seen as “fast
speech error”, even if it also dominates normal speech. Namely, the andante
forms can be described with the same simple grammar, which will consequently
be claimed to be the grammar describing the given language. The usus form of
type 2 words corroborates the simple and convincing proposal that will account
for the andante forms of the words in the other categories—the latter being
really observed in more than 95% of the cases in andante speech. However,
the attempt to create a model that reproduces the most frequent form of each
type has not succeeded. Even if it did—referring to the previous argument—how
could we explain the fact that the frequency of the grammatical forms according
to this grammar changes inversely in function of speech rate for Type 2 words?3

In brief, the basic grammar to be proposed has to account for the stress

3As pointed out by Paul Boersma, there are also non-alternating suus forms such as eco-
nomie ‘economy’.
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patterns called the andante forms. Then, a second component of the model
explain why the allegro forms also appear and become more frequent as the
speech rate increases.

Having anticipated thus the existence of a grammar and a second component
(which will obviously be the language production model, implemented as SA-
OT), we turn now to a closer analysis of the different observable forms.

What does the experiment show? In slow (andante) speech, the words are
pronounced in a way that reflects their inner structure. Types 0, 1 and 3 are
compound words, and they keep the stress pattern of their components un-
changed (e.g.: fóto+tóestel or stúdie+tóelage). Further, the examples in Types
2 and 3 end in a morpheme (a suffix, with the exception of Schiermonnikoog)
that must bear stress. In sum, the stress patterns of the andante forms are fully
derivable from morphology. On the other hand, all of the fast speech (allegro)
forms display the suus pattern, followed by an extra unstressed syllable in the
case of the five-syllable words of Type 1.

The faithfulness of the slow speech forms to their morphological structure
can be accounted for by Output-Output Correspondence (also called as Output-
Output Faithfulness)—or, Component-Output Correspondence, the constraint
introduced in section 4.1.5—to a string derived from the morphology of that
word. On the other hand, the pattern suus emerging in all of the types rep-
resents the form that is “easy to pronounce”; hence, it is accounted for by the
corresponding markedness constraints. Faithfulness and markedness compete,
slower speech emphasising faithfulness, while faster speech promoting the role
of markedness.

Consequently, the solution proposed by Schreuder and Gilbers involves the
reranking of the two crucial constraints, namely Output-Output Correspondence
and the markedness constraint Foot Repulsion (*ΣΣ). The latter corresponds
to constraint *FtFt introduced by Kager (1994) in order to account for similar
cases of ternary stress. The latter punishes two adjacent feet4 that are not
separated by an unparsed syllable, thereby making sure that stressed syllables
are not too close to each other:

Definition 5.1.1. The number of violation marks assigned by constraint Foot
Repulsion (*ΣΣ) to a candidate w is the number of syllable pairs (σ1, σ2) in
w such that:

1. σ1 precedes σ2;

2. the two syllables are adjacent (without any intervening syllable);

3. there exists metrical feet φ1 and φ2 in w, such that φ1 contains σ1, φ2

contains σ2, and φ1 is a different foot from φ2.

If this constraint dominates the still importantly ranked FootBinarity and
Parse-σ, then the ternary pattern resulting will be either “...[su]u[su]u[su]u...”
(in case of a trochaic language) or “...[us]u[us]u[us]...” (if that language prefers
iambic feet). No intervening syllable between two feet violates Foot Repul-
sion, while not parsing more syllables in a foot does not improve the candidate
for Foot Repulsion and makes it worse for Parse-σ.

4A metrical foot is an intermediate level between a syllable and a prosodic word, a parsing
unit widely used in metrical stress theory (Hayes, 1995). Note that not all syllables have
to be parsed into some foot: syllables not contained by any foot are referred to as unparsed
syllables. A more formal definition will be given in section 5.3.
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Indeed, the well-known constraint Parse-σ punishes unparsed syllables (cf.
e.g. Tesar and Smolensky, 2000, p. 54) and will be soon used, as well:

Definition 5.1.2. The number of violation marks that constraint Parse-σ as-
signs to candidate w is the number of syllables σ such that σ is not contained
by any metrical foot φ in w.

Schreuder and Gilbers (2004) present the following tableaux in order to
explain why one of the candidates emerge in andante speech, whereas the second
one in allegro speech:5

Slow (andante) speech:

fototoestel OOC *ΣΣ Parse-σ

+(fóto)(tòestel) *
(fóto)toe(stèl) *! *

(5.1)

Fast (allegro) speech:

fototoestel *ΣΣ OOC Parse-σ

(fóto)(tòestel) *!
+(fóto)toe(stèl) * *

(5.2)

The argument behind the explanation based on reranking is that the speaker
is more constrained by the rhythmic beat enforced by constraint *ΣΣ in fast
speech than in slow speech. (See Kirchner (1998), who also accounts for casual
speech phenomena by lowering the ranking of the faithfulness constraints and
augmenting the base effort costs of gestures.) Therefore, in fast speech *ΣΣ may
overrank previously undominated constraints, such as Output-Output Corres-
pondence.

Yet, this explanation raises at least two questions. First, fast speech errors
are usually seen as a performance phenomenon. If an OT hierarchy is a com-
petence model and the competence of the speaker is not altered, why would one
explain these phenomena by using a totally new grammar? One may give up the
idea of OT being a model of competence—but then, how is one to distinguish
between competence and performance?

Second, suppose that one accepts that a sudden drastic change takes place in
the grammar above a certain speech pace. Then, how can one explain the fact
that the fast speech form appears only in some percentage of the cases—even if
with an growing percentage as speech rate increases? If the grammar is altered,
then the new form should always appear, which is definitely not the case, as
discussed earlier (Schreuder, 2006).

5The candidate (fó)to(toestèl) is discarded by the high-ranked constraint FootBinarityµ
(personal communication), but we shall not make use of this constraint in what follows. Con-
straint FootBinarityµ assigns a violation mark to each foot containing a light syllable only,
but permits a foot of two moras: composed of two syllables or of one, but heavy syllable, such
as (stel) (Gilbers and Jansen, 1996). Otherwise, the fast speech form would be harmonically
bounded by this form, and hence, the latter could never emerge. We shall return to this fact
soon with respect to tableau (5.4). Output-Output Correspondence compares the candidate
to the string susu, and a star simply shows a mismatch.
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5.2 Fast Speech and different variations of OT

Besides reranking, most of the other models for variation presented in Section
1.3 are not very helpful either; primarily because they do not allow for fine-
tuning the frequencies of the different outcomes.

Alternating outputs that are assigned exactly the same violation marks?
Not even worth mentioning! As explained in section 1.3, this approach does
not predict frequencies, and the analysis is extremely vulnerable to future re-
search introducing new constraints. Coetzee (2004) refuses to give quantitative
frequencies of the different forms, and hence, he cannot account for a phe-
nomenon that involves the shift of frequencies. Suppose that your model has
both andante and allegro forms optimal for all constraints ranked higher than
the critical cut-off point. Coetzee suggests that the relation of their harmony
predicts the relation of their frequency. And yet, as Table 5.1 shows, the phe-
nomenon discussed often does not involve a reversal in relative frequency, but a
simple shift in the quantitative values. Such observations are outside the scope
of Coetzee’s model

In the different versions of stratified hierarchies, the frequencies are strictly
defined, and the only imaginable way to proceed would be to add a new con-
straint to some stratum, which does not sound very promising, either. Even
if we could argue for a new constraint emerging suddenly in fast speech, the
possible predicted frequencies would be too rigid.

In Maximum Entropy models, the ranks assigned to the constraints could
be varied—but this again would be a change in the competence model, whereas
fast speech phenomena are rather changes on the level of the performance.
Additionally, too many independent parameters would be required to describe
how the rank of each of the constraints changes in the function of the speech
rate: the explanation obtained might be little convincing.

A solution can be the use of Stochastic Optimality Theory (cf. also Bo-
ersma, 1998a). (Boersma, 1997) proposes, for instance, to raise the rank of all
faithfulness constraints by a certain value in careful speech. But then, again,
the competence model is altered for the sake of a performance phenomenon.
Moreover, again, the parameters of the model are doubled, because Boersma
and Hayes (2001) propose to introduce a new parameter for each constraint
that measures the correlation of the rank of that constraint with style.

Nevertheless, StOT allows a second solution. By increasing the standard de-
viation σ of the evaluation noise in the function of the speech tempo (which may
be done with a single monotonous function), the underlying competence model
is kept intact, and yet, the likelihood of reranking two constraints increases.6

Let the three constraints introduced be distributed on the continuous ranking
scale (i.e. before perturbation takes place) in such a way that the hierarchy
is OOC � *ΣΣ � Parse-σ, but the two highest ranked constraints are still
relatively close to each other (Fig. 5.1). Now, suppose that fast speech results in
increasing the evaluation noise: greater σ means enlarging the bell-shape of the

6Adam Albright has proposed a third solution that solves many of the problems of the first
two solutions. Suppose that before pronouncing a word we run not one but several Stochastic
OT evaluations. The different outputs for several randomly perturbed rankings are produced,
then compared, and the best or the majority winner is uttered. Suppose also that more such
“samples” are collected in normal speech than in fast speech. Therefore, the optimal candidate
for the unperturbed hierarchy increases its chances over the winner of the reversed hierarchies
more in normal speech than in fast speech.
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OOC*ΣΣParse-σ

Figure 5.1: The interaction of three constraints in Stochastic OT: The
three constraints proposed by Schreuder and Gilbers (2004) are assigned ranks
along a real-valued scale, as proposed by Boersma (1997). As the two highest
ranked constraints are relatively close to each other, they overlap. A lower
random noise level results in a smaller overlap (solid lines), whereas more noise—
a wider bell-shape distribution—increases the probability of reranking these two
constraints (dotted lines).

distribution. High evaluation noise, subsequently, augments the probability of
reranking temporarily the close constraints, OOC and *ΣΣ. As such a reranking
causes the model to return the fast speech form with the shifted stress, we have
created a model for fast speech.

The only hypothesis we need is to postulate that increasing the speech rate
corresponds to increasing the σ defining the normal distribution of the evalu-
ation noise. As speech rate grows, so does σ, causing the two constraints to
be reranked more frequently, due to which the model correctly returns the fast
speech form with a higher frequency. Future empirical research could formulate
a more exact connection between speech rate and σ.

The advantage of this approach is that the distinction between competence
and performance remains clear. The underlying competence model—the ranks
associated with the constraints—is kept intact. This underlying model corres-
ponds to the σ → 0 limit, at which no performance error is predicted. There is
no need for a theory about how the ranks of each constraint changes in function
of speech rate. Only one parameter depends on speech rate, σ, the parameter
that is decoupled from the static knowledge of the language, and which plays a
role in the actual production process. And yet, the question still remains open
to speculation: why should the evaluation noise (σ) change in function of the
speech rate?

Moreover, further problems also arise. One such problem is that the present
model predicts that the proportion of the fast speech form may never exceed
50%. Because the unperturbed rank of constraint OOC is higher than that of
*ΣΣ, the chance of selecting points such that OOC� *ΣΣ is always higher than
the opposite ranking at evaluation time. In the σ → ∞ limit, the probabilities
of the two subhierarchies—hence, the predicted frequencies of the two forms—
converge to 0.5 each.

This observation presents a problem, because the frequencies of fast speech
forms may grow higher than 50% (Schreuder, 2006). With the help of a third
constraint, Stochastic Optimality Theory could solve this problem.
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fototoestel OOC *ΣΣ Constraint-X

+(fó)to(tòestel) * *
(fóto)toe(stèl) *!

(5.3)

Imagine first that the three constraints are assigned exactly the same ranks.
This case corresponds to Anttila’s model with unranked strata: out of the six
permutations of the three constraints, two yield (fó)to(tòestel) as the winner,
and four return (fóto)toe(stèl). Thus, the predicted frequency of fótotòestel
is only 33%. Now, let us demote constraints *ΣΣ and Constraint-X only
minimally, that is, let us decrease their ranks with some values that is much
smaller than σ. The resulting model should be interpreted as OOC � *ΣΣ,
Constraint-X. Nevertheless, the probability of returning fótotòestel has not
increased much, because this form—the only grammatical one according to the
underlying model—is returned exclusively if the selection points are such that
OOC overranks both of the two other constraints (Jäger and Rosenbach, 2006).

The problem now is that even though Stochastic OT is able to predict less
than 50% frequency for the grammatical form, a third constraint is required—
what should be that third constraint? The set of constraints appearing in the
phonological literature is ample, and yet, adding a new, highly ranked constraint
to a model is always risky.

The following argument against Stochastic Optimality Theory could also be
refuted by an alternative proposal including different constraints. Still, SA-OT
will spare you the time of hunting for a new phonological model. Namely, notice
that in some of the types, all possible parses of the allegro form are harmonically
bounded:7 the first two rows by the third row, and the fourth row by the fifth
one in tableau (5.4). The fast speech forms can never win for any constraint
hierarchy, since there is always a candidate that violates each constraint fewer
or equal times.8

OOC *ΣΣ Parse-σ
[su]u[s]
[s]u[us] * *
[s]uu[s] * **
Type 0:
[s]u[su]
Type 2: *
[us]u[s]
[su][us] * *
Type 0:
[su][su]
Type 2: *
[us][us]

(5.4)

The most serious criticism follows, however. Observe that for a given σ the
probability of reranking the two constraints is constant. Therefore, Stochastic

7For the definition of Harmonic Bounding see Definition 1.3.1, on page 24.
8Concerning OOC, no exact analysis is necessary. Here, we content ourselves with the

observation that the andante forms satisfy OOC, unlike the allegro forms. This fact is the
key to the allegro forms being harmonically bounded.
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Optimality Theory predicts that the probability of stress shift is the same for
all of the four types, because all of them are the consequences of the same
phenomenon, the reranking of faithfulness and markedness. The experiment
of Schreuder and Gilbers (2004) shows, however, very significant differences in
fast speech form frequencies. Two solutions remain for Stochastic OT: either
the introduction of new constraints that differentiate between different types
(different words), or some explanation why σ depends not only on speech rate,
but also on the input word.9

But then again, Simulated Annealing will not require any further manipula-
tion: it predicts correctly which word is more likely to undergo stress shift at a
given speech rate. This difference is not introduced by an additional factor (new
constraints, σ dependent upon the input), but by something that is already in
the model, namely, the structure of the search space.

5.3 Fast speech and SA-OT: the building units

Let us apply simulated annealing to stress assignment. In building the model,
we follow closely the five steps described on page 45:

• Step 1: Define the candidate set.

• Step 2: Define a neighbourhood structure (topology) on the candidate set.

• Step 3: Define the Harmony function to be optimised: what are the con-
straints and how are they ranked.

• Step 4: Define temperature and the transition probabilities.

• Step 5: Define the cooling schedule and perform the simulation.

The input is a word composed of a number of syllables, say, σσσσ. The set
of candidates corresponding to this input is formed by all its possible correct
parses. A parse of a word groups syllables into units called feet. Hayes (1995)
writes:

One of the seminal ideas in metrical stress theory is this: the best
way to express stress rules might not actually be the most direct one,
that is, to place stress on a particular syllable. The alternative is to
state the possible structures for metrical constituents and construe
stress placement as the parsing of a word into such constituents.
These constituents, the minimal bracketed units of metrical theory,
are called feet. (p. 40, emphasis in the original)

While ignoring the difference between primary and secondary stress, a cor-
rect parse meets the following criteria in metrical stress theory (cf. Hayes (1995),
Tesar and Smolensky (2000)):

• It contains the same number of syllables as the input.

9An analogous train of thought will also appear in connection to Simulated Annealing
Optimality Theory in later chapters. Still, there the connection between the parameters (the
simulation speed) and the speech rate is more straightforward, and therefore the argumenta-
tion might be more convincing.
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• It contains at least one foot.10

• Feet do not overlap.

• A syllable not belonging to any foot (an unparsed syllable) is unstressed.

• Each foot contains one or two syllables.

• Each foot contains exactly one stressed syllable (called the head of the
foot).

For instance, a four-syllable input word σσσσ may be parsed as u[s]uu,
[su]uu, [us]u[s], [s][s][s][s], etc. Here, brackets represent foot borders, whereas u
and s refers to unstressed and stressed syllables, respectively. The set of possible
parses is finite, and can be easily formulated as a regular expression (cf. B́ıró,
2003, 2005c).11

The set of candidates having been defined, we can now proceed to define the
topology (neighbourhood structure) of the search space. Among the different
strategies proposed in section 2.2.2, we chose the simplest one, described by
equations (2.4) and (2.5): each candidate has a small number of neighbours
with equal probability.

In particular, the neighbours of a candidate are the candidates which can
be reached within one basic step, where a basic step is defined as performing
exactly one of the following actions:

• Insert a monosyllabic foot: turn an unparsed u into [s].

• Remove a monosyllabic foot: turn [s] into an unparsed u (unless the res-
ulting form would contain no foot).

• Move one foot border: enlarge a foot by taking an unparsed syllable into
a monosyllabic foot.

• Move one foot border: narrow a foot by taking an unstressed syllable out
of a foot.

• Change which is the head (stressed) syllable within a bisyllabic foot: [su]
to [us], or vice versa.12

These basic steps are minimal changes in the metrical structure of a parse,
and follow very simply from the logic of what a correct parse is. Observe that
the neighbourhood relation is a regular mapping on the set of candidate strings,
because it is the union of very simple regular operations. Moreover, it is import-
ant that any parse can be transformed into any other parse with some series of
basic steps, the neighbourhood structure obtained is a connected graph.

10When not ignoring the difference between primary and secondary stress, we require the
word to contain exactly one main / head foot, instead of this rule. The stress in that foot
is the primary stress of the word. All the other feet, which contain secondary (tertiary,... in
some theories) stresses, are optional. Note that all these rules apply only to prosodic words,
which are defined as having exactly one main stress. Clitics and further, unstressed linguistic
units belong to some adjacent prosodic word.

11See especially an early manuscript at http://www.let.rug.nl/∼birot/publications/t
biro clin2002.pdf.

12The notations have not been chosen to refer to the Soviet Union and to the United States...
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[s][s][s]

[s][s]u

[s][su] [s][us]

[s]u[s][s]uu

[su][s][su]u [us][s]

[us]u

u[s][s]

u[s]u u[su] u[us]

uu[s]

Figure 5.2: Topology for metrical stress formed by a three-syllable
input: The arcs of the graph visualise the neighbourhood relations. The a
priori probabilities are omitted, for they follow from equation (2.5). An arrow
points to a neighbour that is not less harmonic with respect to the toy hierarchy
*ΣΣ � Parse-σ.

According to this definition, uu is not adjacent to [us], although the differ-
ence is only the existence of a foot, as has been formulated by the readers. I
viewed the insertion of a bisyllabic foot as a more complex operation than those
listed above, and therefore did not include it among the basic steps; but fu-
ture work should indeed investigate the consequences of an altered definition of
neighbourhood. Alternatively, one might propose to have the set of basic steps
minimal in the sense that removing one of the permissible actions may result
in a disconnected graph. Then, the insertion of a bisyllabic foot can be missed,
for it can be replaced by two permissible steps (uu → u[s] → [us]), but then the
same applies also to changing the head syllable of a bisyllabic foot ([su] → [s]u
→ [s][s] → u[s] → [us]).

Defining the topology of the search space, finally, includes specifying the
probability measure according to which one of the neighbours is chosen at each
step of the simulation. Thus, we will have accomplished the three steps of
defining a topology mentioned on page 48. For the sake of ease, we shall assign
equal probability to each neighbour. So, if candidate w has three neighbours,
each will be chosen with probability 33%; if, however, w has four neighbours,
they receive 25% each.

The graph in Fig. 5.2 shows the topology of the search space in the case of
a three-syllable input. Although our simulations will be based on inputs with
four or five syllables, the graph formed by the 43 candidates generated from
a four-syllable input would be too complex to display here, let alone the 119
candidates of a five-syllable input. The arcs of the graph connect candidates
that are neighbours, that is, a single basic step will transform one into the
other. The arrows on the arcs point towards to the candidate which is at least
as harmonic, with respect to the ranking *ΣΣ � Parse-σ.
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This brings us to the next step in Simulated Annealing, step 3 from the
five steps repeated at the beginning of the present section. Once we have the
topology of the search space, that is, the horizontal map of the landscape in
which the random walk will take place, we proceed to build the vertical structure
of the landscape. Each point of the search space is situated “higher” or “lower”,
where more harmonic candidates are lower than the less harmonic ones. An arc
on the graph with only one arrow points downhill, whereas an arc with two
arrows represents a horizontal move. If there is an arrow from candidate w to
candidate w′ then the move from w to w′ will be possible with a probability of
100% during the entire simulation.

Eyeballing the graph, we can point to some phenomena. Candidate [s][s][s]
represents a summit, so that you go downhill, no matter which direction you
take. In fact, it is the global maximum, the worse candidate of all, but this
fact cannot be seen directly from the graph. On the other hand, the candidate
[s]u[s] is a local minimum: the arrows from all its neighbours point towards
it. We also find valleys, such as the one formed by u[su] and u[us], or the one
formed by [us]u and [su]u. These two valleys are formed by candidates of equal
harmony, but situated lower than their surroundings. If we compare the local
minima, [s]u[s], u[su], u[us], [us]u and [su]u, it turns out that all of them are
global minima as well. However, the graph itself cannot help in determining
which of the local minima is a global minimum.

By including additional constraints ranked below Parse-σ, (such as align-
ment constraints, NonFinal, FootBinarity, Iambic, Trochaic or Foot-
NonFinal, cf. Tesar and Smolensky, 2000, or other standard OT literature), we
could differentiate between these local minima. Indeed, all constraints from the
supposedly universal constraint set must appear somewhere in the hierarchy—
even if very low. Similarly to the proposal in section 1.3.1, SA-OT could claim
that two neighbours form a horizontal platform only if we knew all the con-
straints in the language. Nonetheless, if there is a constraint C such that each
pair of neighbours differs for some constraint ranked not lower than C, then the
constraints ranked below C do not play a role in SA-OT.

Although constraints have already been introduced earlier (definitions 5.1.1
and 5.1.2, as well as equation (4.8) in section 4.1.5), we repeat them here in
order to accomplish the first part of step 3 of building an SA-OT model. If #A
denotes cardinality of the set A (the number of elements in A), then

COCz,σ(w) =
∑

i

∆(wi, σi) + z ·
∣∣∣ ‖ w ‖ − ‖ σ ‖

∣∣∣

*ΣΣ(w) = #
{
{σ1, σ2}

∣∣∣ adjacent syllables of w in different feet
}

Parse− σ(w) = #
{
σ ∈ syllables of w

∣∣∣σ is unparsed in w
}

(5.5)

In other words:

• OO-correspondence: compare to susu, syllable-by-syllable, assign one * to
each difference. Plus: z times the difference in number of stresses.

• *ΣΣ: assign one * per “][“.

• Parse-σ: assign one * per unparsed “u”.



5.4. Experimenting with the Schreuder-Gilbers model 133

The second half of step 3 is specifying the hierarchy. Earlier, we have ar-
gued that the hierarchy has to make the andante form the optimal candidate.
Therefore, our starting hierarchy is:

OOC� *ΣΣ� Parse-σ (5.6)

The definition of temperature for SA-OT has been argued for very elab-
orately in chapter 2. What remains is performing the simulation for different
cooling schedules.

5.4 Experimenting with the Schreuder-Gilbers

model

To summarise and to focus first on Type 0 words (such as fototoestel), the search
space includes all 43 possible parses of this 4-syllable input. The topology of
the search space is defined by a neighbourhood relation such that a candidate
w′ is a neighbour of the candidate w if and only if w′ can be constructed from
w by applying exactly one of the five basic steps mentioned earlier: insertion of
a monosyllabic foot, removal of a monosyllabic foot, enlarging a foot by moving
its border, narrowing down a foot by moving its border, or changing the choice
of the head syllable within a bisyllabic foot. The probability distribution over
the set of the neighbours of a given candidate w is a constant function: each
neighbour is chosen with equal probability. Furthermore, the Harmony function
over the search space is defined by the constraint hierarchy OOC � *ΣΣ �
Parse-σ, using the definitions in (5.5).

We begin our experiments with the word fototoestel (Type 0), that is, the
input is a four-syllable word, and OOC is calculated with respect to the input
string susu, by postulating z = 2. The parameters used for the algorithm are:
Tmax = 3, Tmin = 0, Kmax = 3 and Kstep = 1. The parameter Kmin was chosen
as a function of Tstep:

Kmin = −100, if Tstep > 0.5,
Kmin = −30, if 0.5 ≥ Tstep > 0.1,
Kmin = −6, if 0.1 ≥ Tstep > 0.05,
Kmin = −3, if Tstep ≤ 0.05,

Furthermore, the algorithm will be launched from each of the 43 candidates
as initial state. Similarly to the first experiments performed in section 2.3.1, our
goal is to measure the probabilities of returning different outputs in the function
of the parameters—first of all, as a function of Tstep.

Thus, we launched the algorithm 300 times from each of the 43 candidates,
which corresponds to n = 12900 runs. Supposing a Gaussian distribution of the
outputs, this number of repetitions allows for a random fluctuation below 1%.
As Kmin has been chosen low enough to ensure that the system reaches a local
optimum, no other candidate is returned.

Now, this model includes three local minima. The candidate [s]u[su] is the
global minimum—not surprisingly, as we have chosen the hierarchy so that the
optimal one be this candidate, a possible parse of the andante form. The model
includes two further local minima: [su]u[s] and u[us][s], which present possible



134 Chapter 5. Stress in Dutch Fast Speech with SA-OT

pitfalls for the algorithm. Candidate [su]u[s] corresponds to the observed allegro
form, whereas u[us][s] is not observable in Dutch.

I do believe that the fact that such a simple hierarchy and a straightfor-
ward topology has immediately yielded the correct fast speech form as a local
optimum is far from being trivial. It points towards the cognitive adequacy of
the topology. Remember, the hierarchy has been chosen to account only for the
andante form, whereas absolutely no empirical considerations have been given
when defining the topology, besides metrical stress theory, based on very gen-
eral cross-linguistic observations. It seems at first sight that the local optimum
[su]u[s] is an automatic consequence of [s]u[su] being the global optimum. Yet,
after this very first, unexpectedly easy success, we will have to struggle hard to
get rid of the artefact form u[us][s]. The difficulty of this struggle will reinforce
our conviction that the development of a successful model is far from being
trivial.

Before going further, one can check that candidate u[us][s] is indeed a local
optimum (using OOC with respect to string susu, with z = 2). The following
tableau contains the candidate u[us][s] and all its neighbours. The ∼ symbol
refers to a local optimum in the present model, whereas the exclamation mark
precedes the fatal violation with respect to u[us][s]:13

OOC *ΣΣ Parse-σ

∼ u[us][s] ** * *

u[us]u **!* **
[s][us][s] **!* **
uu[s][s] ** * *!*
u[su][s] **!** * *

(5.7)

Similarly, [su]u[s] is also a local optimum, because it is more harmonic than
all its neighbours:

OOC *ΣΣ Parse-σ

∼ [su]u[s] ** *

[s]uu[s] ** *!*
[su][us] ** !*
[us]u[s] **!** *
[su][s][s] **!* **
[su]uu **!* **

(5.8)

Other candidates are not local optima. For instance, candidate [s]u[s]u is
less harmonic than its neighbour [s]u[su], with Parse-σ as fatal constraint.
One could similarly demonstrate that all the remaining 39 candidates are not
local optima. Yet, it is simpler to run a gradient descent (a simulated annealing
launched with Kmax < 0 if the lowest ranked constraint is in domain 0) from
each of the candidates. As gradient descent is not able to escape from local
optima, a simulation launched from such a state would return it necessarily. This
experiment shows that the model, indeed, contains no other local optimum.14

13The reader is invited to check these tableaux by using the demo program available at
http://odur.let.rug.nl/∼birot/sa-ot/Dutch-stress.php.

14If the number of candidates is very large, checking by hand whether each candidate is a
local optimum is not feasible. As a side remark, however, on philosophical grounds, one may
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Figure 5.3: Tuning Tstep in the Schreuder-Gilbers model: The proportions
of producing the correct form according to competence ([s]u[su], solid line), the
performance error form typical to fast speech ([su]u[s], dotted line), and the
artefact form (u[us][s], dot-dashed line), as a function of the temperature step
employed. The left box uses a linear scale, while the right box uses a logarithmic
scale. Note that the exact values represented here originate from a different
experiment from those appearing in Table 5.3, even if the shape of the curves
are comparable.

Observe that although [su]u[s] and u[us][s] are local optima, they are far
from being “quite good”. Indeed, several candidates ([su][su], [s]u[s]u, etc.)
are much better than these, because they satisfy the highly ranked constraint
OOC; and yet, they are not local optima. In this respect, metrical stress does
not resemble spin glasses discussed in section 2.1.3: the energy level in local
optima is far from close to the level in the global optimum. However, if SA-OT
is successful in predicting speech errors, then the take-home message is that
SA-OT is indeed a correct model of human speech, but the mistake was done
by nature when implanting an optimisation algorithm in the brain that is not
suitable for the given problem. In other words, the message could be that nature
does compete with computational linguists in reaching ever higher precision, as
long as communication is efficient enough.

After these preliminary observations, let us proceed to the results of the ex-
periments (Fig. 5.3). As expected, the parameter Tstep influences the results of
the simulation the most. The other parameters being unchanged, it is inversely
proportional to the number of iterations performed, that is, to the speed by
which we reduce the temperature.

The global optimum form [s]u[su] is returned in some 68% of the cases when
Tstep = 2 and in more than 99% when Tstep = 0.01. The proportion of the
performance error form [su]u[s] drops below 10% at Tstep = 0.5 and below 1%

refuse having the computer check it, similarly to the objection raised until recently against
the 1977 proof of Appel and Haken of the Four-Colour Theorem. Fortunately, local optima
in the present model are of much smaller significance than the Four-Colour Theorem.
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approximately at Tstep = 0.1. However, the second local optimum, u[us][s],
which corresponds to no observed form, is more persistent: with Tstep = 0.2, it
is still produced in almost 10% of the cases, and with Tstep = 0.01, it appears
in some 2% of the simulations. Interestingly, u[us][s] is more stable than [su]u[s]
despite the fact that u[us][s] is less harmonic than [su]u[s] (compare tableaux
(5.7) to (5.8)): as they are not neighbours, they actually never get compared.
A moral of this observation is that, due to the complex structure of the random
walk’s landscape, different local optima may behave in a very different manner
as a function of the cooling schedule: some disappear quickly with a higher
number of iterations, whereas other “traps” might be much more difficult to
avoid for the simulation.

Consequently, the model successfully predicts that the form susu (to be more
precise, the parse [s]u[su]) dominates normal speech, whereas the likelihood of
the allegro form (suus, in the form of the parse [su]u[s]) increases significantly
in fast speech. Notice, however, that the speed of the algorithm cannot be
interpreted directly as speech pace, because the latter does not increase with one
or two orders of magnitude as does the algorithm when contrasting Tstep = 2 as
to Tstep = 0.1. So, we either see the present model only as a first approximation
to how to model the fact that speech precision decreases due to increased speed;
or we speculate about the speech organs failing to meet the increased pace set
by the brain.

As regards the three types of words and their observed frequencies in the
experiment of Schreuder and Gilbers (2004), we shall return to them after having
refined our model.

What to do with the emergence of the absurd form u[us][s]? In section
5.6, an improved model will be proposed—including further constraints—that
matches better the observed forms in Types 0-3, and which involves an un-
attested form only for Type 2. Nonetheless, a really good model, which also
satisfies phonologists,15 is still under development.

Before changing the phonological model, however, let us analyse further the
present system through a few more experiments. Not so much in order to find
a better match between empirical results and the model, but rather in order
to obtain a better understanding of Simulated Annealing Optimality Theory in
general.

5.5 Further experiments

5.5.1 The role of Tstep

The goal of this first simulation was to observe the role of Tstep more closely,
repeating some of the observations already advanced in the previous section.
Again, the hierarchy was OOCz=2,σ=susu � *ΣΣ � Parse-σ, corresponding
to the Dutch word fototoestel (‘photo camera’). Furthermore, each of the 43
candidates acted 100 times as the starting point of the simulation, producing
4300 outputs in total. The parameters of the simulations were also the same as
in the simulation presented in the previous section.

15For instance, ample phonological arguments have been brought in the literature for Dutch
having no iambic foot (that is, [us]). Although the foot borders cannot be empirically tested,
phonologists would like to see a model that parses the word perfèctiońıst not as [us]u[s], but
as u[s]u[s].
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First, let us compare the outputs of the simulation with Tstep = 1, corres-
ponding to fast (allegro) speech, to those with Tstep = 0.1, arguably modelling
slow (andante) speech. With Tstep = 1, the model has little chance to rove in
the search space, and in practice, you just slide down the slope, and reach the
bottom of the valley in which you are initially. With a number of iterations in-
creased tenfold (Tstep = 0.1), however, the search space could be walked through
if there were no obstacles—as is the case in the initial phase of the simulation.
The outputs of such an experiment are summarised in the following table:

Outputs slow (andante) speech fast (allegro) speech
[s]u[su] 3940 3051
[su]u[s] 17 660
u[us][s] 343 589

Table 5.2: Slow versus fast speech in the simplest Schreuder-Gilbers model

In both simulations, most of the 4300 runs produced [s]u[su], i.e. fótotòestel.
This is the output predicted by the underlying Optimality Theoretic model,
and corresponds to the form seen as correct by the linguistic competence of the
native speaker.

An encouraging point to note in the chart is, however, the drastic increase
in the suboptimal form [su]u[s]. The 17 cases in slow speech is far below 1%. In
fact, running the simulation again with the same parameters resulted sometimes
in 0 or 1 cases only, among 4300. On the other hand, the parameter setting used
for modelling fast speech produced [su]u[s] in approximately 15% of the cases.
From repeating the experiment several times, the fluctuation of the output
fequency of [su]u[s] in the fast speech model seems to be less than 2%. In
sum, as we change the parameters of the simulation, the algorithm changes its
behaviour, and produces more outputs that correspond to a local, but not global
optimum. This result mirrors exactly the way in which changing speech rate
results in a higher percentage of the fast speech forms. Unfortunately, but not
surprisingly, the third parse, unattested in speech, u[us][s], is again present, and
it is more stable as Tstep diminishes than the more harmonic candidate [su]u[s].

Table 5.3 presents the number of outputs [s]u[su], [su]u[s] and u[us][s] pro-
duced under different speeds of simulation, in a repeated experiment, in which
the simulation was run n = 12900 times (300 times for each candidate as start-
ing point). The graph on Fig.5.3, presented earlier on page 135, reports on a
distinct run of the experiment with the same settings: although the exact values
are different, the shapes of the curves are similar.

A closer look both at Figure 5.3, as well as at Table 5.3 will reveal some
interesting details. The higher Tstep, the less probable it is that the correct
output ([s]u[su]) is returned. However, the ratios of the two alternative outputs
do not increase uniformly. The form u[us][s] is produced even with very low
Tstep values, while the form [su]u[s], the one observable in fast speech, is not
produced at all for Tstep < 0.05. For high Tstep values, the two local optima have
a comparable likelihood, meaning that the ratio of [su]u[s] grows more quickly.
It even reaches a significantly higher frequency for the highest Tstep-values.

Figure 5.4 relates the results of another repetition of the same experiment,
which zoomed in on the domain 0.001 ≤ Tstep ≤ 0.1. In order to achieve a
higher significance level, now 25800 outputs were generated for each Tstep (i.e.,
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Tstep nr. of [s]u[su] nr. of [su]u[s] nr. of u[us][s]
2 8825 2423 1652
1.5 8991 2316 1593
1 9110 2034 1756
0.75 9601 1741 1558
0.5 10150 1232 1518
0.25 10986 518 1396
0.2 11332 332 1236
0.15 11582 196 1122
0.1 11838 40 1022
0.05 12190 1 709
0.02 12565 0 335
0.01 12686 0 214

Table 5.3: Tuning Tstep in the simplest Schreuder-Gilbers model

Figure 5.4: Zooming in on the interval 0.001 ≤ Tstep ≤ 0.1: The frequency
of [su]u[s] (dotted line, lower right box), and of u[us][s] (dot-dashed line, three
boxes), on different scales.
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600 runs for each candidate as the starting points).
The upper two boxes present the relative frequency of producing the “arte-

fact” form u[us][s] as a function of Tstep on two different scales. The lower
left box combines these two figures within one loglog plot. The lower right
box demonstrates the way the fast speech form [su]u[s] appears with increasing
Tstep. Looking at the numerical values represented in the graph, one gets the
impression that relative frequency first grows as an exponential function, then
as a power law with an exponent higher than 1; later the exponent decreases
to lower than 1, reaching finally an almost steady state function, such as the
relative frequency of u[us][s] with Tstep > 1.

5.5.2 The role of Tmax and Tmin (1)

So far, we have varied the parameter Tstep, while keeping the other parameters
unchanged. One may wonder what role the other parameters play in the SA-OT
algorithm (Fig. 2.8). Now, we are going to vary Tmax and Tmin, whereas the
later part of Chapter 6 will examine the role of another interesting parameter,
Kmax.

In fact, the primary role of varying Tstep was to change the number of itera-
tions. We could have also introduced an additional parameter that specifies how
many times we repeat the core of the loop before diminishing the temperature.
Some readers would find it more elegant, though I think that the algorithm has
already enough parameters without introducing an extra one. What would be
the difference between varying Tstep and introducing a parameter of repetition
R? The answer is related to the following question: how important is the ex-
act value of the second component of the temperature T = 〈K, t〉? Indeed, if
the second component t does not influence the outcome, we could have kept
the temperature unchanged for a while and replaced the inner loop with the
repetition of its core R = Tmax−Tmin

Tstep
times.

Parameters Tstep, Tmax and Tmin drive the inner loop of the SA-OT al-
gorithm, which diminishes this second component t. Besides mere repetition,
the role of t is to influence the transition probabilities, but only in the supposedly
rare case when the fatal constraint’s index k is equal to the first component K
of the temperature. How significant is this case? The following experiments
demonstrate that it does influence the outcomes of the algorithm. Varying
the upper and lower limits of the inner loop—that is, parameters Tmax and
Tmin—results in a measurable, though small variation in the distribution of the
outputs.

I conjecture that the effect would be larger in a model with fewer constraints,
and smaller in the case of more constraints, because more constraints would
diminish the chance of the fatal constraint’s index coinciding with K. If only
few constraints are present, or if the differences in the violation levels of some
constraints matter much, then t becomes more important. As an example,
recall that the second component of the temperature is crucial in an extreme
case such as the one appearing in tableau (2.18). In fact, this is the situation
where SA-OT turns into traditional simulated annealing. In this case, moving
from A to B increased the violation level of constraint C1 by d = 1, while
moving from C to B increased it by d = 2. This difference in the differences d is
exploited only by the probability e−d/t used when temperature is exactly in the
domain of constraint C1. Thus, without this most complicated last case in the
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Rules of moving (page 63) SA-OT would not display the behaviour described in
subsection 2.3.1 (increasing precision with an increasing number of iterations).
It is indeed worth bothering about this complicated definition.

There is a further motivation for asking about the role played by parameters
Tmax and Tmin, and this is the inherent arbitrariness in the definition of the
constraints as real valued functions. Indeed, a monotonic transformation of
a constraint, such as C ′i(w) := α + Ci(w) or C ′i(w) := γ · Ci(w) (γ > 0),
does not influence the underlying Optimality Theoretical grammar. The first
transformation does not influence the output frequencies predicted by SA-OT
either, for SA-OT requires only d = Ci(w) − Ci(w′), but the second one may
influence SA-OT. As multiplying each constraint by γ is equivalent to dividing
the algorithm’s parameter t (hence, Tmax, Tmin and Tstep) by γ, the experiments
to be presented now may also demonstrate the role of the definition of the
constraints in SA-OT.

Let us turn back to the experiments in which we varied Tmax and Tmin.
The question is whether changing the half-closed interval [Tmax, Tmin) covered
by t in the inner loop affects the outcome. Such an effect would demonstrate
that t—hence, the last of the Rules of moving—does influence the algorithm.
When varying Tmax and Tmin, however, we shall also adjust Tstep, so that R =
Tmax−Tmin

Tstep
, thus the number of iterations, be constant. The role of the number

of iterations has already been demonstrated in the previous experiment, so we
have to control for this factor.

Replacing the interval [Tmax, Tmin) by [Tmax + τ, Tmin + τ) corresponds to
increasing the value of t by τ in each iteration, which in turn means that e−d/t

becomes e−d/(t+τ), a probability closer to 1. Similarly, if the original inter-
val [Tmax, 0) (that is, specifically Tmin = 0), is replaced by [ν · Tmax, 0) (and
Tstep simultaneously becomes ν ·Tstep), then the transition probability grows to[
e−d/t

]1/ν
at every time step. This is why varying [Tmax and Tmin) can measure

the importance of t’s exact value during the algorithm.

Based on a preliminary experiment, Table 5.4 compares the outputs pro-
duced under three different parameter-settings. Experiments A refer to the
parameters used so far: in each domain, the temperature drops from Tmax = 3
to Tmin = 0, using some Tstep. In experiments B, temperature drops from
Tmax = 4 to Tmin = 1: for each Tstep, we perform exactly the same experi-
ment as in the corresponding experiment A, with the same number of steps,
but the probabilities of moving upwards are increased a little bit. In experi-
ments C, temperature drops in each domain from Tmax = 5 to Tmin = 0. This
involves increasing the number of steps, so one must compare for instance the
results of Tstep = 0.1 in experiment settings C to the experiments A and B with
Tstep = 0.06, because these are the conditions under which temperature drops
in 50 steps in each domain.

Let us have a closer look at this table. We can see that changing the con-
ditions does not influence the phenomena drastically, the only major difference
being that [su]u[s] begins appearing at different Tstep values. The maximum
of u[us][s] is around 12.9% (experiment A), 12.5% (experiment B) and 13.1%
(experiment C). Further experiments show that the differences are not signi-
ficant: running the simulation 43000 times (1000 times for each candidate as
starting point; Tstep = 1.5), we obtained 12.68% under conditions A, 12.87%
under conditions B, and 12, 96% under conditions C.
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Tstep A B C A B C A B C
2 68 68 71 19 20 16 13 13 13
1.5 68 69 73 20 18 14 13 13 13
1.2 71 71 74 16 16 12 13 12 13
1 72 71 75 16 16 13 13 13 12
0.7 75 76 80 12 11 8 13 12 12
0.65 76 76 80 12 12 7 12 12 12
0.5 78 78 83 10 10 6 12 12 11
0.35 83 82 85 6 6 3 11 12 11
0.25 85 84 88 4 5 1.7 11 11 10
0.2 87 86 90 2.7 3.2 0.8 10 11 9
0.15 89 88 91 1.4 1.8 0.3 9 10 9
0.12 91 90 92 0.6 0.8 0.1 8 9 8
0.1 92 90 92 0.4 0.6 0.02 8 9 8
0.07 94 91 94 0.1 0.2 0 6 9 6
0.05 95 92 94 0.02 0 0 5 8 6
0.02 97 94 97 0 0 0 3 6 3
0.015 98 94 98 0 0 0 2 6 2
0.01 98 94 98 0 0 0 1.5 6 1.7
0.007 99.0 94 98.9 0 0 0 1.0 5 1.1
0.005 99.1 95 99.2 0 0 0 0.9 5 0.8
0.002 99.7 95 99.7 0 0 0 0.3 5 0.3

Table 5.4: Varying Tmax and Tmax: The percentages of producing [s]u[su]
(columns 2-4), [su]u[s] (columns 5-7) and u[us][s] (columns 8-10), as a function
of Tstep, out of 12900 runs (starting the simulation 300 times with each of the
43 candidates), under various circumstances (see text).
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% A B C
[s]u[su] 68.49 ± 0.25 68.11 ± 0.25 73.01 ± 0.25
[su]u[s] 18.74 ± 0.20 19.09 ± 0.20 14.18 ± 0.20
u[us][s] 12.76 ± 0.15 12.80 ± 0.15 12.81 ± 0.15

Table 5.5: Varying Tmax and Tmin, with Tstep = 1.5.

The ratio of [su]u[s] reaches a higher value under conditions A and B. Yet,
the fact that for Tstep = 2 we find only 16% in experiment C, whereas 19− 20%
under conditions A and B should not surprise us. This value for experiment
C should be compared to the very similar values in experiments A and B with
Tstep = 1.2, for this refers to the case when three temperature values are used
for each temperature-domain.16

When comparing the results under conditions A to those under conditions
B, we do not see so much difference. Can we nonetheless find some signific-
ant differences? Summing up several experiments, altogether 129000 runs with
Tstep = 1.5, we obtained the results on Table 5.5, exhibiting weakly significant
differences.17

5.5.3 The role of Tmax and Tmin (2)

In a next experiment, I ran a simulation producing five times 43000 outputs—
43000 outputs corresponds to starting the simulation 1000 times from each of
the 43 candidates—under four different conditions (see Table 5.5). Repeating
the whole experiment five times helped in estimating the standard error of the
experiment: I calculated not only the mean but also the dispersion of the five
values obtained with the same parameter setting.

The first condition (3-0) corresponds to the original one: in each domain, the
component t of temperature is decreased from Tmax = 3 until t > Tmin = 0. In
the second condition (4-1), the same number of steps is achieved by decreasing
the temperature from Tmax = 4 until Tmin = 1. In the third condition (6-0),
the temperature decreases from Tmax = 6 to Tmin = 0, but the Tstep values are
doubled, in order to have the same number of steps. Similarly, under condition
1.5-0, temperature decreases from Tmax = 1.5 to Tmin = 0, by using the half of
the original Tstep values. Again, the reason of changing Tstep in conditions 6-0
and 1.5-0 was to measure exclusively the influence of choosing the limits of the

16In the experiment mentioned earlier (running the simulation 43000 times, i.e. 1000 times
with each candidate as starting point; Tstep = 1.5), the proportions of [su]u[s] were: 18.82%
for A, 19.23% for B, and 14.28% for C.

17I ran three times 43000 simulations (43000 simulations correspond to running 1000 times
for each of the 43 candidates as starting point of the simulation), for both conditions A, B
and C (Tstep = 1.5).

The outputs under condition A: 68.50%, 68.68% and 68.30% for [s]u[su]; 18.82%, 18.57%
and 18.84% for [su]u[s]; 12.68%, 12.74% and 12.85% for u[us][s]. The outputs under condition
B: 67.90%, 68.15% and 68.28% for [s]u[su]; 19.23%, 18.97% and 19.06% for [su]u[s]; 12.87%,
12.87% and 12.66% for u[us][s]. Under condition C: 72.76%, 73.07% and 73.21% for [s]u[su];
14.28%, 14.18% and 14.07% for [su]u[s]; and, finally, 12.96%, 12.75% and 12.72% for u[us][s].

Concerning the error of such an experiment, we can approximate the results with a binomial
distribution. Thus, for instance, running the simulation A N = 43000 times, we obtained
the output [s]u[su] with a relative frequency p = 68.49% and with a relative error of σ =q
p(1−p)
N

≈ 0.25%.
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Tstep output 3-0 4-1 6-0 1.5-0
1.5 [s]u[su] 68.46 ± 0.17 67.99 ± 0.23 67.70 ± 0.26 68.33 ± 0.26

[su]u[s] 18.82 ± 0.04 19.16 ± 0.08 19.45 ± 0.21 18.76 ± 0.20
u[us][s] 12.72 ± 0.15 12.85 ± 0.19 12.85 ± 0.11 12.90 ± 0.13

0.5 [s]u[su] 78.11 ± 0.25 77.60 ± 0.14 76.92 ± 0.19 77.48 ± 0.22
[su]u[s] 9.79 ± 0.12 10.22 ± 0.12 10.49 ± 0.14 10.00 ± 0.12
u[us][s] 12.11 ± 0.21 12.18 ± 0.11 12.59 ± 0.15 12.52 ± 0.17

0.06 [s]u[su] 94.01 ± 0.13 91.99 ± 0.11 91.94 ± 0.18 95.70 ± 0.10
[su]u[s] 0.049 ± 0.008 0.073 ± 0.015 0.046 ± 0.014 0.034 ± 0.007
u[us][s] 5.94 ± 0.14 7.94 ± 0.11 8.01 ± 0.19 4.27 ± 0.10

0.005 [s]u[su] 99.21 ± 0.06 94.53 ± 0.05 98.38 ± 0.07 99.64 ± 0.03
[su]u[s] 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
u[us][s] 0.79 ± 0.06 5.47 ± 0.05 1.62 ± 0.07 0.36 ± 0.03

Figure 5.5: Four different Tmax-Tmin pairs: Percentage of outputs (mean ±
standard deviation), obtained from running five sets of simulations, producing
43000 outputs each (43000 outputs corresponds to starting the simulation 1000
times from each of the 43 candidates). Note that the Tstep values given in the
left column were applied in the 3-0 and 4-1 cases, whereas the doubled values
were applied in the 6-0 case, and the halved values in the 1.5-0 case, in order to
keep the same number of steps.

inner loop of the algorithm, and to discard the effect of changing the number of
iterations.

Both the 4-1 and the 6-0 cases differ from the 3-0 case in that the transition
probabilities of moving uphill are slightly increased. Imagine, for instance, that
the violation profiles of two neighbours differ fatally in that one of the candidates
has one more violation of constraint Ck. Temperature T has just entered the
domain of constraint Ck (T = 〈k, Tmax〉). Then, the probability of moving from
the better candidate to the worse one is e−1/3 ≈ 0.717 in 3-0, and e−1/4 ≈ 0.779
in 4-1—not a major difference. Before the temperature leaves the domain of
that constraint, however, the same probability is almost 0 in 3-0, but more
than e−1 ≈ 0.368 in 4-1. Similarly, the transition probabilities in the 6-0 case
are the square root of the corresponding probabilities in the 3-0 case at the
same point of the simulation, since the value of t is the double of the value of
t in the corresponding situation under 3-0. However, the same probabilities are
diminished, reduced to their squares, under condition 1.5-0.

Based on the small but significant differences appearing on Table 5.5, we
could already argue earlier that the system does make use of the counter-optimal
moves that are slightly more probable under conditions 4-1 (called B in the
previous experiment) than under conditions 3-0 (or A).

What are the significant differences introduced by changing the parameters?
Decreasing the probabilities of moving uphill, as it happens when we change
condition 3-0 to condition 1.5-0, has ambiguous effects. With the highest Tstep

values, no significant difference can be detected, with the middle high Tstep

values, more correct outputs ([s]u[su]) are produced under 3-0, whereas the
opposite is true for the case with the two lowest Tstep values. These significant
differences confirm that whenever “real” simulated annealing is performed—
namely, moving upwards in the search landscape is an option reasonably often
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because temperature is decreased slowly enough—then moving upwards in the
special case of k = K indeed influences the output of the algorithm. Sometimes
this influence is positive, and sometimes negative, but there is such an influence.

Increasing the probabilities (4-1 and 6-0, compared to 3-0), however, will
reduce the probability of returning the globally optimal form [s]u[su]. Further-
more, the size of this difference increases as the number of steps performed
within one domain grows, that is, as we decrease Tstep.

Interestingly enough, the size of the difference in producing the fast speech
form [su]u[s] decreases slightly with lower Tstep values. However, it is the u[us][s]
production that grows from a non significant difference (Tstep = 1.5) into a
highly significant difference (Tstep = 0.005). Consequently, the size of the dif-
ference in the [s]u[su] production between the 3-0 condition on the one hand,
and the increased probability conditions (4-1, 6-0) on the other hand has to be
explained by different factors for different Tstep values: for higher Tstep values
it is a consequence of the different [su]u[s] production, whereas for lower Tstep

values it originates from the different u[us][s] probabilities.
To sum up, we can say that the very complicated topology of the search

space used is the key to understanding the behaviour of the simulation under
different parameters. The search space can be vaguely seen as being composed of
three major valleys. At the bottom of them we find [s]u[su], [su]u[s] and u[us][s],
respectively, the first being the global optimum and the latter two being only
local optima. The valley with [s]u[su] at its bottom is by far the widest, covering
roughly 70% of the space, whereas the two other valleys cover approximately
15% each. At least, this is the picture obtained if we simply descend the slope
when simulating fast speech. However, in the simulation of slow speech, we
allow much more moving upwards, and therefore, we have more chance to find
the global optimum. The fine structure of the search space would explain why
it is much easier to get from the valley of [su]u[s] to the valley of [s]u[su] than
from the valley of u[us][s]: either it depends on the distance of the valleys, or on
the height of the intervening hills, or on the chances to enter each of the valleys
from the region between the two valleys.

In the following section, we aim at improving our model and getting rid of
the unattested form u[us][s] by introducing further constraints.

5.6 Improving the Schreuder-Gilbers model18

As we have seen, the candidate u[us][s] appears as the output of the simulation,
even with very low Tstep values, that is, when the number of iterations is high.
Yet, this candidate does not correspond to anything observed in real speech.
The goal of this section is to improve the underlying linguistic model in order
to be able to account better for the observations.

In fact, having two stressed syllables adjacent to each other is surprising.
This observation motivates introducing another constraint to the hierarchy:
*Clash, proposed originally by Kager (1994), assigns a violation mark to each
stressed syllable that immediately follows another stressed syllable:

18The results of the present section have been presented as B́ıró (2004) and published as
B́ıró (2005a). In this section, Tmax = 3, Tmin = 0, Kstep = 1, while Kmax is always one
domain higher than the highest ranked constraint.
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Tstep [s]u[su] [su]u[s]
3 0.5883, 0.5824, 0.5855 0.4117, 0.4176, 0.4145
1 0.6266, 0.6268, 0.6405 0.3734, 0.3732, 0.3595
0.3 0.8182, 0.8172, 0.8142 0.1818, 0.1828, 0.1858
0.1 0.9771, 0.9775, 0.9769 0.0229, 0.0225, 0.0231
0.03 1.0000, 1.0000, 1.0000 0.0000, 0.0000, 0.0000
0.01 1.0000, 1.0000, 1.0000 0.0000, 0.0000, 0.0000

Table 5.6: *Clash included: The ratio of different outputs for a four-syllable
word with the ranking *Clash � OOCσ=susu,z=2 � *ΣΣ � Parse-σ. As
candidate u[us][s] is not a local optimum anymore, it is never returned. One
simulation consists of running the algorithm 25800 times: that is, choosing
600 times each of the 43 candidates as initial candidate. The simulation was
run three times with the same Tstep value in order to assess the error of the
algorithm.

Definition 5.6.1. The number of violation marks assigned by constraint *Clash
to candidate w is the number of substrings “s][s” within the candidate w.

Now, the harmony function is defined by the hierarchy

*Clash � OOCz=2 � *ΣΣ � Parse-σ.

Under such circumstances, the candidate u[us][s] is not a local optimum any
more. Indeed, only two optima exist, those produced in real speech: the global
optimum [s]u[su] and the fast speech form [su]u[s]. Experiments show that this
model nicely fits empirical observations. The two local optima are returned
with Tstep > 0.1 (the parameter settings corresponding to fast speech), and the
global optimum shows up alone for Tstep < 0.1, similarly to slow speech (Table
5.6 and Fig. 5.6).

Ranking constraint *Clash high leads, however, to problems in the case
of words such as zúid.à.fri.kàans (‘South African’) or ùit.gè.ve.ŕıj (‘publisher’)
(Schreuder and Gilbers, 2004), which do include adjacent stresses in their gram-
matical form. If, on the other hand, constraint *Clash is ranked lower than
OOC, then candidate u[us][s] remains a local optimum, as shown by tableau
(5.7). Therefore, we replace *Clash with another constraint, Align(word,foot,left)
(McCarthy and Prince, 1993a,b; McCarthy, 2002). This widely used constraint
assigns one violation mark to each candidate whose left edge does not align with
the left edge of some foot, and reflects the fact that the first syllable of most
Dutch words bears some stress:19

Definition 5.6.2. Align(word, foot, left)(w) = 1 if w begins with an unparsed
syllable (u), and Align(word, foot, left)(w) = 0 if w begins with the left bracket
of some foot ([).

The results of the experiments with constraint Align(word,foot,left) appear
in Table 5.7 and on Figure 5.7. The picture obtained by using the constraint
Align(word,foot,left) is similar to the one that resulted from *Clash, although

19McCarthy (2002)’s criticism against gradient constraints, corroborated by B́ıró (2003),
does not apply here: although Align(word,foot,left) is an alignment constraint, it is not
gradient in any sense.
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Figure 5.6: *Clash included: See caption of Table 5.6. The probabilities of
the fast speech form [su]u[s] being returned are plotted as functions of Tstep

(left boxes) and of the number of iterations performed within one temperature
domain (3/Tstep, right boxes). The probabilities of obtaining the grammatical
form [s]u[su] is 1 minus the plotted probabilities. The x axis is linear on the
upper graphs, and logarithmic on the lower ones.
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Tstep [s]u[su] [su]u[s]
3 0.8036, 0.8048, 0.8005 0.1964, 0.1952, 0.1995
1 0.8520, 0.8519, 0.8522 0.1480, 0.1481, 0.1478
0.5 0.9031 0.0969
0.3 0.9518, 0.9548, 0.9540 0.0482, 0.0452, 0.0460
0.2 0.9706 0.0294
0.15 0.9848 0.0152
0.12 0.9912 0.0088
0.1 0.9953, 0.9956, 0.9959 0.0047, 0.0044, 0.0041
0.09 0.9965 0.0035
0.08 0.9980 0.0020
0.05 0.9997 0.0003
0.03 1.0000 0.0000

Table 5.7: Align(word, foot, left): The ratio of obtaining different outputs
for a four-syllable word with respect to the ranking Align(word, foot, left) �
OOCσ=susu,z=2 � *ΣΣ � Parse-σ. One simulation consists of running the
algorithm 25800 times. The simulation was run sometimes three times with the
same Tstep value in order to assess the error of the algorithm.

the ratio of the fast-speech form [su]u[s] is lower in the former case. Nevertheless,
constraint Align(word,foot,left) allows us to apply our model successfully to
other inputs.

Indeed, so far, we have succeeded in accounting for the andante and allegro
forms of Type 0 words, such as fótotòestel ’camera’ (output faithful by OOC to
string susu). Can the new ranking Align(word, foot, left) � OOC � *ΣΣ �
Parse-σ also account for the fast speech phenomena corresponding to Types
1-3 on page 122)?

Type 1 included Dutch words such as stu.die.toe.la.ge (’study grant’) or
weg.werp.aan.ste.ker (’disposable lighter’) that are five-syllable compounds, a
two-syllable word followed by a three-syllable one. In these cases the stress
pattern enforced by Output-Output Correspondence in slow, careful speech is
susuu, the concatenation of su and of suu. However, a right-shift takes place
in allegro speech, resulting in the suusu pattern. Simulated annealing with the
previously used parameters imitates human-like behaviour: the percentage of
producing [s]u[su]u grows from 49% to 96%, as Tstep drops from 3 to 0.03.

The remainder of the outputs are, however, evenly distributed between the
candidates [su]u[su], the empirically observed fast-speech form, and [su]u[us], an
unattested form. The reason is clear: the latter two forms are assigned exactly
the same violation profile and are neighbours in the search space. Consequently,
they are situated at the bottom of an elongated valley. Whatever the probab-
ility of the system getting stuck in this valley, the two forms will be returned
with equal probability. Yet, by adding a slight slope to this valley, we can fa-
vour one of the two forms. So we introduce an additional constraint, such as
FootType(trochaic), which will prefer the form [su]u[su] over its unattested
neighbour, [su]u[us], and will drive the system towards the attested fast speech
form. The constraint FootType(trochaic), assigning one violation mark to
each binary iambic foot [us], is a widely used constraint (Tesar and Smolensky,
2000), and its use is consonant with traditional analyses of Dutch arguing for
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Figure 5.7: Align(word, foot, left): See caption of Table 5.7. The probabil-
ities of the fast speech form [su]u[s] being returned are plotted as functions of
Tstep (left figures) and as functions of the number of iterations performed within
one temperature domain (3/Tstep, right figures). The probabilities of obtaining
the grammatical form [s]u[su] is 1 minus the plotted probabilities. The x axis is
linear on the upper graphs, and logarithmic on the lower ones.

Tstep [s]u[su]u [su]u[su] [s]u[su]u [su]u[su]
z = 2 z = 2 z = 1 z = 1

3 0.465 0.535 0.548 0.452
1 0.519 0.481 0.623 0.377
0.3 0.646 0.354 0.806 0.194
0.1 0.800 0.200 0.964 0.036
0.03 0.960 0.040 0.9998 0.0002

Table 5.8: Frequency of the outputs in a simulation for Type 1 words (such
as studietoelage) with the hierarchy Align(word, foot, left) � OOCσ=susuu

� *ΣΣ � Parse-σ � FootType(trochaic). The observed andante form is
susuu, whereas the allegro (fast speech) form is suusu. A first experiment (first
two columns) used OOC with z = 2, whereas the last two columns report on
a second experiment where z = 1. Both experiments included 71400 runs (600
times starting from each of the 119 candidates).
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Tstep [us]u[s] [s]u[us] [s][su]u [us]u[s] [s]u[us] [s][su]u
z = 2 z = 2 z = 2 z = 1 z = 1 z = 1

3 0.420 0.349 0.231 0.496 0.382 0.122
1 0.476 0.281 0.243 0.556 0.314 0.131
0.3 0.639 0.101 0.260 0.715 0.189 0.095
0.1 0.762 0.010 0.228 0.902 0.074 0.024
0.03 0.839 0.000 0.161 0.998 0.0017 0.0004

Table 5.9: Frequency of the outputs in a simulation for Type 2 words (such
as perfectionist) with the hierarchy Align(word, foot, left) � OOCσ=susuu �
*ΣΣ � Parse-σ. The observed andante form is usus, and the allegro form is
suus. In the first experiment (first three columns) z = 2 for OOC, while z = 1 in
the second experiment (last three columns). Both experiments included 25800
runs (600 times starting from each of the 43 candidates).

trochaic feet (e.g. Hayes, 1995, p. 305-306). Moreover, the fact that we have de-
moted this constraint to the bottom of the hierarchy, ensures that our previous
results are not influenced by the introduction of this new constraint.20

Definition 5.6.3. The number of violation marks assigned by constraint Foot-
Type(trochaic) to candidate w is the number of binary iambic feet (the number
of substrings “[us]”) within the candidate w.

Table 5.8 presents the results of such an experiment. Observe that in “ex-
treme fast speech” (Tstep = 3), the percentage of the grammatical output susuu
is lower than 47%, significantly below 50%. Section 5.2 discussed the difficulties
Boersma (1997)’s Stochastic Optimality Theory would face if required to pro-
duce the grammatical form in less than half of the cases using the reranking of
constraints OOC and *ΣΣ. However an adequate model must be able to do
so, since (Schreuder, 2006) observed a frequency as low as 38% for words in the
type studietoelage (Table 5.1 on page 123).

Type 2 words (per.fec.tio.nist, ‘perfectionist’ or a.me.ri.kaan ‘American’)
include a suffix that must bear a stress. Their careful pronunciation—determined
by OO-Correspondence to the string usus—follows the stress pattern usus,
whereas a left-shift occurs in fast speech yielding suus.

If we apply our model to this case (four-syllable input, OOCσ=usus, the
results are reported in Table 5.9), the grammatical form is again returned in
the majority of the cases, and its proportion converges to 1 with decreasing Tstep

20The earlier landscape, the one corresponding to input fototoestel (four-syllable word, OOC
calculated with reference string susu) and to hierarchy OOCz=2 � *ΣΣ � Parse-σ, did not
include any horizontal move, because each of the basic operations involved a change in the
violation level of at least one of the constraints. Namely, inserting or deleting one monosyllabic
foot certainly influenced the word’s behaviour with respect to Parse-σ, as did moving one foot
bracket; whereas changing the head syllable within a bisyllabic foot increased or decreased the
violation level of OOCσ=susu by two, since the reference string contained a stressed and an
unstressed syllable alternately. Consequently, the fatal constraint distinguishing between the
violation profiles of neighbours was either Parse-σ, or a higher ranked constraint, and this
is why introducing new constraints would not influence the model if they were ranked lower
than constraint Parse-σ. If, however, the reference string of OOC includes a substring ss or
uu, it is possible that altering the head syllable within a bisyllabic foot does not change the
violation level of any of the previously mentioned constraints, and this is why a low ranked
constraint FootType(trochaic) can become important.
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values. Nonetheless, simulated annealing partially fails to predict the correct
performance errors. Beside the empirically observed fast speech form [s]u[us],
an additional local optimum emerges, namely, [s][su]u.

Interestingly enough, the candidate [s][su]u is even harmonically bounded
*(see page 24) by [su]u[s]: both satisfy Align(word, foot, left), both incur two
marks by OO-correspondenceσ=usus (for any z), and one mark by Parse-σ,
while *ΣΣ is satisfied only by [su]u[s]. And yet, these two candidates are not
neighbours, so both can become local optima. Moreover, with z = 2, [s][su]u
is a local optimum that is more stable with respect to decreasing Tstep: even
though [su]u[s] is returned slightly more frequently with Tstep = 3 than [s][su]u,
its frequency drops quickly as Tstep is diminished, unlike the almost steady
frequency of [s][su]u. The moral of this observation is that different local optima
may have different stability with respect to variations of the parameters; and
what is more, a local optimum may turn out to be relatively frequent despite the
existence of a better local optimum that is easily avoided by careful annealing.21

This phenomenon also resists our attempts to introduce changes in the defin-
ition of Output-Output Correspondence, or to add new, low-ranked constraints,
such as Align(Word, Foot, right). For instance, if z = 0 in OOC, not only does
[s][su]u disappear, but also the fast speech form [s]u[us], while a new (empiric-
ally unattested) local optimum, [s][s]u[s], shows up besides the global optimum
[us]u[s]. For z = 3, the form [s][su]u is extremely persistent, its frequency even
grows as Tstep diminishes from 3 to approximately 0.4, and starts decreasing
only not much before the likelihood of [s]u[us] drops drastically to but a few
percent (Tstep < 0.3). Table 5.10 presents the results of the experiment focusing
on this surprisingly new type of behaviour of the system. This is the first time
we observe that decreasing Tstep does not automatically cause the probability
of a local optimum to diminish.

The results obtained by using z = 1 (the right hand side of Table 5.9) will
turn out to be one of the best experiments, when we compare the results of the
same ranking using the other types of words. The ratio of [s][su]u is kept as low
as 12−13% when Tstep = 3, with a probability three times higher for [s]u[us]. In
addition, none of the two local optima is more stable: the probability of [s]u[us]
is steadily twice or three times higher than that of [s][su]u, while both converge
to zero with diminishing Tstep. A source of this relative success might be that for
z = 1, [s][su]u and its neighbour, [s][su][s] violate equally OOCσ=usus, only the
lower ranked *ΣΣ distinguish between them, and therefore, the random walker
can more easily escape to [us]u[s].

A further idea has been be to introduce constraint Align(Word, Foot, right),
which punishes [s][su]u, while favouring [us]u[s] and [s]u[us]:

Definition 5.6.4. Align(Word, Foot, right)(w) = 1 if w ends with an unparsed
syllable (u), and Align(Word, Foot, right)(w) = 0 if w ends with the right
bracket of some foot (]).

Nonetheless, candidate [s][su]u is still a local optimum besides [us]u[s] and
[s]u[us] (z = 2, z = 1), unless Align(Word, Foot, right) is ranked higher than

21Recall that Coetzee (2004) predicted more harmonic forms to be more frequent. We have
already mentioned that SA-OT, contrary to Coetzee (2004)’s proposal, allows a candidate not
to surface in the language, and yet to be better than an emerging form, if the first candidate is
not a local optimum. Now, we can see an example for a worse candidate being more frequent
even if the better, though less frequent candidate is also a local optimum.
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Tstep [us]u[s] [s]u[us] [s][su]u
3 0.430 0.339 0.231
2 0.449 0.309 0.242
1 0.489 0.266 0.246
0.80 0.509 0.233 0.258
0.60 0.559 0.178 0.263
0.60 0.555 0.178 0.267
0.60 0.549 0.182 0.268
0.55 0.558 0.176 0.266
0.50 0.557 0.177 0.266
0.50 0.559 0.171 0.269
0.50 0.561 0.175 0.264
0.48 0.579 0.156 0.265
0.45 0.579 0.149 0.272
0.45 0.582 0.151 0.267
0.45 0.586 0.148 0.266
0.42 0.599 0.134 0.268
0.42 0.605 0.131 0.265
0.42 0.598 0.132 0.269
0.40 0.599 0.132 0.269
0.40 0.599 0.133 0.268
0.40 0.603 0.129 0.268

Tstep [us]u[s] [s]u[us] [s][su]u
0.38 0.607 0.130 0.263
0.38 0.601 0.126 0.272
0.38 0.600 0.131 0.269
0.35 0.618 0.111 0.270
0.35 0.619 0.113 0.268
0.35 0.618 0.116 0.267
0.32 0.636 0.099 0.266
0.30 0.644 0.084 0.271
0.30 0.652 0.086 0.262
0.30 0.649 0.086 0.264
0.25 0.665 0.075 0.261
0.25 0.661 0.075 0.264
0.25 0.665 0.075 0.260
0.20 0.693 0.048 0.259
0.18 0.702 0.039 0.258
0.15 0.723 0.026 0.251
0.12 0.755 0.013 0.232
0.10 0.769 0.009 0.222
0.08 0.794 0.0027 0.203
0.05 0.843 0.0003 0.156
0.03 0.889 0.000 0.111

Table 5.10: Outputs when using OOCσ=usus,z=3: The hierarchy used was
Align(word, foot, left) � OOCσ=usus,z=3 � *ΣΣ � Parse-σ � Foot-
Type(trochaic). Each experiment consisted of 25800 runs, that is, 600 runs
launched form each of the 43 candidates. The experiment has been repeated
for some Tstep values in order to be able to assess the error. Many more runs
would have been needed to determine exactly where the maximum of [s][su]u is
located, but the figures clearly demonstrate that there is a maximum (or more
maxima) around Tstep = 0.4. This experiment demonstrates that decreasing
Tstep does not diminish the rate of some erroneous form automatically.
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Tstep [us]u[s] [s]u[us]
3 0.586 0.414
1 0.634 0.366
0.3 0.828 0.172
0.1 0.980 0.020
0.03 0.9999 0.0001

Table 5.11: Introducing constraint Align(Word, Foot, right): Fre-
quencies for Type 2 words, using the hierarchy Align(word, foot, left) �
Align(Word, Foot, right) � OOCσ=usus,z=2 � *ΣΣ � Parse-σ � Foot-
Type(trochaic)

Tstep 3 1 0.3 0.1 0.03
Type 0: susu
[s]u[su] 0.818 0.906 0.992 1.0000 1.0000
[su]u[s] 0.182 0.094 0.008 0.0000 0.0000
Type 1: susuu
[s]u[su]u 0.549 0.628 0.824 0.970 0.9999
[su]u[su] 0.451 0.372 0.176 0.030 0.0001
Type 2: usus
[us]u[s] 0.615 0.666 0.827 0.974 1.0000
[s]u[us] 0.385 0.334 0.173 0.026 0.0000
Type 3: ssus
[s][s]u[s] 0.655 0.708 0.896 0.992 1.0000
[su]u[s] 0.345 0.292 0.104 0.008 0.0000

Table 5.12: Results using hierarchy (5.9). Each simulation was obtained by
running the simulation 600 times from each candidate.

OOC. Seemingly, the hierarchy Align(word, foot, left) � Align(Word, Foot,
right) � OOCσ=usus,z=2 � *ΣΣ � Parse-σ � FootType(trochaic) pro-
duced only the required outputs (Table 5.11). The problem with this result is,
however, that in the case of Type 1 words (studietoelage), this hierarchy (with
OOCσ=susuu,z=2) does not have candidate [s]u[su]u (or any other parse of the
andante form susuu) optimal any more. Due to the highly ranked constraint
Align(Word, Foot, right), candidates parsing the ultimate syllable will become
better. Hence, we have to reject this constraint ranking, even though it would
solve our problem with respect to Type 2 words.

The only good combination of the constraints to be found was the following
hierarchy:

Align(word, foot, left)� OOCz=1 � Align(Word, Foot, right)�
� *ΣΣ� Parse− σ � FootType(trochaic) (5.9)

This hierarchy not only eliminates the unwanted local optimum in the case of
Type 2 inputs, but also works for all the other types (Table 5.12). Its only draw-
back will be that the empirically observed frequencies cannot be reproduced
adequately.

Finally, Type 3 words incurred a beat reduction (deletion of a stress) in



5.6. Improving the Schreuder-Gilbers model 153

Tstep [s][s]u[s] [su]u[s]
3 0.557 0.443
1 0.680 0.320
0.3 0.835 0.165
0.1 0.970 0.030
0.03 1.000 0.000

Table 5.13: Type 3 words, z = 0: the hierarchy used was Align(word, foot,
left) � OOCσ=ssus,z=0 � *ΣΣ� Parse-σ � FootType(trochaic). 600 runs
from each of the 43 candidates summed up to 25, 800 runs for each Tstep value.

Tstep [s][s]u[s] [su]u[s]
3 0.652 0.348
1 0.682 0.318
0.3 0.836 0.164
0.1 0.972 0.028
0.03 0.99992 0.00007

Table 5.14: Type 3 words, z = 1: the hierarchy used was Align(word, foot,
left) � OOCσ=ssus,z=1 � *ΣΣ� Parse-σ � FootType(trochaic). 600 runs
from each of the 43 candidates summed up to 25, 800 runs for each Tstep value.

fast speech, replacing the andante form ssus with the allegro form suus. The
andante forms submit themselves once again to the requirements imposed by
OO-Correspondence. This was the case in words such as zuid.a.fri.kaans (‘South
African’) or uit.ge.ve.rij (‘publisher’).

For z = 2 in the definition of OOC, simulated annealing predicts (especially
with higher Tstep = 3 values) the emergence of an incorrect fast speech form,
viz. [s]u[s][s], instead of [s]u[us] or [su]u[s]. In fact, [s]u[us] is not a local op-
timum, for its neighbour [s][s][us] is more harmonic with respect to the hierarchy.
Similarly, [su][s][s], a neighbour of [su]u[s] incurs fewer violation marks by con-
straint OOCσ=ssus,z=2 : although one more violation mark originates from the
mismatch in the third syllable, yet the difference in the number of stressed syl-
lables adds two more violation marks to [s]u[us]. Candidate [s]uu[s] is even less
harmonic than its neighbours [su]u[s] or [s]u[us]. In sum, none of the possible
parses of the observed fast speech form suus is a local optimum.

For z = 0, however, [su]u[s] becomes a local optimum. Furthermore, it
becomes the only local optimum besides the grammatical form [s][s]u[s], and
the tuning of the parameter Tstep nicely reproduces the difference between slow
and fast speech, once again (Table 5.13).

As Table 5.14 shows, very similar results are returned for z = 1. The only
significant difference is observed when Tstep = 3. When cooling down the system
quickly, one can check which valley a candidate belongs to. Thus, this observa-
tion shows that some of the candidates have moved from the valley of [su]u[s]
to the valley of [s][s]u[s] when we changed the parameter z in the definition of
constraint OOC.

To sum up, let us collect what the following hierarchy yields for the four
types of words:
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Tstep 3 1 0.3 0.1 0.03
Type 2: usus
[us]u[s] 0.394 0.398 0.431 0.495 0.581
[s][s]u[s] 0.606 0.602 0.569 0.505 0.419
Type 3: ssus
[s][s]u[s] 0.661 0.680 0.835 0.969 1.00
[su]u[s] 0.339 0.320 0.165 0.031 0.00

Table 5.15: Summary for hierarchy (5.10) with z = 0. Each simulation
was obtained by launching the simulation 600 times from each candidate.

Type 0 susu Type 1 susuu Type 2 usus Type 3 ssus
Tstep [s]u[su] [su]u[s] [s]u[su]u [su]u[su] [us]u[s] [s]u[us] [s][s]u[s] [su]u[s]
3 0.797 0.180 0.545 0.455 0.488 0.386 0.652 0.348
1 0.862 0.115 0.620 0.380 0.543 0.323 0.682 0.318
0.3 0.962 0.015 0.807 0.193 0.720 0.186 0.836 0.164
0.1 0.977 0.0001 0.964 0.036 0.907 0.070 0.972 0.028
0.03 0.977 0.0000 0.9998 0.0002 0.998 0.002 0.9999 0.0001

Table 5.16: Summary for hierarchy (5.10) with z = 1. Each simulation
was obtained by launching the simulation 600 times from each candidate.

Align(word, foot, left) � OOC � *ΣΣ�
� Parse-σ � FootType(trochaic) (5.10)

For z = 0, we have trouble for Type 1 words. Namely, even though the
global optimum is a parse of the andante form ([s]u[su]u), yet the model fails
to predict the allegro form: the only other local optimum is [s]u[s][su]. Similar
problem arises for Type 2 words (OOCsigma=usus), where [s][s]u[s] is a local
optimum, unlike any parse of the observed allegro form. Interestingly, however,
this model correctly predicts that the grammatical form usus is extremely dif-
ficult to produce: even for low Tstep values the error rate is higher than 50%,
which is consonant with Schreuder (2006)’s experimental results (Table 5.15).
For Type 0 words (OOCsigma=susu), finally, the only local optimum is [s]u[su],
that is, we again have trouble explaining why human fast speech can produce
an “erroneous” form suus.

With weight z = 1 in the definition of OOC, the results shown on Table 5.16
were produced. Interestingly enough, the parse of the empirically observed fast
speech form suus for Type 2 is predicted to be [s]u[us], and not [su]u[s]. These
two parses behave similarly with respect to all constraints, except for the lowest
ranked one, Trochaic. Indeed, [su]u[s] satisfies this constraint, unlike [s]u[us].
And yet, the less harmonic [s]u[us] is a local optimum, and therefore may and
does emerge as an output; whereas [su]u[s] cannot be produced by the present
model for it has a better neighbour, namely, [us]u[s].

Unfortunately, Type 2 keeps on producing a third output, [s][su]u. The rate
of this empirically unattested form is between a third and a half (the latter for
Tstep = 0.3) of the rate of [s]u[us]. See the right part of Table 5.9, which reports
on the same experiment but performed earlier (hence the minor differences in
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fo.to.toe.stel uit.ge.ve.rij stu.die.toe.la.ge per.fec.tio.nist
‘camera’ ‘publisher’ ‘study grant’ ‘perfectionist’

susu ssus susuu usus
fó.to.tòe.stel ùit.gè.ve.ŕıj stú.die.tòe.la.ge per.fèc.tio.ńıst

fast: 0.82 fast: 0.65 / 0.67 fast: 0.55 / 0.38 fast: 0.49 / 0.13
slow: 1.00 slow: 0.97 / 0.96 slow: 0.96 / 0.81 slow: 0.91 / 0.20

fó.to.toe.stèl ùit.ge.ve.ŕıj stú.die.toe.là.ge pèr.fec.tio.ńıst
fast: 0.18 fast: 0.35 / 0.33 fast: 0.45 / 0.62 fast: 0.39 / 0.87
slow: 0.00 slow: 0.03 / 0.04 slow: 0.04 / 0.19 slow: 0.07 / 0.80

Table 5.17: Observed vs. simulated frequencies: Simulated frequencies
Using hierarchy (5.10) with z = 1 are given in italics, while observed ones in
bold (Schreuder, 2006). In the simulation, Tstep = 3 was used for fast speech
and Tstep = 0.1 for slow speech.

the values), where the frequencies of [s][su]u are also mentioned explicitely.

Table 5.17 (from B́ıró, 2005a) contrasts the empirical results of Schreuder
(2006) with the simulation results. Using hierarchy (5.10) with z = 1 (Table
5.16), we model fast speech by using Tstep = 3, and slow speech with Tstep = 0.1.
Then, the numerical match between Schreuder’s experiment and our simulation
is very nice for Type 3 words (uitgeverij ), and reasonably good for Type 1
words (studietoelage). In the later case, the 81% of the slow speech could be
easily reproduced by setting Tstep = 0.3 (cf. Table 5.16) instead of Tstep = 0.1,
but then the reason of changing the value of Tstep simulating andante speech
would be unclear. The 38% of the correctness in fast speech remains a mismatch
between the empirical data and the simulation, similarly to the values at both
speech rates for Type 2 words (perfectionist).

These quantitative mismatches, as well as the presence of an alternative
local optimum for Type 2 words should not discourage us. Modelling the an-
dante forms as globally optimal candidates and the allegro forms as the only
further local optima is in itself not a self evident task. Moreover, we could
reproduce qualitatively the circumstance that different types display different
frequencies—a result that other variations of Optimality Theory might have
problems explaining. Even more encouraging is that we correctly predicted the
relative rank of the three types: in both andante and allegro speech, Type 3 is
realised more frequently by the andante form than Type 1 is, and Type 2 words
have the least chance to be pronounced as their andante form. The fact that
accounting for this relative ranking had not been set a priori as a goal, but was
obtained as a surprise present, is an additional argument that SA-OT is “on the
right track”.

Recall, finally, that the model with hierarchy (5.9) (Table 5.12) had the
advantage that for all of the four Types, the global optima corresponded to the
andante forms and the allegro forms were the only other local optima in the
model. Hopefully, the reader will appreciate the non-triviality of this result by
now, even if the frequencies produced by this model are far from the empirically
observed ones. Another model (Table 5.15), which did not correctly reproduce
the allegro forms, did however correctly predict that finding the global optimum
is extremely difficult for Type 2 words, and produced frequencies for the andante
form well below 0.5.
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To sum up, I think I may be confident that one day somebody will find the
winning hierarchy.

5.7 Getting rid of OOC: Biased initial state

OOC is clearly an awkward constraint. What it tries to capture—besides ana-
logy effects—is the influence of the components on morphologically complex
words. These phenomena used to be accounted for by cyclical rules in pre-
OT Lexical Phonology (Kiparsky, 1982). As standard Optimality Theory sees
phonology as one big box, there is no room for cyclicity. (Serial OT is a Lexical
Phonology-type variation of standard OT.) As you have only input and output,
and no intermediate stages of morphological derivation, only the surface forms
of other lexical items can influence a given output form.

In SA-OT, however, there is an additional way of introducing the surface
forms of the constituents into the computation of the compound form. Remem-
ber that the algorithm is launched from an initial candidate, that is, a potential
surface form. So far, each element of the finite candidate set has been chosen
with equal probability to be the initial state. However, we can also introduce a
bias, and begin always with the candidate that is derived from the surface forms
of the compound’s components (that is, immediately from the reference string
σ preferred by OOCσ,z). Always launching the simulation from the candidate
most faithful to the morphological components should favour the local optimum
that is the closest. Thereby, we could get rid of the awkward OOC constraint
(and especially of its arbitrary parameter z), and replace it by stipulating which
candidate the algorithm should choose as initial candidate.

An additional argument could be brought in favour of such an approach.
What should be the level in the language that is optimised during production:
an utterance, a phrase, a word, a syllable? The search space (if not infinite)
often grows exponentially in the length of the unit to be optimised—not a
rosy perspective. Therefore, one could argue for a (parallel) optimisation of
smaller units, which is followed by the optimisation of their combination. In
this second phase, the optimisation process can concentrate on the way the
smaller units are combined and on the phenomena occurring at their edges.
This proposal seems to be sound, even if it might further reduce precision, the
optimum of a combination not always being the optimal combination of the
optimised building blocks. This proposal would correspond to the principle in
Lexical Phonology (Kiparsky, 1982) according to which lexical rules are applied
exclusively in derived context, that is, where some change has recently taken
place, for instance on the boundaries of the latest morphological derivation.
Phenomena supporting Kiparsky’s principle would then be exactly the cases
where serial local optimisation misses the global optimum.

In short, launching SA-OT from the candidate that is the concatenation of
the previously optimised (i.e., grammatical) forms of the compound’s compon-
ents introduces a bias that hopefully could account for phonological phenomena
grounded in morphology, which have also motivated Lexical Phonology and
OOC in the past. Additionally, such a “Serial SA-OT” would also simplify the
computation by decomposing the problem.

Sadly, however, the aim of getting rid of constraint OOC has not been
achieved yet. Still, the following experiments show at least what happens if
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Outputs slow (andante) speech fast (allegro) speech
[s]u[su] 937 950
[su]u[s] 1 45
u[us][s] 62 5

Table 5.18: Biased initial candidate: The outputs of running SA-OT 1000
times, and always choosing [su][su] as the initial candidate. Tstep = 0.1 for slow
speech and Tstep = 1 for fast speech.

we introduce such a bias into the choice of the initial candidate.

In the first experiment, I always took the candidate [su][su] as the start-
ing point of the simulation. The reason for that is that the word fototoestel is
obtained by compounding the words fóto and tóestel, that is, we join an [su]
component to another [su] component. Therefore, the candidate [su][su] is argu-
ably the candidate that should be taken as the starting point of the simulation.

The initial phase of the simulation, in which temperature is above the domain
of the highest ranked constraint, was introduced precisely in order to diminish
the role of the choice of the initial candidate. If the initial temperature is so high
that the random walker can walk all over the whole search space several times
before the decreasing temperature reaches the domain of the highest constraint,
we obtain a situation practically equivalent to the previous experiments, where
each candidate had equal chance to become the starting point of the walk. This
is why in the present experiment Kmax was not higher than the index associated
with the highest ranked constraint.

Table 5.18 shows the number of outputs out of 1000 runs, each taking [su][su]
as its starting point. The hierarchy was OOCσ=susu,z=2 � *ΣΣ � Parse-σ.
In each case, the starting value of the temperature was Kmax = 2, which was
the domain corresponding to the highest constraint (OOC). That is, no fully
random walk preceeded the simulation, the parameters of the simulation would
have been otherwise similar to the ones described in the previous experiments.
Tstep used for decreasing the temperature was 0.1 for andante speech and 1 for
fast speech.

Although the rate of the form [s]u[su]—the correct form for competence—is
similar in slow and fast speech, the fast speech form [su]u[s] becomes much more
frequent in the model of allegro speech. Here again, the “artefact” form u[us][s]
spoils the beauty of our results.

In the next experiment, I tried to avoid using OOC. The same landscape
is used for the three types with four syllables (0, 2 and 3), and the goal was
to end up the simulation in different local optima in function of the initial
candidate. Namely, the Type 0 word fótotòestel is a compound of [fóto] and
[tóestel ]. Hence, the initial candidate corresponding to this type is [su][su],
and the closest local optimum should be some parse of susu, such as [su][su] or
[s]u[su]. Type 2 word perfèctiońıst is derived from perf [éct ], and the ist ending
is stress bearing. Thus, SA-OT should choose u[s]u[s] as the initial candidate
for this word, and should be stuck in this (or in a similar) local optimum. Last,
the initial candidate corresponding to ùitgèveŕıj ought to be [s][su][s], which (or
its neighbour [s][s]u[s]) must be also a local optimum.

An additional argument for choosing these initial candidates was merely
pragmatic. Type 2 (usus) and Type 3 (ssus) words differ only in whether their
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first syllable has a stress. As inserting or deleting a monosyllabic foot is one of
the possible basic transformations , many of their parses are neighbours: [s][su][s]
and u[su][s], as well as [s][s]u[s] and u[s]u[s]. The goal, however, cannot be to
have neighbouring candidates (for instance [s][s]u[s] and u[s]u[s]) simultaneously
local optima: if a valley with a horizontal bottom were created, then forms
ssus and usus would be equally probable for both types. This is also why the
non-neighbouring candidates u[s]u[s] and [s][su][s] were chosen as initial states,
and why both have to be local optima where the simulation will be stuck.

Additionally, this same similarity renders finding an adequate hierarchy very
difficult: how can we prefer saving the first monosyllabic foot in [s][su][s], and
simultaneously not insert that initial foot into u[s]u[s]? A solution might be the
following model, which includes, among others, [su][su], u[s]u[s] and [s][su][s] as
local optima:

(FtBin mod 2)� FootType(trochaic)� Parse− σ (5.11)

Here, constraint (FtBin mod 2) is derived from the wide-spread constraint
FootBinarity (e.g. used by Tesar and Smolensky, 2000), which assigns one
violation mark to each monosyllabic foot [s]. Yet, we replace the number of
the monosyllabic feet by its remainder after dividing it by 2, in order to have
candidates u[s]u[s] and [s][su][s] (with an even number of [s]) satisfy it, unlike
their neighbours uuu[s], u[s]uu, u[s][us], [us]u[s], u[su][s] and [s][su]u with an odd
number of [s].

By performing a gradient descent (a simulated annealing with Kmin lower
than constraint Parse-σ, and thus not allowing any uphill moves) in this model,
we can account for the three types of words without reference to OOC. The three
types indeed correspond to launching the simulation from candidate [su][su],
u[s]u[s] and [s][su][s]. As each of them is a local optimum where the simula-
tion gets stuck, the parses corresponding to the morphological structure of the
words—[su][su] for Type 0 words, and so forth—are returned, and hence we
have accounted for the andante forms.

The fast speech form suus remains to be explained, nevertheless. We would
like the simulation to end up in some parse of suus whenever not ending up
in the andante form. Thanks to constraint (FtBin mod 2), parse [s]uu[s] is
also a local optimum. There are, however, many more local optima in this
model: [s][s][s][s], [s][s][su], uu[s][s], etc. In turn, if Kmax is higher, many different
candidates may be returned, not exclusively the initial candidate of the walk
(the andante form) and [s]uu[s] (the allegro form).

Further research may come up with a hierarchy that is able to do that. If
some parse of the fast speech form, for instance [s]uu[s], were the global op-
timum, and separated the local optima from each other,22 then faster speech
would correspond to more steps at higher temperature domains. In such a
model, gradient descent would be stuck in the local optimum that is the closest
to the initial candidate, thereby accounting for OOC-like phenomena in an-
dante speech. At the same time, fast speech would correspond to a “hothead
speaking”, to more iterations spent at higher temperature, which enhances the

22That is, paths connecting two local optima require climbing very high summits—which is
prohibited if Kmax is chosen adequately—unless the path passes by the global optimum. In
such a “star-shaped” neighbourhood structure, the algorithm returns either the local optimum
in the branch of the star from where the walk is launched, or the global optimum situated at
the heart of the star.
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chance of finding the globally optimal parse of suus. As this model employs only
markedness constraints describing what is “easy to pronounce”, the globally op-
timal candidate would be indeed universal, independent of the input, optimising
for pronunciation—as opposed to the morphologically informed andante form
which depends on the morphologically biased choice of the initial candidate.

Observe that this last model already moves away from the original idea in
this chapter to have higher Tstep values (fewer iterations) for slower speech, and
lower Tstep values (more iterations) for fast speech. In this respect, this last
proposal brings us to the models introduced in the next chapter where Kmax

will play an important role.

5.8 Discussion

Chapter 2 has introduced a version of simulated annealing as an algorithm for
finding the optimal candidate within some Optimality Theoretical grammar.
Although simulated annealing, like other heuristic techniques for combinatorial
problems, does not guarantee that one finds the optimal candidate, there are
quite a few arguments for using it. First, generation in Optimality Theory can
be of a very high complexity if the candidate set is huge. Heuristic techniques
have been actually developed to approximate the solution of these hard problems
within a reasonable time framework.

Second, if Optimality Theory is supposedly an adequate model for linguistic
competence, then Simulated Annealing for Optimality Theory models linguistic
performance. It is an “approximately good” algorithm that returns some form
within limited time, using a restricted computational capacity, and the chance
is not bad for the returned form to be the grammatically correct form predicted
by competence / OT. Furthermore, if circumstances require, the performance
model is able to work faster, although the probability of returning the grammat-
ical form diminishes. Not just anything can be returned as erroneous outputs,
but only local optima. This latter phenomenon may be used as a model for the
observed typical performance errors produced in fast speech.

In this chapter, we have demonstrated this argument by showing how SA-OT
can account for Dutch stress assignment. After having formulated the building
blocks of SA-OT, such as the candidate set, the neighbourhood structure and
the constraints, we played around with the model. We have demonstrated how
fast speech errors can be reproduced by decreasing the number of iterations,
that is, by increasing the parameter Tstep. Then, we varied in addition the
parameters Tmin and Tmax, and concluded that they also influence the success
of the algorithm slightly. This observation is relevant for instance if one asks
about the effect on SA-OT of monotonic transformations of the constraints,
such as C ′i(w) := γ · Ci(w) (γ > 0).

Subsequently, we tried to include further constraints in order to better ac-
count for the behaviour of the three types of words dealt with by Schreuder and
Gilbers (2004) and Schreuder (2006). Different word types produced different
landscapes due to constraint Output-Output Correspondence, and therefore they
returned the andante form and the allegro form with different frequencies for
the same parameter setting, even though the same process lies always in the
background. It is the topology and the landscape, formed by all candidates,
even by those not appearing on the surface, that explain the different frequencies
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for different word types.
The results presented might not be fully convincing, and yet, they should en-

courage further work. The demo at http://odur.let.rug.nl/∼birot/sa-ot/
index.php might help the interested to experiment further. During this ran-
dom walk in the search space of different constraints and rankings, we have also
encountered a number of interesting phenomena, such as the increasing ratio
of a non-global local optimum with decreasing Tstep in Table 5.10. Finally, we
tried to get rid of morphologically motivated constraints, such OOCσ,z, by in-
troducing a morphological bias into the choice of the initial candidate of the
algorithm, and argued for further research.

An objection by several readers was that stress shift in fast speech can be
simply explained by the tendency of languages to keep stress apart. While the
length of one intervening unstressed syllable is enough in normal speech, this
suggested time span requires two syllables at a faster rate. This explanation,
also found in Schreuder’s work, does not account, however, for the differences
found between word types.

A second objection argued that fast speech phenomena might be caused
not necessarily by increased speed per se, but by reduced degree of effort (cf.
eg., Kirchner, 1998). Notice, however, that the central factor in the simulations
presented was Tstep, that is, the number of iterations, which can be readily trans-
lated to milliseconds only if we suppose that one iteration steps is performed in
a constant time. This, however, may be not so simple, because the speed of our
simulations changed sometimes with a factor of 10 or 100. So the claim that the
speed of the algorithm models the speed of speech is true only qualitatively, and
the relationship between the two is not always one-to-one. But, on the other
hand, the number of iterations can be interpreted as the degree of effort at least
as much as real time.

How consonant is our model with related work on stress assignment? Both
computational (Eisner, 2000a) and psycholinguistic studies (Schiller, 2003) have
argued for an incremental—left-to-right directional—assignment of stress. Our
performance model, however, computes the stress of the whole word at once.
Yet, this apparent contradiction can be resolved easily. One the one hand, Eis-
ner’s directional evaluation of some constraints, different from those used in the
present study, is a theoretical construct on the level of the competence model,
determining which form is grammatical. Whether this idea can have any in-
fluence on performance models remains unclear. On the other hand, Schiller
et al. (2004) advances an alternative explanation of the outcome of their psy-
cholinguistic findings. The fact that the stress in the first syllable of bisyllabic
words is identified 60-70 ms earlier than the stress in the last syllable (Schiller,
2003) does not need to be explained by an incremental stress assignment; it
can also be due to the “sequential nature of a perceptual mechanism used to
monitor lexical stress”. In other words, it may be the case that the position of
the stress is calculated in the same amount of time for words with initial and
with final stress; and yet, word initial stress is recognised much faster because
when looking for the position of the stress in some experimental settings, the
word, whose stress has been already determined, is checked left to right.

The following chapter tackles a new linguistic phenomenon, employing a new
type of search space, and investigating new aspects of SA-OT.



Chapter 6

Dutch Voice Assimilation
with SA-OT

6.1 The magic square

In this chapter, we are discussing a set of linguistic variations that one could
call the magic square. Their common characteristic is that two related features
vary in a synchronous way. The basic structure is represented in Figure 6.1,
where + and − are the possible values of the two consecutive features.

++

−+ −−

+−

Figure 6.1: The “magic square”

The prototypical example, which we shall presently use in the discussion,
is voice assimilation: if two neighbouring stops have different [voice] features,
either regressive or progressive assimilation takes place, yielding a homogeneous
sequence with respect to this articulative feature. Hence, candidates ++ and
−− are favoured over candidates +− and −+. Steriade, Lombardi, Joe Pater,
Eric Bakovic and others have argued that it is very uncommon (impossible) for
a language to follow a third strategy, such as inserting an epenthetic vowel in
order to avoid clash in voicing (e.g. Lombardi, 2001), even though epenthesis
is a frequently used strategy to avoid prohibited consonant clusters, in general.1

1Thus, in Brazilian Portuguese, football translates to futebol and English handball to
handebol. For schwa epenthesis in Modern Hebrew, see for instance B́ıró and Hamp (2002).
But epenthesis is claimed not to be a repair strategy for syllable codas having an unwanted
[voice] feature. Not only can an epenthetic vowel never intervene between two stops with
dissimilar [voice] features, but suffixing a final schwa is also not an option in languages pro-
hibiting voiced consonants in a word-final position.

161
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If + in Fig. 6.1 stands for [+voice], and − for [-voice], then out of the four
possibilities, only ++ and −−may be grammatical in many languages. Further-
more, although for some input usually only one of ++ and −− is grammatical,
yet sometimes the other may surface as an alternate form. Our paradigmatic
example will be the Dutch word pair op die (‘in this...’), where the clash in the
voice feature can be solved by assimilation in either of the two possible direc-
tions. Dutch phonology requires regressive voice assimilation, that it, o[bd]ie,
and yet, often o[pt]ie emerges as the result of progressive voice assimilation.

Further examples can be also found that exhibit a similar magic square.
The Dutch word partij (‘(political) party’) is sometimes pronounced as [ptEi],2

forming an otherwise prohibited open consonant cluster with the deletion of two
segments. Now + represents the presence of the segment and− its absence in the
rhyme, and again the same diagonally opposed forms alternate: the grammatical
form ++ with the alternative form −−. The two other forms involving only
partial deletion in the rhyme, +− and −+, are not allowed.

An analogous situation is used by B́ıró and Gervain (2006): the resyllabific-
ation of the [z] in the Hungarian definite article a / az. The choice between the
two allomorphs depends on whether the next word begins with a consonant or
with a vowel:

az énekesnő ‘the soprano’,
a kopasz énekesnő ‘the bald soprano’.

(6.1)

The definite article is also prone to undergo resyllabification turning the [z]
into the onset of the subsequent syllable. In other words, the pause between the
article and the subsequent word can drop, and therefore the segment [z] can be
perceived as belonging to the next word, sometimes leading to misunderstanding
in the case of minimal pairs, and sometimes to language games.

Judit Gervain performed a controlled psycholinguistic experiment measur-
ing the frequency of this phenomenon. Hungarian distinguishes at least five
speech levels on the basis of the rate/speed of speech, and she tested two of
them: (i) motherese or infant-directed speech, characterised by a rather slow
pace and emphatic, exaggerated prosody, (ii) and fluent, casual, conversational
style with a medium speech rate. The hypothesis, which had been already de-
scribed theoretically but never measured empirically (Kiefer, 1994), claims that
more resyllabification occurs with the acceleration of the speech rate. The ex-
periments confirmed this hypothesis by measuring the overall length and the
presence of pauses in critical minimal pairs (e.g. az ár ‘the price’ vs. a zár ‘the
lock’) excised from test sentences pronounced by three female native speakers

I am thankful to everybody who answered my question on Linguist List in February 2005.
That is where I was referred, among others, to the following urls:
http://roa.rutgers.edu/view.php3?id=29,
http://www.linguistics.ucla.edu/people/steriade/papers/P-map for phonology.doc,
http://people.umass.edu/pater/pater-balantak.pdf,
http://camba.ucsd.edu/bakovic/work/bakovic wilson lar.pdf.

2At least, it was pronounced so by the late Dutch prime minister Joop den Uyl within
the context Partij van de Arbeid, ‘Labour Party’. Otherwise, the native speaker would not
judge [ptEi] necessarily better than [patEi] or [prtEi], or would also allow the insertion of a
schwa ([p@tEi]). Note, however, that, similarly to Boersma (2004b), in SA-OT grammaticality
judgements need not correlate with production: a form might be produced by the performance
model (SA-OT) even if it is judged absolutely out of question by the underlying competence
model (OT).
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in both conditions. In the production of the slower infant-directed speech, re-
syllabification (az ár pronounced as a zár) happens about in 40% of the cases,
which raises to about 80% in conversational style. On the perception side, she
tested whether a naive group of native speakers could identify which of the min-
imal pairs were pronounced by the speakers. When the segmentation cue—the
pause—was present, subjects identified the words with a 85% accuracy, while
they were at chance when the words were pronounced without a pause.

Now, the + and − values of the magic square describes the presence and the
absence of the segment [z] on either side of the syllable boundary. Candidate
+− corresponds to the input obtained by concatenating the lexical items (
az.énekesnő), whereas −+ is the resyllabified form (a.zénekesnő). According to
Gervain, the −− form (a.énekesnő) appears in children’s speech.

In an alternative analysis, + corresponds to the preferred syllable structures
(an empty coda and an onset filled with [z]), and − to the disfavoured ones (a
coda filled with [z] and an empty onset). Now, the original form az.énekesnő is
−− and the resyllabified form a.zénekesnő is ++, whereas +− (a.énekesnő) and
−+ (az.zénekesnő) could be but are non attested—similarly to the +− and −+
candidates of all of the previous examples. Observe that the resyllabified form
is the best with respect to syllable structure, whereas the original form is the
worst one among the four theoretical possibilities. And yet, if with respect to
some other factor forms +− and −+ are worse, candidate −− becomes a local
optimum thanks to the two candidates separating it from the global optimum
in Fig. 6.1. We shall return to this phenomenon in section 7.1, and present a
detailed analysis based on a subsequent experiment of Judit Gervain.

As an example from syntax, I take the favourite one of Modern Hebrew
linguist purists. The “correct” form for ‘three shekels’ would be šloša škalim,
with agreement both in gender (morphologically visible on the cardinal number)
and in number (the [-im] plural suffix on the noun). Nonetheless, most speakers
use šaloš šekel, omitting both agreement features.3 This magic square is formed
by the presence (+) or absence (−) of agreement in number (first position)
and in gender (second position). The grammar, in general (for noun+adjective
pairs), requires again candidate ++ to win, but in some special cases (namely,
with numerals) speaker might also produce −−, but not candidates +− and
−+.

Notice that in many of these examples, form −−, the alternative one, occurs
in frequent (“semi-lexicalised”) constructions. Progressive voice assimilation
in Dutch would be unconceivable in nouns such as zakdoek or duikboot, only
in bi-grams of unstressed function words. The pronunciation [ptEi] of the word
partij was characteristic to Joop Den Uyl, the late prime minister of the Nether-
lands (D. Gilbers and M. Schreuder, personal communication) in the expression
Partij van de Arbeid (‘Labour Party’). The lack of double agreement in Modern
Hebrew occurs only in frequently used expressions of quantity.

An Optimality Theoretical account of these phenomena should include at
least two constraints. The first constraint C1 requires surface homogeneity,
punishing the heterogeneous forms +− and −+. The lower ranked constraint

3Some speakers in colloquial Hebrew omit the agreement in gender for all cardinal + noun
constructs. In their case, however, one may argue that the masculine forms of the numerals
have been removed from the language altogether for the sake of paradigm uniformity, due to
their counter-intuitiveness. Namely, in semitic languages the gender morphemes on numerals
are the opposite of the gender morphemes generally found in the grammar.
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C2 prefers ++ to −−, whereas −+ and +− may either satisfy or violate C2.
In the following tableau, the well-known + points to the grammatical form,
whereas the ∼ symbol shows the alternative form:

C1 C2

+ ++
∼ −− *

+− *! ?
−+ *! ?

(6.2)

Indeed, tableau (6.2) together with the candidate space topology in Fig. 6.1
will turn ++ into the global optimum, and −− into the only alternative local
optimum (see Fig. 6.4 on page 172 for a concrete example).

To tell the truth, each story is a little bit more complex if we want to stay
linguistically correct. Still, the basic structure of the tableaux remains similar.
A crucial property of these tableaux is that +− and −+ are defeated in an
earlier stratum, while the difference between ++ and −− appears only lower in
the hierarchy.

In case of the word partij pronounced [ptEi], one may propose using two
faithfulness constraints. Constraint C1 is Faithfulness[rhyme]: each syllable
rhyme in the input is identical to its image in the output form, if there is such an
image. The rhyme /ar/ in the input /par.tEi/ is identical to its image [ar] in the
candidate [partEi], but different from [a] and [r] in candidates [patEi] and [prtEi]
respectively. That rhyme, however, has no correspondent in the string [ptEi] for
it has been deleted altogether, therefore the constraint is satisfied vacuously.4

Subsequently, constraint C2 is a faithfulness constraint on segments: deleting
each segment increases the number of violation marks by one. This constraint
then favours [partEi] with zero violation marks to [ptEi] with two violation marks.
Candidates [prtEi] and [patEi] are assigned only one violation mark each, but
they have been already put out of the game previously by constraint C1.

In Hungarian resyllabification, C1 is a constraint which requires a strictly
alternating vowel-consonant sequence, which is satisfied both by a.zénekesnő
and by az.énekesnő, but not by a.énekesnő or by az.zénekesnő. C2 can be de-
rived from constraints Ons and NoCoda known from Basic Syllable Structure
Theory (Prince and Smolensky, 2004): by their sum, each empty syllable onset
and each filled coda incurs one violation mark.

Using a “pseudo-minimalist” approach in the case of syntactic agreement in
Modern Hebrew, constraint C1 in (6.2) can be said to require agreement features

4Similarly to what will be said on agreement in Hebrew, we could differentiate between a
candidate [p.tEi] in which the correspondence relation is not defined on the underlying rhyme
/ar/ (thus, no image in the candidate), and a candidate [p∅∅.tEi] in which the correspondence
relation maps the rhyme /ar/ to an empty string, incurring two violation marks. Introducing
the second candidate does not have any effect, for it is always a loser, because it is harmonically
bounded by other candidates. A different, maybe more convincing but less elegant solution
is to use two constraints to eliminate candidates [prtEi] and [patEi]. The first candidate can
be easily eliminated by using highly ranked syllable structure constraints that do not allow
a complex onset [prt] (being too complex and violating sonority requirements), and do not
allow for the syllabification of [r] as a nucleus either. The second candidate may be eliminated
by using a simpler and more convincing version of Faithfulness[rhyme]: a rhyme in the
surface form has to correspond to a rhyme in the underlying form. This second version of
Faithfulness[rhyme] is satisfied by [par.tEi], [ptEi], [prtEi] and [pr.tEi], but not by [pa.tEi],
for the rhyme [a] does not correspond to the rhyme /ar/ in the input form.



6.2. Voice assimilation in Dutch 165

to be either checked or unchecked: in the case checking does take place overtly,
then no feature may be left unchecked (one violation mark per feature left
unchecked). The form −− (šaloš šekel) satisfies this constraint automatically
because no feature checking occurs. (An alternative candidate, identical on the
surface, would violate this constraint twice if it involves feature checking, but
then both gender and number are left unchecked.) Forms +− and −+ (šloša
šekel and šaloš škalim) do involve feature checking, but not all features are
checked, which leads to violating constraint C1. Subsequently, constraint C2
requires features to be checked, so any unchecked (not agreeing) feature incurs
one violation mark. Hence šaloš šekel with two unchecked features is worse than
šloša škalim (both features checked) for C2. The two constraints are almost
identical, the only difference being that the lower ranked constraint requires
features be checked always, whereas the higher ranked constraint requires it
only if feature checking is performed in general.

Finally, in the voice assimilation example, phonology would propose a marked-
ness constraint [αvoice][αvoice], requiring a homogeneous sequence with respect
to the [voice] feature; as well as a faithfulness constraint that punishes any
change of the value in the [voice] feature compared to the input form. These
two constraints would not distinguish however between o[bd]ie and o[pt]ie, for
both satisfy markedness and both violate faithfulness once. Therefore, the re-
gressiveness of the assimilation should be also incorporated into the analysis. In
addition, we also would like to consider forms with epenthesis in a subsequent
approach, thus the constraint Dep is required to punish epenthetic forms. In
the following section, we work out the details of this analysis.

6.2 Voice assimilation in Dutch

Voice assimilation in general, and regressive voice assimilation of neighbouring
stops in particular, is an extremely widespread phenomenon across languages.
Not surprisingly, we can also observe it in Dutch, a language that tends to
neutralise the [voice] feature of obstruents in other contexts, as well, such as in
the word-final position.

The middle consonant cluster in words such as duikboot (‘submarine’) or zak-
doek (‘handkerchief’) exemplifies regressive voice assimilation: in these cases we
obtain [gb] and [gd] respectively. The coda of the previous syllable assimilates
to the onset of the subsequent syllable. The traditional way to account for
this phenomenon in Optimality Theory is to assume two constraints, namely a
faithfulness constraint overranked by a markedness constraint. The constraint
Faith[Voice] requires the value of the [voice] feature be kept unchanged in
the output, whereas Assimilate[Voice] punishes adjacent stops not sharing
their [voice] feature in the surface form. The need for the faithfulness con-
straint is supported by hypercorrect (or extremely careful) pronunciation yield-
ing za[kd]oek and dui [kb]oot : in this register Faith[Voice] is promoted above
the markedness constraint Assimilate[Voice], due to which assimilation may
not take place.5

5As Paul Boersma pointed out, the word handboek (‘hand book’) is pronounced as
han[tb]oek in equally careful speech, violating both Faith[Voice] and Assimilate[Voice].
This case might be influenced by another factor, such as an Output-Output Correspondence
to the word han[t].
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Actually, careful vs. careless speech is often seen as a parameter orthogonal
to speech rate (e.g., Kiefer, 1994), the first factor being dependent upon the
social context, while the second being determined by time pressure on the indi-
vidual speaker. Fast careful speech may have different characteristics from care-
less speech, which itself can also have different speech rates. Hence, they might
have to be modelled separately. This is why employing constraint reranking to
account for these extremely careful or hypercorrect forms does not contradict
our agenda of using SA-OT for speech rate dependent phenomena. In turn, con-
straint reranking—either performed categorically, or in a Stochastic OT-style—
reflects the intuitive view that extremely careful or hypercorrect speech is indeed
about faithfulness to the underlying form; or, more precisely, to the written form
in literate languages with a prescriptive tradition. Hypercorrectness could be
seen as a separate register (or language), thus stipulating a separate hierarchy is
not in conflict with our previous criticism about supposing separate hierarchies
for different speech rates.

After these considerations, we can focus on phenomena that are typical to
speech rate (or other factors), and we may ignore the hypercorrect forms. Dutch
features an additional variation: the preposition op followed by die (only as a
demonstrative pronoun or an article, such as in op die manier ‘in that way’) may
sometimes involve progressive voice assimilation, and result in the consonant
cluster [pt], besides the form [bd] yielded by regressive assimilation.6

Progressive voice assimilation between stops seems to contradict our belief
in a homogeneous Dutch phonological system, because exclusively regressive as-
similation is allowed everywhere else. In order to save the uniform phonology, as
part of the supposed linguistic competence of the native speaker, we shall try ex-
plaining the form o[pt]ie as a performance phenomenon and reproducing it with
simulated annealing. Our strategy here is to exile exceptions from competence
(the static mental representation of the language), and to use the performance
(or computational-production) model to account for them. If it works, we can
keep the competence model simple and still account for all observed data.

Two models will be introduced, and these two models will demonstrate the
capabilities and restrictions of SA-OT. Indeed, the real goal of this chapter is
to further analyse what SA-OT is able to do, rather than to account for Dutch
progressive assimilation in particular. The latter is taken as a mere example
out of the analogous phenomena listed in the previous section, and ongoing and
future work (such as B́ıró and Gervain, 2006) should collect more empirical data
that our simulations ought to reproduce.

The first model uses a finite (actually, quite restricted) search space, and
is only able to account for a 50%-50% distribution of the forms o[pt]ie ([pt] in
short) vs. o[bd]ie ([bd], henceforth), independently of the parameter settings.

6As I have been informed by my readers, for further references on the subject see for
instance: Wim Zonneveld: Lexical and phonological properties of Dutch voice assimilation,
in: Van der Broecke et al. (eds.): Sound Structures, Studies for Antonie Cohen, Floris,
Dordrecht, 1983:297-312; or Mirjam Ernestus: Voice Assimilation and Segment Reduction in
casual Dutch: A corpus-based study of the phonology-phonetics interface, PhD thesis, Vrije
Universiteit, Amsterdam, Amsterdam, 2000. Wim Zonneveld claims that the double forms
are limited to clitic-like non-lexical categories, so op deze lijst ‘on this list’ can be realised
both as [bd] and [pt], but op dikke boeken ‘on thick books’ must be [bd].

Adam Albright pointed out that Northeastern Yiddish displays a similar progressive voice
assimilation that is basically limited again to a function word, namely, to the reflexive pronoun
zikh. For instance, golt zikh ‘shave-3sg’ becomes gol [ts]ikh.
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The model will be a slightly more complicated version of the toy example presen-
ted in section 2.3.2. The lesson is that SA-OT does not necessarily converge
towards maximal precision. Instead of interpreting this observation as a failure
of SA-OT, I propose to see it as a source of hope for the frequent cases where
simple and elegant linguistic models have had to be turned into very complex
ones just because of some few annoying exceptions.

Based on this model, I argue that linguistic data might be reproduced by
keeping the competence model simple and by leaving the dirty job to such per-
formance models. And since this family of performance models always predicts
errors, independently of the parameter settings, one cannot distinguish a priori
between phenomena related to competence in its narrow sense and between phe-
nomena constantly introduced by the second level on Table 2.1 (page 43). This
case is contrasted to the situation presented in Chapter 5, where the output
frequencies depended on the parameters, and therefore the allegro form, whose
frequency increased at higher speech rate, could be identified as the performance
error form.

In contrast to the first one, the second model will allow tuning the frequencies
of candidates [bd] (o[bd]ie) and [pt] (o[pt]ie) by varying the parameters. True,
this second model necessitates a constraint which may not meet the expecta-
tions of all phonologists, for it is a markedness constraint referring also to the
underlying form. However, the model turns to be illuminating about the pos-
sibilities of Simulated Annealing Optimality Theory, whereas further research
may replace the problematic constraint with a less controversial one.

6.3 The building blocks of Simulated Annealing

First, we have to define the candidate set with respect to a given underlying
form. Let the underlying form be a pair of stops σ1σ2. Now, σ′1 denotes the stop
that has the same features as σ1, but the [voice] feature is different; similarly
for σ′2. The candidate set will then be a set of strings beginning with either σ1

or σ′1, ending with either σ2 or σ′2, and having zero or more epenthetic vowels
(say, schwas) in-between—the simple regular language {σ1, σ

′
1}×@∗×{σ2, σ

′
2}.

We have not really argued for the need to epenthesise yet, but we advance
it here for the sake of the second model to be presented in this chapter. After
all, epenthesis is always a possibility for a phonologist, who would never prevent
GEN from producing candidates including epenthetic segments, footnote 1 on
page 161 notwithstanding.

To simplify notation, let us replace σ1 and σ2 by [p] and [d] (from the input
op die). We write then the underlying (input) form as /pd/, and the output
forms (candidates) as [pd], [bd], [pt], [bt], [p@d], [b@@t], etc. The @ symbol
will refer to the epenthetic vowel, and a superscript may refer to its repetition
n times (e.g. [p@nd]), zero or more times (Kleene-star: [p@∗d]), or one or more
times (Kleene-plus: [p@+d]).

As we follow the usual steps of introducing the building blocks of SA-OT (see
page 45 or page 129), we have to define next the neighbourhood structure on this
set. We shall regard two candidates as neighbours if and only if one candidate
can be reached from the other by performing exactly one of the following basic
steps :

• Insert or delete exactly one epenthetic vowel (from σ1@nσ2 to σ1@n±1σ2).



168 Chapter 6. Dutch Voice Assimilation with SA-OT

[pt] [pd]

[bt] [bd]

Figure 6.2: Search space used in the first model for voice assimilation:
neighbours are connected by a line.

• Change the value of the [voice] feature of exactly one of the bordering
stops (from σ1@nσ2 either to σ′1@nσ2 or to σ1@nσ′2).

In our first model the candidate set will be restricted to the four pairs of stops
without allowing any epenthesis (n = 0) (Fig. 6.2). By adding the possibility
of iterative epenthesis, we arrive at the structured candidate set appearing in
Fig. 6.3, the one to be used in the second model.

As for the a priori probabilities, that is, the second part of the definition
of a topology on the search space, we simply give equal probability to each
neighbour of a candidate (Eq. (2.5) on page 49).

Now, let us move forward, defining the constraints. Suppose Cw is the corres-
pondence relation (see also section 4.1.5), that is a partial bijection7 mapping
(some of) the segments (tokens) of the input string onto (some of) the seg-
ments of candidate w fulfilling contiguity,8 as defined by Correspondence Theory
(cf.McCarthy and Prince (1993b) p. 67).

In our case, Cw maps the first and the second underlying stops onto the first
and the last stops in the candidate w, respectively. The epenthetic vowels are
not contained in the range of Cw.

We shall use the following constraints (the definition provided is more general
than needed for the present case):9

• Dep (Dependency, “don’t epenthesise!”): one violation mark assigned
to each segment in the candidate that does not correspond to a segment
in the input string. In other words, a candidate w is assigned as many
violation marks as the number of its segments, minus the cardinality of
the range of Cw
• Assimilate[Voice]: one violation mark to each pair of segments (σ1, σ2)

in the candidate such that σ1 immediately precedes σ2 (in the candidate

7I shall call a relation R ⊂ A × B a partial bijection if and only if R is a bijection—a
one-to-one mapping—between its domain and its range, even if its domain and its range may
be a proper subset of A and B respectively.

8In the present model, contiguity requires that for all segments σ1 and σ2 ∈ Domain(Cw),
segment Cw(σ1) is left of Cw(σ2) in the candidate string if and only if σ1 is left of σ2 in the
input string.

9For historical reasons, constraints are typically defined in terms of what criteria must be
met: what is the structure that does not incur any violation mark. However, Optimality
Theory constraints are functions on the candidates that have not necessarily Boolean (true /
false) values. Very often, the number of violation marks assigned plays a crucial role. This is
why I repeatedly argue that constraints should be defined positively, by giving the number of
violation marks they assign to a given candidate.
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[pt] [pd]

[bt] [bd]

[p@t] [p@d]

[b@t] [b@d]

[p@@t] [p@@d]

[b@@t] [b@@d]

Figure 6.3: Search space used in the second model for voice assimila-
tion: the character @ stands for the epenthetic schwas.

string), both have a [voice] feature, and yet, these features have a different
value.

• StopAssimilation=Regressive: one violation mark to each pair of seg-
ments (σ1, σ2) in the underlying representation such that σ1 immediately
precedes σ2 (in the underlying form), both are elements of the domain of
Cw, furthermore σ2, Cw(σ1) and Cw(σ2) are stops with a [voice] feature,
and yet these three voice features do not have the same value.

• Faith[Voice]: one violation mark is assigned to each segment σ in the
underlying form such that Cw(σ) exists, both σ and C(σ) have a [voice]
feature, and yet these features have a different value.

Constraint Dep, originally Fill in Prince and Smolensky (1993), is the
standard constraint in Optimality Theory that prohibits inserting elements into
a candidate that were not present in the input form. Constraint Assimil-
ate[Voice], a straightforward way to compel stops to agree in voicing, is called
Agree by Lombardi (1995). She refers to Faith[Voice] as IDent(laryngeal).
Yet, her constraint IDentOnset(laryngeal), which causes voice assimilation
to be regressive by punishing unfaithful onsets but not codas, is not going
to be useful in our analysis. Indeed, our fourth constraint, StopAssimila-
tion=Regressive might be claimed to be the most questionable.10

Notice that constraint StopAssimilation=Regressive punishes all un-
derlyingly adjacent pairs of stops that do not assimilate regressively (either do
not assimilate at all or assimilate progressively, if they are different underly-
ingly), even if they are not adjacent on the surface. This constraint sounds
quite weird to the ears of a phonologist, for markedness constraints should refer
to properties of the surface form alone, without touching upon the underlying
form. Nevertheless, we shall need it for our second approach.11 In the first
approach, the following simpler alternative may replace it:

10My impression was that finding the constraint corresponding to StopAssimila-
tion=Regressive is also the most difficult task when applying this model to the analogous
phenomena mentioned earlier.

11What the model requires is tableau (6.5). Alternative formulations of this constraint might
be possible, which will assign violation marks with no significant change. In the footsteps of
Lombardi (1995)’s constraint IDentOnset(laryngeal), we could for instance give the following
definition: one violation mark is assigned to each stop in an onset position that (i) is not
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• StopAssimilation=Regressive2: one violation mark goes to each pair
of segments (σ1, σ2) in the candidate string iff σ1 immediately precedes σ2

(in the candidate string), both are elements of the range of Cw, furthermore
σ1, σ2, C−1

w (σ1) and C−1
w (σ2) are stops with a [voice] feature, assimilation

has taken place (σ1 and σ2 share the same [voice] feature), and yet σ1 has
the same [voice] feature as C−1

w (σ1), whereas σ2 differs from C−1
w (σ2) in

this feature. (In short, progressive assimilation has occurred.)

As we have to check whether assimilation has been progressive or regressive,
we probably cannot avoid referring to the underlying form, at least in some
hidden way. Yet, this second formulation differs in two respects from the first
one. Firstly, it does not punish progressive assimilation anymore if epenthetic
vowels intervene between the stops in the surface form: this is exactly the
point making the first definition unattractive to a phonologist but necessary for
the second model to be presented. Secondly, the second formulation does not
assign any violation mark to candidates where no assimilation has taken place
(vacuous application), whereas the first formulation punished them for missing
the occasion of assimilating (in a regressive way). Consequently, candidates
[pd] and [bt] vacuously fulfil StopAssimilation=Regressive2, whereas they
violate StopAssimilation=Regressive. This difference will not have any
effect in the models, since these two candidates are already defeated by their
neighbours due to a higher ranked constraint, namely Assimilate[Voice]. The
second model will, nevertheless, crucially exploit the fact that [b@+d] are the
only candidates with epenthesis satisfying this constraint, consequently that
model necessitates that [p@+d] and [b@+t] violate it, too.

The last step in constructing our Simulated Annealing Optimality Theory
model is to define the hierarchy. As explained in the introduction, the faithful-
ness constraint has to be demoted below the markedness constraints, otherwise
no assimilation will take place. Constraint Dep, which will play a role only in
the second model, should be ranked high in order to avoid forms with epenthesis
becoming successful. Similarly, the relative ranking of Assimilate[Voice] and
StopAssimilation=Regressive is determined by the fact that o[pt]ie should
emerge as an alternative form, and not o[pd]ie. In summary, the following rank-
ing is the most likely to help us:

Dep� Assimilate[Voice]�
� StopAssimilation=Regressive� Faith[Voice] (6.3)

Before going on with the analysis of Simulated Annealing, let us review
the tableaux produced by this constraint hierarchy. The well-known + symbol
refers to the optimal candidate, whereas ∼ will refer again to the alternative
form. In the first model, we may use StopAssimilation=Regressive2, yield-
ing the following chart (vac meaning that the constraint is satisfied vacuously):

faithful in its [voice] feature if the following syllable nucleus is original; (ii) is faithful to the
input form in its [voice] feature if the following syllable nucleus is epenthetic.
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/pd/ Dep Assim[Voice] StAss=Rgr[Vc]2 Faith[Voice]

+ [bd] *
∼ [pt] *! *

[pd] *! vac
[bt] *! vac **

(6.4)

For the second model, we need to use the original formulation of the con-
straint StopAssimilation=Regressive and to enlarge our candidate set. The
@ symbol refers to the epenthetic vowel (for instance, a schwa), and the expo-
nent n multiplies the preceding character (in the tableau n > 0).

/pd/ Dep Assim[Voice] StAss=Rgr[Vc] Faith[Voice]

+ [bd] *
∼ [pt] *! *

[pd] *! *
[bt] *! * **
[b@d] *! *
[p@t] *! * *
[p@d] *! *
[b@t] *! * **
... ... ... ... ...
[b@nd] *n! *
[p@nt] *n! * *
[p@nd] *n! *
[b@nt] *n! * **
... ... ... ... ...

(6.5)

6.4 Model 1: Finite search space

In the first approach, the search space (the structured candidate set) is restricted
to the four candidates appearing in Fig. 6.2.

What does the landscape of the search look like? The landscape—represented
in three dimensions in Fig. 6.4—is determined by the difference in the violation
profiles of the neighbouring candidates. As this difference depends only on the
highest ranked constraint distinguishing between the two profiles, phonologists
can replace constraint StopAssimilation=Regressive with StopAssimila-
tion=Regressive2, and both tableau (6.4) and the first rows of tableau (6.5)
may be used. The global optimum is above [bd], and another local optimum,
diagonally opposed to it, above [pt]. At the two ends of the other diagonal, [pd]
and [bt] represent peaks.

Let us run simulations under the usual conditions. Temperature drops from
above the highest constraint to much below the lowest constraint, so that enough
time is given both to walk freely around the search space initially, and to find
the local optimum (relax) finally. The domains containing the constraints follow
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[pt] [pd]

[bt] [bd]

Figure 6.4: 3-D landscape of the first model for voice assimilation: more
harmonic candidates are drawn lower than the less harmonic ones (searching for
the optimum corresponds to searching for the minimum). Candidate [bd] is the
global optimum, [pt] is another local optimum, whereas [bt] is the least harmonic
candidate.

each other, Kstep = 1, and the real part of the temperature drops from Tmax = 3
to Tmin = 0 in equal steps Tstep.

Based on our previous experience, we would predict Simulated Annealing
Optimality Theory to produce the following behaviour: with slow simulation,
the global optimum [bd] is easily found, whereas accelerated simulation may be
stuck in the erroneous local optimum [pt]. The faster the simulation, the more
frequently [pt] is expected to be returned—according to our intuition.

How very wrong we are! Implementing the model shows that [bd] and [pt]
are returned with equal probability, 50% each, with some random dispersion.
This happens so independently of the parameter setting!

The reason for this surprising result is easy to understand, and lies in the
symmetry of the landscape. We face a case similar to those discussed in section
2.3.2. In fact, there is a greater symmetry than one would initially suppose.
On the one hand, the chance of leaving the two local optima are equal at every
moment of the simulation. To leave either of them, temperature has to al-
low violating Assimilate[Voice] once, which is possible at high temperatures,
impossible at low temperatures, and has a chance between 0 and 1, when tem-
perature is exactly in the domain of this constraint. The fact that [pt] violates
a lower ranked constraint not violated by [bd] does not influence anything. On
the other hand, from [pd] and [bt] both local optima are chosen with an a priori
probability of 50%. Once chosen, the random walker moves always, both to [bd]
and [pt], with a transition probability of 1. In turn, nothing guarantees that the
random walker will prefer moving to [bd] to moving to [pt] from candidates [pd]
and [bt]. In brief, both local optima are reached with equal probability and are
left with equal probability—independently of the parameters of the simulation.

How could we break the symmetry of the search space just described, which
results in the two local optima being found with equal probability? A first idea
might be to increase the probability for the random walker to move from [pd] and
[bt] to [bd], and to decrease the chance of moving to [pt]. The second idea will
be to enlarge the search space in an asymmetric way, as will be demonstrated
in the second model.

As both [bd] and [pt] are more harmonic than [pd] and [bt], it would con-
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tradict the idea of simulated annealing not to have the transition probability
P (w → w′) = 1, once a neighbour w′ of w =[pd] or w =[bt] has been chosen.
So, one may alter rather the a priori probabilities determining the choice of the
neighbours. So far, each neighbour has been chosen with an equal probability,
but this symmetry can be deformed ad hoc. One may also reconsider simulated
annealing, and connect the horizontal structure of the landscape to the vertical
one, although it is quite unclear to me how this could be done in the general
case. This direction would involve taking the possible gain in the harmony func-
tion (the vertical structure) into consideration when determining the a priori
chance to pick a neighbour (the horizontal structure): the more you can gain in
harmony, the more it is probable that you will consider the possibility to move
to this neighbour.12

In any case, experiments (for p = 0.67 and p = 0.8) have shown that this
direction is still fruitless. If the a priori chance of picking [bd] (as opposed
to choosing [pt]) when the random walker is in [pd] or [bt] is increased, say,
to p = 2/3, then the random walker will indeed prefer moving to [bd]. In the
next step, however, leaving [bd] has still the same probability as leaving [pt]. In
general, if the probability of moving from [pd] or [bt] to [bd] is p, and to [pt] is
q (with p + q = 1), then the simulation will return [bd] with probability p and
[pt] with probability q—independently of the cooling schedule! Such a model
can describe empirical data with a distribution different from 50% - 50%, and
yet the interpretation of why p and q have some specific values would still be
missing. Likewise missing is the interpretation explaining how and why these
parameters of the horizontal structure are tuned by different speech situations.13

What would lead to success is a model in which the random walker is less
likely to leave [bd] than to leave [pt]—at least, in some phase of the simulation.
Once in [bd], it is captured there, while leaving [pt] is still possible. In order to
end up in [pt], the system has to choose to move always back to [pt]—and never
to [bd]—each time the system has escaped from [pt]. The slower the cooling
schedule, the more often such a decision has to be made. If [pt] is chosen with
probability q, then a cooling schedule offering n such decisions would return
[pt] with a probability of qn, and [bd] with a probability of 1 − qn. A slower
cooling schedule means a higher n, resulting in a lower qn with a higher 1− qn.
As discussed in section 2.3.2, however, it is unclear how the difference of two
violation profiles could be defined in order to have the system escape from [pt]
more easily than from [bd]. The last resort is obviously the introduction of a
new, highly ranked constraint satisfied by [bd] and violated by the other three
candidates, so that once temperature has dropped below this new constraint,
escaping from [bd] is not possible any more, but escaping from [pt] still has
some chance.

12In the present case, for instance, moving from [pd] or [bt] to [pt] can be seen as an “im-
provement of one constraint level”, because the highest violation mark incurred is assigned by
constraint StopAssimilation=Regressive[Voice] instead of Assimilate[Voice]. Similarly,
moving from [pd] or [bt] to [bd] is an “improvement of two constraint levels”, for [bd]’s highest
violation mark originates from Faith[Voice]. The a priori chance to pick a neighbour with
an improvement of two constraint levels may, in turn, be assigned double weight, as opposed
to the chance of picking a neighbour with an improvement of only one constraint level.

13In general, how should we interpret the tuning of the probabilities related to the horizontal
structure of the landscape? Nevertheless, by supposing that the horizontal structure may
be slightly different for each individual (yet constant within a person), we can account for
variations among speakers, dialects or sociolects.
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To summarise, this model is analogous to the situations described in subsec-
tion 2.3.2 discussing the cases where SA-OT does not work. The present model
with our four candidates is a variant of that basic situation. If traditional simu-
lated annealing converges asymptotically, but SA-OT does not, should we con-
clude that simulated annealing has not been applied properly? The discussion
in Chapter 3 aimed at demonstrating that peculiarities of SA-OT follow dir-
ectly from the core of Optimality Theory. Thus, it is only to be hoped that the
divergence between simulated annealing and SA-OT can be interpreted within
linguistics and OT.

Consequently, I have a good and a bad bit of news: which do you want
to hear first? The bad news is that this approach can only produce an equal
distribution of the two forms, which is too strong a prediction. It is quite un-
likely that empirical research would report on an exactly 50%-50% distribution.
Stochastic approaches—and simulated annealing is one of them—aim at repro-
ducing quantitative phenomena; why shall we content ourselves, then, with the
qualitative result that both candidates can be reproduced? Just as in good-
news-bad-news jokes, however, the good news will also resolve the bad news.

Now, the good news. Well, this sounds initially also as a bad news: we
have to give up our expectations about the precision of SA-OT converging to
1, as simulated annealing is performed slower. And yet, this is a good piece of
news. Optimality Theory Simulated Annealing is claimed to be a performance
model on top of OT as a competence model (Table 2.1), and we know that
performance is indeed always full of errors. Why do we actually expect it to be
precise asymptotically, then?

Being even more radical, I suggest reformulating some basic ideas in lin-
guistics. So far, phenomena independent of external factors (such as speech
rate) were supposed to belong to competence, to the core of linguistic know-
ledge deeply encoded in the brain (or, at least, in the physiology of the speech
production-perception system). However, many phenomena may steadily per-
sist in language, even if they “contradict” the (static) mental representation of
the given language, because they are necessarily introduced by the (dynamic)
computational production process. In the present case, even though competence
in its narrow sense would require regressive assimilation (hence, its model, the
OT grammar, yields exclusively [bd] as optimal); and yet, the computational
production process, modelled by SA-OT, cannot help but also return the [pt]
form displaying progressive assimilation.

The fact that the ratio of the “erroneous” form is constant and does not
depend on speech rate makes it impossible to argue a priori for a certain form
to be the performance error. Earlier, namely, we could identify the form whose
frequency increases in fast speech as the performance error, based on the as-
sumption that fast speech cannot be more correct than normal speech. Our
aim was to reproduce this behaviour using SA-OT. Now, however, it is only
the model that turns a certain form into the grammatical form (by having it as
the globally optimal candidate), and other forms as performance errors (local
optima), and not pre-theoretical observations. The only hint was that the form
with progressive assimilation seemed to be an exception from the general trend
displaying only regressive assimilation.

I am convinced that models of the mental representation of languages could
be kept simpler if many “ugly cases” were exiled to the production-computation
process. The present example has shown us the way: without reformulating
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Dutch phonology, we could reproduce the exceptional progressive assimilation
in o[pt]ie.

Obviously, the question arises why the same pressures do not apply to zak-
doek (‘handkerchief’) or to duikboot (‘submarine’). This brings us back to the
bad news: if we were able to modulate frequencies by tuning the parameters,
we could simply argue that the unaccented frequent function words constituting
op die are produced much more quickly—that is, with a different parameter
setting—than relatively infrequent nouns such as zakdoek and duikboot. This
is why we have to confront the second model, whose parameters will influence
again the output frequencies.

The last good piece of news then is that the second model and the mathem-
atical challenges posed by its formal analysis (which can be safely skipped by
the reader less interested in math) will turn out to be illuminating about the
techniques offered by SA-OT.

6.5 Model 2: Infinite search space

6.5.1 Enlarging the search space

The second model involves enriching the search space with new candidates,
and in this way breaking its symmetry. The candidate set becomes huge—
actually infinite. The four candidates of the previous model (Fig. 6.2) form but
the central zone of the new search space (already advanced in Fig. 6.3). As
the periphery of the latter does not exhibit the same symmetry as the centre,
the two local optima may be returned with probabilities different from 50%
each. The more use the system makes of the periphery, the more significant the
difference from the 50%-50% distribution will be.

Importantly, the periphery will be less optimal than the central valley, and
therefore we can get farther in the periphery only in the first phase of the
simulation. This is, when temperature is still higher than the highest ranked
constraint. In other words, to distance the system from the 50%-each distribu-
tion, we have to allow many iterations in the first phase. Hence the novelty of
this model: unlike in the different uses of SA-OT so far, all of which included
but a finite search space, the parameter Kmax is assigned now a leading role.

Parameter Kmax is starring in the present model also for a second reason,
which is similarly related to the fact that the candidate set is infinite. Due to
this fact, we cannot launch the simulation from each of the candidates with
equal probability, as we have done before. One option would be to define a
probability distribution on the candidate set; but we leave this option open to
future research, and we rather launch the simulation always from one of the
four candidates in the central basin. This is why Kmax will determine how far
from the central basin the random walker can get, and thereby, how much of
the asymmetry of the search space’s external regions we can make use of.

After this introduction, the question is raised: how can we enrich the search
space? A straightforward direction, copying the classical paradigms in OT, is
to allow epenthesis: let us insert an epenthetic vowel (a schwa) between the
two consonants. Indeed, vowel epenthesis is frequently employed by natural
languages to break up unwanted consonant sequences, even if not necessarily to



176 Chapter 6. Dutch Voice Assimilation with SA-OT

resolve clashes in voice.14

The possibility of inserting only one schwa has not proven to be fruitful. In-
serting any number of schwas recursively is more interesting (Fig. 6.3 depicting
the structured candidate set is repeated here as Fig. 6.5). This is so even if
forms with more than one epenthetical vowel are—most probably—not attested
in any language.

This paradox, namely the fact that forms not attested in natural languages
render the model fruitful, is worth emphasising here. Following B́ıró and Ger-
vain (2006), we could call this phenomenon the “Bald Soprano” effect, or even
the Godot effect : there are characters in the play who never appear openly on
the scene, and yet, they influence importantly the whole story line. In fact, the
present study refutes a possible criticism to Optimality Theory in general: why
should a model include an infinite set of candidates, if not for the sake of sim-
plicity and of mathematical beauty? OT’s main goal is to account for linguistic
typology and typologies include only a very restricted number of types, whence
one would expect a very restricted finite candidate set. Do the candidates that
can never win (the losers according to Samek-Lodovici and Prince, 1999) play
any role in Optimality Theory at all? We shall see presently that they do, at
least in SA-OT.

6.5.2 The landscape

After such a long introduction, let us enter the linguistic details of the new
model. The infinite candidate set and its topology have already been defined in
section 6.3, so we turn our attention to the constraints.

Now the constraint StopAssimilation=Regressive in its first formula-
tion will play a role. Recall tableau (6.5) in section 6.3, repeated here below.
All forms with an epenthesis violate Dep (as many times as the number of
epenthetical vowels included), and satisfy Assimilate[Voice]. The third most
important constraint is StopAssimilation=Regressive, which is satisfied by
[b@+d] (a positive number of epenthetical vowels surrounded by [b] and [d]) and,
crucially, violated by the other candidates with epenthesis.

14See footnote 1 on page 161. For a concrete example of schwa insertion, consider Modern
Hebrew. (Notice that the word “schwa” originates from the concept of schwa mobile coined by
the Biblical Hebrew grammarians.) A clash occurs when the past tense singular 2nd masculine
suffix [-ta] is added to a verb ending in a [d], such as lamad ‘learn, study’. In such cases, two
forms may emerge: the first one involves regressive assimilation ([lamatta]), while the second
one inserts an epenthetic schwa ([lamad@ta]). In fact, this case serves as an example for
the prohibition of homorganic consonant clusters in general [Schwarzwald (2001, pp. 11-12.);
for further examples, see B́ıró and Hamp (2002)]. Still, the behaviour of Modern Hebrew
with respect to homorganic consonant clusters can be only described by using a candidate
set that includes forms with epenthetical vowels, as well as by constraint Dep overruled by a
markedness constraint *[αplace][αplace]. In sum, Modern Hebrew—among, most probably,
a huge number of further languages—does support the need to include the new candidates
into the candidate set. If one requires such a support at all, as most phonologists view GEN
as a black box generating literally “everything”.
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[pt] [pd]

[bt] [bd]

[p@t] [p@d]

[b@t] [b@d]

[p@@t] [p@@d]

[b@@t] [b@@d]

Figure 6.5: The second search space used for op die. The character @ stands
for the epenthetic schwas.

/pd/ Dep Assim[Voice] StAss=Rgr[Vc] Faith[Voice]

+ [bd] *
∼ [pt] *! *

[pd] *! *
[bt] *! * **
[b@d] *! *
[p@t] *! * *
[p@d] *! *
[b@t] *! * **
... ... ... ... ...
[b@nd] *n! *
[p@nt] *n! * *
[p@nd] *n! *
[b@nt] *n! * **
... ... ... ... ...

(6.6)

Consequently, the landscape looks as follows: in the “middle” we find a cent-
ral basin, formed by the four candidates without epenthesis and having the form
already discussed (in section 6.4, and especially in Fig. 6.4), which is in turn
surrounded by ever rising hills (the higher, the less optimal). This picture is the
result of promoting Dep, the constraint penalising recursion, to the highest po-
sition. Furthermore, this “radial” structure of the landscape is modulated by a
“tangential” structure, to be presented soon in Fig. 6.6. In each concentric circle
outside the central basin, [b@nd] (n > 0) is lower (more harmonic) than [p@nd],
[p@nt] and [b@nt], due to constraint StopAssimilation=Regressive. This
search space can thus be visualised as a circular crater with a smaller radial
valley formed by a river that runs down in a centripetal direction towards the
central basin.

Our goal has been exactly to create this channel [b@nd], and this is why
we require the first definition of constraint StopAssimilation=Regressive.
Imagine the water falling on such a landscape, which sooner or later reaches
some deepest valley in the landscape by flowing down the slope. The valley
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collects most of the water and streams it to the basin in the form of a river or
channel. Even though an initial rain has spread the water, say, uniformly in a
larger region, still water will concentrate more and more in the river, and later
in the central basin, as time passes. Remembering this metaphor might help
better understand the behaviour of our SA-OT system.

In the first, unhindered stage of the simulation, the freely roaming random
walker may be found, more or less, everywhere in the landscape. The likelihood
P0(w) of the random walker being at a certain point w of the search space by
the end of this first phase (we will be calculated exactly later) resembles the
quantity of water in w after the initial rain. The dispersion is not necessarily
even (that is, P0(w1) = P0(w2) does not necessarily holds for any w1 and w2),
but “smooth”. Additionally, the total amount of water is unity, corresponding
to the fact that

∑
w∈Gen(UR) P0(w) = 1 must hold.

Now the water starts flowing; that is, the probability distribution Pt(w) of
the random walker being in w changes as time t advances in each time step
of the simulation. Obviously, the total amount of water (

∑
w∈Gen(UR) Pt(w))

remains the same over time. As temperature reaches the domain of the highest
ranked constraint, Dep, not all moves are equally likely anymore. In particu-
lar, centrifugal moves increasing the number of the epenthetical vowels become
blocked in this stage. Once moving upwards in the landscape becomes difficult
for the random walker, the water—the probability Pt(w)—will be collected and
streamed to the central basin by the structure of the landscape, and especially
by channel [b@+d]. By the end, P∞(w) (the “amount of water collected in w”)
gives you the probability of the algorithm returning candidate w: usually 0,
unless w is a local optimum.

How does channel [b@+d] work? Suppose the random walker is “out in the
hills”, that is, not in the central basin, when temperature drops to the domain
of the constraint StopAssimilation=Regressive. At this moment, some
tangential moves—moves changing the [voice] feature of the stops—are not free
anymore either: the transition probability of stepping from [b@nd] to either
[p@nd] or [b@nt] becomes less than 1—and this probability quickly diminishes
to zero—because such steps would require incurring a violation mark by this
constraint. In turn, [b@nd] serves as a trap for the tangential component of the
random walk. The “water” is collected by channel [b@+d] during the tangential
steps, and the channelled water has no other option but to flow towards the
central basin through a series of centripetal steps (deleting the epenthetic vowels,
but not altering the voiced feature of the consonants).

Now, the clue to this model is the fact that this channel enters the central
basin at [bd]. This is crucial, since all the “water” (probability of the random
walker being there) channelled by the river or channel will be stuck in [bd],
cannot end up in [pt], for [bd] is a local optimum. The channelling effect starts
when temperature falls to the domain of StopAssimilation=Regressive. At
this stage of the simulation, escaping from the two local optima is not possible
anymore, because escaping would require incurring a violation mark by Assim-
ilate[Voice], which is higher than the actual temperature.

On the other hand, the water that has not been collected by the channel may
end up in [pt], which is also a trap, a local optimum, due to tableau (6.6). The
water reaching the basin in [pt] from [p@t] gets caught there; whereas the water
arriving into [pd] and [bt] (from [p@d] and [b@t]) is equally divided between
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b@nd

b@nt

p@nd

p@nt

Figure 6.6: “Channelling” effect in the infinite search space, in the nth
(n > 0) concentric layer, which is formed by the candidates with n epenthetical
vowels. The arrows point to the more harmonic candidate, based on tableau
(6.5). If temperature is below the lowest ranked constraint, the random walker
can move exclusively towards the centre, or towards candidate b@nd, the most
harmonic candidate among the candidates with n epenthetical vowels. In this
sense, we can speak of the b@nd valler or channel.

the two local optima, as explained in the context of the first model.

6.5.3 Tuning the output of the model

Consequently, moving away from the 50%-50% distribution between the two
local optima of the four-candidate model is possible by channelling as much
“water” as possible into channel [b@+d], and thereby increasing the probability
of our simulation returning [bd]. Notice that decreasing it is not feasible in our
model. Nonetheless, it is more likely that accounting for empirical data would
require increasing the probability of [bd] rather than decreasing it.15

What we need to do then is to disperse initially the constant amount of
water on a region as large as possible, by providing the walker the possibility to
move much without any obstacles (i.e., a long initial phase in the simulation).
Why is this so? In short, once the temperature has reached the domain of
Dep, centrifugal moves become prohibited, and a competition starts between
centripetal and tangential moves.

The competition is about the water reaching the channel first or the basin
first. If the channel is reached, [bd] will certainly be the output, otherwise [bd]
and [pt] have equal chance. The more “water” reaches the channel, the higher
the likelihood of [bd]. Additionally, observe that from a larger distance, more
centripetal steps are required to arrive at the central basin, which increases the
chance to reach the channel first by performing a few tangential steps.

In sum, the farther the random walker is from the central basin at the end
of the unhindered phase, the more likely it is for [bd] to be returned by the
algorithm. This is the technique we can have our SA-OT model returning the
two outputs with different probabilities.

15Decreasing the probability of [bd] is possible by using constraints that define a very similar
landscape but with a channel [p@+t]. Then, the more water that is channelled, the higher
the frequency of output [pt]. Observe that such a model is possible even if [bd] is the global
optimum, and not [pt]. In other words, here we see an example of an SA-OT model with the
global optimum being returned in less than or equal to half of the cases.
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At this point an additional issue arises, the choice of the initial candidate.
We must remember that the search space is infinite, unlike in our previous
models. So far, we could choose each candidate with equal probability to be the
starting point of the random walk, but now, we have to come up with a different
solution. For instance, a Gaussian-style distribution could be defined so that
the likelihood of a candidate w0 with n epenthetical vowels ([C1@nC2]) being

the initial candidate of the walk be proportional to e−n
2/2σ2

. Then, a larger σ
will disperse the “rain” over a wider region, resulting in a higher frequency of
output [bd], due to the channelling effect.

Instead of introducing an additional parameter σ to the model, however,
we rather leave this idea to future research, and prefer exploiting the already
existing parameters of the SA-OT Algorithm. Probably the most natural choice
is to employ exclusively the four basic candidates of the central basin ([pd], [pt],
[bd] and [bt]) as initial candidates, with 25% chance each. In turn, having “the
initial rain covering a wide region” corresponds to allowing the random walker
to get really far away from the initial candidate in the first, unhindered phase
of the simulation. Using the water metaphor, the water is poured in the four
central candidates, before it splashes to the initially unhindering mountains.

Then, a last point remains to be clarified in our train of thought: the way we
lengthen the initial phase of the simulated annealing, that is, the phase in which
the random walker moves freely even to worse neighbours. From the parameters
of the algorithm (see Fig. 2.8 on page 64), two are the most straightforward
candidates: Kmax and Tstep. In other words, we either add extra upper domains
that the temperature has to traverse before reaching the domain of the highest
ranked constraint (increase Kmax); or increase the number of steps to be per-
formed within each domain in order to have more steps also in the domain(s)
superior to the domain of the highest ranked constraint. The second strategy
can be realised in the simplest way by decreasing Tstep, and this is the technique
we have used the most often so far. So, should we increase Kmax or decrease
Tstep, if we would like to have more iterations in the first, unhindered phase of
the simulation?

In contrast to our previous models, it turns out that simply decreasing Tstep

does not work now.16 The reason, in short, is that increasing the number of
steps within one domain will also increase the number of steps while temperature
is between the domains of Dep and StopAssimilation=Regressive. The
reason, in detail, requires some mathematical discussion, which can be skipped
without losing the general train of thought of my dissertation.

6.5.4 The interaction of Kmax with Tstep

The present subsection aims at presenting a formal analysis of how the para-
meters of the model influence the probabilities of returning [pt] and [bd]. First,

16Note this major difference between the present case and stress assignment in fast speech.
For stress assignment, increasing Kmax alone would not have any effect: the candidate set is
finite, and not only can the random walker rove around the whole search space in the initial
phase of the simulation, but also each point has an equal chance to be the starting point of
the random walker. The phenomenon arises from changing the number of steps in the second
phase of the simulation, that is, when temperature has already reached the domains of the
constraints. In the present case, however, the search space is infinite, we start the simulation
from a small subset of it (the four central candidates), and the goal is to have the random
walker also visit candidates as remote as possible.
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let us introduce a few notations:

τ =
⌊Tmax − Tmin

Tstep

⌋
+ 1 ≈ Tmax − Tmin

Tstep
=

3

Tstep
(6.7)

k = Kmax −Khighest = Kmax − 3 (6.8)

where Khighest is the index associated with the highest ranked constraint, 3 in
the present case. Further, τ stands for the number of repetitions performed
by the inner loop of the SA-OT algorithm, that is, the number of iterations
while temperature decreases one domain. Here, we employ our standard values,
Tmax = 3 and Tmin = 0, and bxc represents the integer part of x.

Kmax is located k domains above constraint Dep, so temperature traverses k
domains in the first phase of the simulation. In the period when temperature is
exactly in the domain of Dep, centrifugal moves become banned only gradually:
in the beginning of this period, they are almost free, and later almost impossible.
Let us approximate this gradual effect by supposing that the random walker can
freely move away from the centre as long as the temperature crosses the first
k+ 0.5 domains, and this direction becomes maximally prohibited immediately
afterwards, from that point onwards when temperature enters the lower part
of the domain of Dep. Consequently, the number of steps performed by the
random walker in the first (unhindered) phase of the simulation is:

N = (k + 0.5) · τ (6.9)

Remember that a candidate [C1@nC2] (with n > 0) has four neighbours, two
in a tangential direction (that is, also including n epenthetical vowels: [C′1@nC2]
and [C1@nC′2]), and two in a radial direction ([C1@n+1C2] and [C1@n−1C2]).
As each neighbour has an equal a priori probability of 0.25, the number of radial
steps among these first N steps can be approximated by

Nradial = Nr ≈
N

2
= (k + 0.5) · τ

2
(6.10)

Estimating πN (n)

Now, we calculate the probability πN (n) of being exactly at a distance n from the
central valley by the end of the first phase, that is, of starting the “competition”
from some candidate with exactly n epenthetical vowels ([C1@nC2]). The radial
component of this first phase is a one-dimensional Brownian motion with equal
probability of moving in both directions (centripetal and centrifugal). One
flips a symmetrical coin Nr times, with head corresponding to the insertion of
a @, and tail to the deletion of a @. Ending up with n epenthetical vowels
requires exactly Nr+n

2 heads and Nr−n
2 tails, supposing that Nr and n have

the same parity. Consequently, πN (n) can be approximated with a binomial
distribution:17

17Observe that in each prefix of the insertion-deletion (head-tail) sequence, the number
of deletions must not exceed the number of insertions, as we launch our algorithm from a
candidate with no epenthetical vowel. Yet, we can overcome this problem by employing a
trick. Observe that when the number of epenthetical vowels is zero, we still may flip our coin,
but both head and tail should correspond to insertion, with deletion having zero probability.
So, if flipping the coin returns then tail, we reverse the roles of heads and tails: from now on
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πN (n) =





0 if n 6≡ Nr (mod 2)(
Nr
Nr/2

)
· 0.5Nr else if n = 0

2
(

Nr
(Nr+n)/2

)
· 0.5Nr else

(6.11)

Using the basic properties of the binomial coefficients, one can quickly check
that

∑
n πN (n) = 1. What we shall need is actually the sum of πN (n) over a

large range of its argument n in function of N (i.e., of Nr), so we can render our
life simpler by “smoothing” πN (n) (dividing the probabilities among πN (2k)
and πN (2k ± 1)):

πN (n) =

{(
Nr

(Nr+n)/2

)
· 0.5Nr if n ≡ Nr (mod 2)(

Nr
(Nr+n+1)/2

)
· 0.5Nr if n 6≡ Nr (mod 2)

≈ 1√
2π

2√
Nr

e−
n2

2Nr (6.12)

Here, we have employed the well-known fact that a binomial distribution
(p = q = 0.5 in our case) can be approximated with a normal distribution,
namely18

(
n

k

)
pkqn−k ≈ 1√

npq
ϕ
(k − np√

npq

)
(6.13)

for large n, where ϕ(x) is the standard normal distribution:

ϕ(x) =
1√
2π
e−

x2

2 (6.14)

Equation (6.12) makes clear that πN (n), the position of the random walker
by the end of the first phase of the simulation, follows approximately the positive
part of a Gaussian distribution, centred around the origin, with a standard
deviation19

head will correspond to deletion and tail to insertion. Therefore, each of the 2Nr different
head-tail series can be made a legitimate one, and each of them has an equal probability.

This more complicated interpretation of heads and tails can be visualised if head is still seen
as always moving one unit to the positive direction of the scale, and tail as moving one to the
negative one; but we allow moving to both directions of the origin, with both positions +n
and −n corresponding to n insertions in the candidate string. Indeed, once the coin returns
tail when no deletion is possible, we move from 0 to −1 on the scale, which corresponds to
an insertion (−1 also meaning one insertion) together with the reversion of the roles of heads
and tails from the viewpoint of the number of epenthetical vowels (e.g. a second tail would
bring to −2, i.e. to a second insertion).

As arriving at both −n and +n corresponds to n insertions, πN (n) has to be multiplied by
2 if n 6= 0, as compared to the standard binomial distribution. In short, the two halves of the
scale are folded around the origin.

Note finally that this train of thought would work correctly only if the a priori probabilities
corresponding to the elements of the central valley had been defined in a slightly different way.
Namely, by assigning a 50% chance to insertion, and 25% chance to changing the [voice] feature
of one of the stops, similarly to the a priori probabilities of the other candidates. Now that
each of the three neighbours has an equal probability of 1/3, the following formula is but an
approximation.

18See e.g. http://mathworld.wolfram.com/NormalDistribution.html.
19It would have sufficed to refer to the fact that in a Brownian motion the expected value

of the squared displacement is proportional to the number of steps performed. Let us take a
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σ =
√
Nr =

√
(k + 0.5) · τ

2
(6.15)

Estimating n0

In what follows, we estimate the distance n0 beyond which channelling is expec-
ted to take place. If the random walker has reached this distance by the end of
the first phase, then it will most probably end up in candidate [bd]; otherwise, it
has an equal chance to return us [pt] or [bd]. Thus, once n0 has been estimated,
we predict candidate [pt] to be returned with probability

P([pt]) =
1

2

n0∑

i=0

πN (i) ≈
∫ n0

0

1√
Nr2π

e−
t2

2Nr dt (6.16)

Let us repeat here tableau (6.6):

/pd/ Dep Assim[Voice] StAss=Rgr[Vc] Faith[Voice]

+ [bd] *
∼ [pt] *! *

[pd] *! *
[bt] *! * **
[b@d] *! *
[p@t] *! * *
[p@d] *! *
[b@t] *! * **
... ... ... ... ...
[b@nd] *n! *
[p@nt] *n! * *
[p@nd] *n! *
[b@nt] *n! * **
... ... ... ... ...

(6.17)
Imagine that temperature is just crossing the domain of Assimilate[Voice],

and the random walker is located somewhere in the epenthetical hills. Say,
at [C1@nC2]. The four neighbours ([C′1@nC2], [C1@nC′2], [C1@n+1C2] and
[C1@n−1C2]) are chosen with equal probability. The centrifugal move (insert-
ing an extra @) is prohibited for T � Dep, whereas choosing the centripetal
step (deleting one @, which is always possible) results in bringing you towards
the central basin with transition probability 1. The two other neighbours are
chosen a priori with 0.5 chance, and moving in this tangential direction is still
fully free. Since temperature is high, channelling does not occur. A race with
time starts: the centripetal steps performed in the approximately 1/4 of the

one-dimensional random walk (Brownian motion) starting from x0 = 0, with p and q being
the probabilities of stepping one unit to the right (xi+1 = xi+1) and to the left (xi+1 = xi−1)
respectively. The expected value of the location of the walker after N steps is xN = N(p− q),
whereas the dispersion is (xN − xN )2 = 4Npq. See for instance Hubbey (1999, p. 229) and
references therein, or http://scienceworld.wolfram.com/physics/BrownianMotion.html and
references there. A very creative derivation is found in Reif (1965, pp. 13-16). In our case,
p = q = 0.5.
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iterations should not bring you back to the central basin until temperature has
reached constraint StopAssimilation=Regressive so that channelling can
be effective.

As an approximation, let us say that there are 2τ iterations—while tem-
perature drops from the middle of the domain of Dep to the middle of the
domain of StAss=Rgr[Vc]—during which centrifugal moves are prohibited,
but tangential and centripetal moves are free. On average, a quarter of these
time steps are used to bring us closer to the central basin. This is why the
random walker has to reach a distance larger than n1 = τ/2 by the end of the
first phase, if it should not be probable for the random walker to reach the
central basin until channelling is effective (until temperature reaches constraint
StAss=Rgr[Vc]).

Once the [b@nd] channel becomes visible, a few more steps are still needed for
the random walker to reach it, and not the central basin. The expected number
of tangential steps for the random walker to reach the channel is κ = 2.5, which
is slightly altered whenever constraint Faith[Voice] becomes also active.20

While the system performs κ tangential steps, it also tries—on average— κ
2

centrifugal steps (in vain), and performs κ
2 centripetal steps. In other words, if

the random walker has been not farther than n2 = κ
2 from the central valley,

there is a chance of reaching the central valley at a random point (that is,
yielding outputs [bd] and [pt] with equal chance), and not through channelling.
If, however, the random walker has been farther away, the random walker will
have reached the [b@nd] channel, before entering the central valley in [bd] due
to the channelling effect.

In sum, at the end of the first phase the random walker has to reach at least
a distance of

n0 = n1 + n2 =
τ

2
+
κ

2
+ 1 (6.19)

for the channelling effect to take place significantly (remember τ = 3
Tstep

and κ =

2.5). Even after having deleted n1 epenthetical vowels while T ≈ Assim[Voice],
and having lost subsequently n2 epenthetical vowels while trying to reach the
already visible channel, there must be at least one @ left.

20Suppose that temperature is such that constraint StAss=Rgr[Vc] already prohibits leav-
ing [b@nd] (the channel acts as a trap), but constraint Faith[Voice] is not yet active to block
some of the other tangential moves.

Let us focus now on the tangential component of the moves, by projecting the search space
onto a circle of four candidates, [bd], [pd], [pt] and [bt] (or [b@nd], [p@nd], [p@nt] and [b@nt]).
Supposing that the random walk in this small space is free, but [bd] is a trap, how many steps
are required on average for the walker to get stuck in [bd]?

Let kw be the expected number of tangential steps that is required to reach [bd] from
candidate w. From [b@nt] we either move to [b@nd] (1 step required to reach the channel;
with probability 0.5), or we move to [p@nt] (1+k[pt] steps required to reach the channel; with
probability 0.5). Similarly for the other candidates, which yields the following equations:

k[bd] = 0
k[bt] = 0.5 · 1 + 0.5 · (1 + k[pt])
k[pd] = 0.5 · 1 + 0.5 · (1 + k[pt])
k[pt] = 0.5 · (1 + k[pd]) + 0.5 · (1 + k[bt]) (6.18)

By solving these equations, we obtain k[bd] = 0, k[bt] = 3, k[pd] = 3 and k[pt] = 4. This is
why κ = 0.25k[bd] + 0.25k[bt] + 0.25k[pt] + 0.25k[pd] = 2.5.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n0 n

πN (n)

Figure 6.7: Distribution πN (n) of the random walker’s position at the end
of the first phase. The standard deviation of a distribution is

√
Nr. Here, the

dotted distribution corresponds to a larger number of radial steps Nr (to a larger
N) than the solid one. For a given n0, the chance of the random walker getting
to a distance of at least n0 increases as Nr grows larger.

If the random walker has reached this distance by the end of the first phase,
the output will be most probably [bd]. If the random walker has not reached
this distance by the end of the first phase, both [bd] and [pt] have equal chance
to be returned. In brief, equation (6.19) defines the n0 to be used in equation
(6.16), which we repeat here:

P([pt]) =
1

2

n0∑

i=0

πN (i) ≈
∫ n0

0

1√
Nr2π

e−
t2

2Nr dt (6.20)

Understanding the role of the parameters

Figure 6.7 helps us summarising what we have so far. We are interested in the
impact of two parameters, namely Kmax (or k, see equation (6.8)) and Tstep

(or τ , see equation (6.7)), on the output frequencies estimated by equation
(6.20). This estimation includes two derived parameters, Nr and n0. According
to equation (6.10), Nr depends on both Kmax and Tstep; whereas n0 depends
exclusively on Tstep by equation (6.19).

Thus, let us first fix Tstep (hence, n0), and consider the influence of Kmax

on the outputs. As Fig. 6.7 illustrates, a larger Kmax (a larger k, a larger Nr)
increases the chance of the random walker finishing up beyond the fixed n0 (the
curve has a thicker tail), thereby decreasing the probability of returning [pt] by
equation (6.20). Experiments performed will support this prediction in the next
subsection.

What happens if Kmax is fixed and Tstep varies? Our experience in earlier
chapters has been that a larger Tstep increases the probability of returning the
suboptimal alternating form, [pt] in the present case. Will the same happen
now, as well?

Let us transform equation (6.20) into the integral of the standard normal
distribution by employing a replacement u = t/

√
Nr:
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P([pt]) ≈
∫ n0

0

1√
Nr2π

e−
t2

2Nr dt =

∫ n0/
√
Nr

0

1√
2π
e−

u2

2 du = Φ
( n0√

Nr

)
(6.21)

It becomes clear that the frequency of [bd] increases, that is, the frequency
of [pt] decreases, if the argument of Φ—the integral of the standard normal
distribution, a monotone increasing function—decreases; that is, if n0 decreases
and Nr increases. Increasing Kmax and keeping Tstep fixed is increasing Nr with
n0 kept unchanged. The influence of varying Tstep (with Kmax being constant),
on the other hand, depends on the influence of Tstep on the argument G of Φ:

G :=
n0√
Nr

=

√
τ

2(k + 0.5)
+

√
(κ+ 2)2

2τ(k + 0.5)
(6.22)

For small τ values, the second addend dominates, whereas for large τ , the
first one does. As we increase τ (decrease Tstep), the value ofG will first decrease,
and then, as the first addend turns dominant, G grows larger again. Decreas-
ing G corresponds to decreasing the frequency of [pt] by equation (6.21), and
increasing G brings the frequency of [pt] closer to 0.5.

By employing the fact that the geometrical mean is always less or equal to
the arithmetic mean, we obtain (κ = 2.5):21

G ≥
√

2
κ+ 2

k + 0.5
=

3√
k + 0.5

(6.23)

and G is minimal iff τ = κ+ 2 = 4.5. That is, iff Tstep ≈ 3
κ+2 = 2

3 .
Notice, however, that by its definition, τ must be an integer (the number

of steps in a domain), so in the case of our standard Tmax and Tmin values,
we expect the turning point to be around 1 > Tstep ≥ 0.75 (corresponding to
τ = 4). It will turn out that on the other side of the turning point—for Tstep

values corresponding to τ = 5 (0.75 > Tstep ≥ 0.6)—G grows faster, so these
parameters will produce more [pt] outputs than parameters corresponding to
τ = 4.

Another prediction is that for Tstep � 1, when the second addend in (6.22)
becomes negligible, different parameter settings will produce the same frequen-
cies if τ

k+0.5 (that is, if Tstep · (k + 0.5)) is kept constant.
After such a long mathematical discussion, let us probe the pudding now!

6.5.5 Experiments

The results of a few experiments are summarised in Tables 6.1 and 6.2, as well
as in Fig. 6.8. In each of the cases, one of the two parameters Kmax and Tstep is
kept constant, while the other varies. For each parameter setting, an experiment
consisted of running 100 000 simulations, that is launching the simulation 25 000
times from each of the four central candidates, and of calculating the frequencies
of the outputs. By repeating this experiment two more times, we could also
determine the mean and the σ(n− 1) error of the measured frequency. Finally,
these tables also show the estimated frequencies based on equation (6.21).

21a+ b ≥ 2
√
ab. Furthermore, a+ b = 2

√
ab if and only if a = b. For our purpose, take the

two addends in (6.22) as a and b. This trick saves us calculating ∂G
∂τ

.
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Figure 6.8: Frequency of [pt] when varying either Kmax or Tstep. The
parameter varied is represented on a logarithmic scale. Left box: Kmax

changes, while Tstep = 0.05 (solid line) or Tstep = 0.5 (dotted line). Com-
pare it to Table 6.1. Right box: Tstep changes, while Kmax = 10 (solid line) or
Kmax = 100 (dotted line). The frequencies are the same as those in Table 6.2.

The frequencies represented on the left panel of Figure 6.8, that is, in Table
6.1, confirm our prediction that the frequency of [pt] decreases as Kmax (or k)
grows larger, both for Tstep = 0.5 and for Tstep = 0.05. The curve corresponding
to Tstep = 0.05 runs higher than the one corresponding to Tstep = 0.5. Not
surprisingly, since the right panel of Figure 6.8 (that is, Table 6.2) demonstrates
that the frequency of [pt] grows as Tstep diminishes, supposing that Tstep < 0.8.
The turning point predicted by equation (6.23) can also be observed around
Tstep ≈ 1, but we return to this point soon.

Subsequently, Fig. 6.9 presents the two dimensional phase space, that is, the
behaviour of the system in function of both parameters. The radii of the circles
are proportional to the difference of the frequencies of the two outputs. That
is to say, the dots in the lower left corner correspond to the system returning
[bd] and [pt] with (practically speaking) the same probability, whereas the large
circles in the upper right corner visualise how [bd] becomes dominant. The
largest circle is at k = 27 and Tstep = 0.8, where the probability of [bd] reaches
79%.

One can also observe in Fig. 6.9 that circles of the same size are located,
roughly speaking, on a diagonal straight line. As the figure uses logarithmic
scales on both axes, such a diagonal straight line corresponds to a hyperbola
on linear scales, and confirms our earlier prediction that for small Tstep values
keeping Tstep · (k + 0.5) constant yields similar output frequencies.

In order to verify this observation in a more precise way, Table 6.3 presents a
few parameter combinations that have been proven to yield [pt] with a chance of
0.25—that is, when channelling is effective in exactly half of the runs. This case
corresponds to G ≈ 0.67 by equation (6.21). If Tstep � 1, the second addend in
equation (6.22) becomes negligible:
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Kmax− 3 [pt] (Tstep = 0.05) Pred. [pt] (Tstep = 0.5) Pred.

1 0.5001 ± 0.0014 0.5000 0.4641 ± 0.0031 0.4933
2 0.4996 ± 0.0018 0.4999 0.4389 ± 0.0013 0.4724
3 0.4976 ± 0.0013 0.4992 0.4149 ± 0.0016 0.4474
4 0.4950 ± 0.0030 0.4972 0.3963 ± 0.0019 0.4235
5 0.4938 ± 0.0004 0.4940 0.3776 ± 0.0003 0.4019
6 0.4889 ± 0.0022 0.4895 0.3621 ± 0.0020 0.3828
7 0.4858 ± 0.0003 0.4842 0.3478 ± 0.0015 0.3658
8 0.4782 ± 0.0024 0.4783 0.3348 ± 0.0016 0.3508
9 0.4758 ± 0.0008 0.4720 0.3244 ± 0.0030 0.3373
10 0.4697 ± 0.0014 0.4654 0.3128 ± 0.0003 0.3252
12 0.4585 ± 0.0006 0.4521 0.2955 ± 0.0001 0.3044
15 0.4417 ± 0.0010 0.4326 0.2737 ± 0.0004 0.2793
17 0.4314 ± 0.0019 0.4204 0.2605 ± 0.0011 0.2656
20 0.4165 ± 0.0009 0.4033 0.2464 ± 0.0008 0.2484
25 0.3943 ± 0.0011 0.3782 0.2258 ± 0.0022 0.2258
30 0.3737 ± 0.0014 0.3568 0.2084 ± 0.0006 0.2084
35 0.3562 ± 0.0024 0.3385 0.1960 ± 0.0009 0.1945
40 0.3423 ± 0.0021 0.3226 0.1848 ± 0.0019 0.1831
50 0.3152 ± 0.0014 0.2963 0.1671 ± 0.0001 0.1651
60 0.2940 ± 0.0013 0.2755 0.1529 ± 0.0017 0.1516
70 0.2758 ± 0.0013 0.2584 0.1440 ± 0.0003 0.1409
80 0.2621 ± 0.0010 0.2442 0.1349 ± 0.0003 0.1323
100 0.2395 ± 0.0012 0.2215 0.1214 ± 0.0007 0.1188
120 0.2203 ± 0.0006 0.2042 0.1115 ± 0.0012 0.1088
150 0.2003 ± 0.0013 0.1844 0.1000 ± 0.0004 0.0976
200 0.1742 ± 0.0012 0.1612 0.0867 ± 0.0003 0.0848
250 0.1583 ± 0.0001 0.1451 0.0778 ± 0.0001 0.0759
300 0.1458 ± 0.0011 0.1329 0.0718 ± 0.0006 0.0694
500 0.1132 ± 0.0004 0.1038 0.0542 ± 0.0001 0.0539
700 0.0960 ± 0.0010 0.0880 0.0468 ± 0.0004 0.0456
1000 0.0809 ± 0.0008 0.0738 0.0395 ± 0.0005 0.0382
1500 0.0660 ± 0.0006 0.0604 0.0324 ± 0.0001 0.0312
2000 0.0577 ± 0.0004 0.0524 0.0279 ± 0.0005 0.0270

Table 6.1: Frequency of [pt] as a function of Kmax, while Tstep = 0.05
(second column) and Tstep = 0.5 (fourth column). Each frequency has been
calculated by running 100 000 simulations trice. Error is σ(n− 1). The figures
in the first column are k = Kmax − 3, that is, the number of strata above the
highest ranked constraint. The third and the fifth columns show the estimations
based on equation (6.21): the correspondence with the results of the experiments
is often very good.
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Tstep [pt] Kmax = 10 Pred. [pt] Kmax = 100 Pred.

3 0.3549 ± 0.0025 0.4222 0.1466 ± 0.0007 0.1532
2 0.3377 ± 0.0023 0.3970 0.1262 ± 0.0009 0.1371
1.5 0.3363 ± 0.0018 0.3823 0.1269 ± 0.0005 0.1290
1 0.3356 ± 0.0013 0.3682 0.1212 ± 0.0008 0.1218
0.8 0.3372 ± 0.0022 0.3643 0.1207 ± 0.0006 0.1198
0.5 0.3476 ± 0.0008 0.3658 0.1222 ± 0.0015 0.1206
0.3 0.3735 ± 0.0023 0.3818 0.1334 ± 0.0012 0.1287
0.2 0.4000 ± 0.0009 0.4032 0.1489 ± 0.0020 0.1408
0.15 0.4208 ± 0.0011 0.4214 0.1608 ± 0.0018 0.1526
0.1 0.4495 ± 0.0018 0.4481 0.1870 ± 0.0013 0.1740
0.08 0.4632 ± 0.0005 0.4617 0.2043 ± 0.0010 0.1883
0.05 0.4842 ± 0.0023 0.4842 0.2415 ± 0.0012 0.2245
0.03 0.4951 ± 0.0008 0.4965 0.2934 ± 0.0010 0.2729
0.02 0.5011 ± 0.0007 0.4994 0.3390 ± 0.0018 0.3168
0.015 0.5001 ± 0.0008 0.4999 0.3716 ± 0.0014 0.3498
0.01 0.5000 ± 0.0008 0.5000 0.4152 ± 0.0015 0.3960

Table 6.2: Frequency of [pt] as a function of Tstep ([pt] ±σ(n − 1)), while
Kmax = 10 and Kmax = 100. Each frequency has been calculated by running
100 000 simulations trice. The third and the fifth columns show the estimations
based on equation (6.21), not rarely matching the observed frequencies.
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Figure 6.9: The phase space: the behaviour of the system in the function of
the two parameters k (Kmax minus the rank of the highest ranked constraint)
and Tstep, on a log-log scale. The radius of each circle is proportional to the
difference of the probability of the two forms. Small dots represent (almost)
50%-50% distribution, whereas large circles correspond to [bd] dominating.
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Tstep Kmax = k + 3 Frequency [pt] Tstep · (k + 0.5)
Tstep(k+0.5)
(1+1.5Tstep)2

0.0105 400 0.24996 ± 0.00379 4.17 4.05
0.0210 200 0.2493 ± 0.00725 4.15 3.89
0.0270 160 0.2501 ± 0.0029 4.25 3.93
0.045 100 0.2505 ± 0.0044 4.39 3.85
0.060 80 0.2495 ± 0.0029 4.65 3.91
0.105 50 0.2490 ± 0.0057 4.99 3.72
0.145 40 0.2506 ± 0.0043 5.44 3.67
0.220 32 0.2503 ± 0.0040 6.49 3.67
0.425 24 0.2503 ± 0.0038 9.14 3.408

Table 6.3: Parameter settings producing [pt] with 25% chance:
(Tstep,Kmax) combinations that return candidate [pt] in 25% of the cases. We
have noted that Tstep · (k + 0.5) should be approximately constant for such
parameter combinations. This prediction turns out to be correct only in a first
approximation, and further factors (the second addend in equation (6.22) first
of all) become gradually more important as Tstep grows larger.

G =

√
τ

2(k + 0.5)
+

√
(κ+ 2)2

2τ(k + 0.5)
=

=
(

1 +
κ+ 2

τ

)
·
√

τ

2(k + 0.5)
=

= (1 + 1.5Tstep) ·
√

τ

2(k + 0.5)
≈
√

τ

2(k + 0.5)
(6.24)

If G = 0.67 and τ = 3/Tstep, then we predict Tstep(k + 0.5) ≈ 3.34. As
Table 6.3 shows, the larger the value of Tstep, the larger this product, for the
second addend in (6.22) also contributes to G. Indeed, a better approximation

following from equation (6.24) is that
Tstep(k+0.5)
(1+1.5Tstep)2 must be constant.

Finally, let us check the prediction according to which there is a turning
point in the frequencies around Tstep = 0.75 if Kmax is kept constant. Equation
(6.23) gives a lower bound on G. Yet, the corresponding frequencies (that
can be calculated by integrating equation (6.21) until this G value) cannot be
reproduced, because G is predicted to be minimal for τ = κ+ 2 = 4.5, but τ is
an integer. Consequently, we tried to find the minima in the frequencies of [pt]
by varying Tstep, for different Kmax (Table 6.4). Since we required very accurate
values, the number of iterations was very large: each piece of data in Table 6.4
originates from running 500 000 simulations trice in order to estimate also the
error σ(n− 1) of the frequencies.

The experiment confirms our predictions for Kmax ≥ 16: [pt] is produced
the least frequently for τ = 4 (Tstep = 0.8 in our experiment22), and these
frequencies are only slightly larger than the minimal that would correspond to

22Further results not reported here for lack of space show that different Tstep values cor-
responding to the same τ (such as 2 and 1.5, or 1.2 and 1) have not produced significantly
different frequencies. Probably many more runs are required in order to be able to demon-
strate the role of the t values in the inner loop of the algorithm, as we have done in subsections
5.5.2 and 5.5.3.
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Kmax Tstep = 1.5 Tstep = 1.0 Tstep = 0.8 Tstep = 0.6 Tstep = 0.4 Pred.

150 1046 ± 0005 0994 ± 0001 0987 ± 0003 0990 ± 0006 1052 ± 0002 0975

100 1269 ± 0003 1213 ± 0002 1201 ± 0001 1212 ± 0004 1277 ± 0001 1194

70 1503 ± 0003 1439 ± 0002 1425 ± 0001 1433 ± 0006 1518 ± 0004 1425

50 1754 ± 0006 1689 ± 0005 1679 ± 0001 1691 ± 0003 1778 ± 0005 1683

40 1939 ± 0006 1870 ± 0007 1857 ± 0002 1877 ± 0005 1986 ± 0002 1879

35 2058 ± 0004 1984 ± 0008 1981 ± 0007 1997 ± 0010 2110 ± 0005 2006

30 2196 ± 0002 2124 ± 0010 2119 ± 0001 2141 ± 0011 2261 ± 0005 2163

25 2380 ± 0002 2307 ± 0009 2304 ± 0004 2329 ± 0003 2457 ± 0004 2364

22 2506 ± 0003 2444 ± 0004 2436 ± 0004 2466 ± 0004 2604 ± 0008 2515

20 2609 ± 0002 2544 ± 0003 2542 ± 0005 2576 ± 0002 2709 ± 0009 2633

18 2713 ± 0003 2660 ± 0003 2657 ± 0007 2699 ± 0004 2839 ± 0008 2769

16 2849 ± 0012 2786 ± 0003 2794 ± 0004 2824 ± 0008 2984 ± 0003 2929

14 2994 ± 0007 2947 ± 0009 2962 ± 0004 2994 ± 0004 3156 ± 0009 3118

12 3170 ± 0007 3127 ± 0009 3153 ± 0004 3186 ± 0002 3363 ± 0005 3348

10 3378 ± 0004 3353 ± 0003 3374 ± 0005 3423 ± 0004 3602 ± 0002 3633

8 3638 ± 0004 3629 ± 0004 3656 ± 0005 3718 ± 0006 3910 ± 0010 3996

7 3786 ± 0003 3792 ± 0006 3845 ± 0004 3888 ± 0003 4091 ± 0003 4213

6 3967 ± 0001 3979 ± 0002 4039 ± 0009 4097 ± 0008 4288 ± 0005 4456

5 4168 ± 0001 4202 ± 0003 4266 ± 0002 4327 ± 0003 4500 ± 0007 4711

4 4433 ± 0005 4480 ± 0008 4539 ± 0006 4590 ± 0007 4729 ± 0007 4928

Table 6.4: The turning point around τ = κ + 2: the frequency of [pt] for
different parameters, with the initial “0.” truncated due to lack of space. The
turning point (a local minimum in the frequency of [pt]) predicted to be at
Tstep = 0.8 (τ = 4) can be observed for larger k, even though Tstep = 1 (τ =
3) often produces frequencies that are not significantly different. Nonetheless,
further factors become important for lower k values, and the turning point slowly
shifts towards larger Tstep: to Tstep = 1 for 16 ≥ Kmax ≥ 7, and to Tstep ≥ 1.5
for 7 ≥ Kmax ≥ 4. Finally observe that wherever these further factors are
not yet observable, our expectations on the lower bound predicted by equations
(6.21) and (6.23) are met: the values in the fourth column (Tstep = 0.8, τ = 4)
are but slightly larger than those in the last one (corresponding to τ = 4.5).
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τ = 4.5 according to equation (6.21). However, our approximations are not
good enough any more if Kmax ≤ 16. Most probably further factors have to be
taken into considerations, or our approximations must be refined, in order to
explain why the turning point shifts towards larger Tstep, and why the observed
frequencies are much lower than the predicted lower bound.

6.6 What have we learnt from [voice] assimila-
tion?

The starting problem of the present chapter was Dutch voice assimilation in lin-
guistic forms such as op die and zakdoek. The first model presented included four
candidates with a topology of the form that we called a “magic square”. Sim-
ilarly to some tableaux in the three-candidate search space of subsection 2.3.2,
this magic square, together with the hierarchy we employed, demonstrates that
SA-OT does not necessarily converge towards maximal precision as the number
of iterations increases. The proposed version of simulated annealing for OT
cannot avoid getting caught in a local optimum with a constant probability—
independently of the cooling schedule.

As argued above, however, this phenomenon may help accounting for certain
irregularities. Instead of making the model more complicated in order to include
them, the model of the static mental representation (competence) can be kept
simple, and irregularities are quarantined in the dynamic computational process.
For instance, the model of Dutch phonology will include only regressive voice
assimilation, that is, the only global optimum is o[bd]ie. Nevertheless, the local
optimum o[pt]ie is also returned by the dynamic computational process as an
irregular form. As the o[bd]ie vs. o[pt]ie alternation is most probably not a
fast speech phenomenon, there is no need to tune the frequencies through the
cooling schedule, as we have done in Chapter 5: the frequencies have to be the
same under different speech conditions (for different speech rates).23

From a methodological point of view, the difference between this variation
and fast speech was that the observation that the frequency of the andante
form diminishes at higher speech rate makes possible to point immediately to
the allegro form as performance error. Whereas in the present case, only the
theoretical model will decide which is the form that can be easily described
(for instance, by having it globally optimal in OT), and which form has to be
exiled to the dynamic computational process. Such an approach may prove
to be advantageous even for language acquisition: a learning algorithm robust
enough to deal with the inevitable noise will learn the simpler grammar faster,
in which case the “performance effects” are realised for free.

But the situation is not so simple. The 50-50% distribution might turn to
be incorrect empirically for op die; and is certainly false for other words such
as zakdoek where only regressive assimilation may occur. We have, therefore,
introduced a second model that involved an infinite search space.

However, the parameters influenced this model in a surprising way. Unlike
earlier, decreasing Tstep decreased the chance of returning the grammatical form
o[bd]ie, while Kmax also played an important role. And yet, this divergent be-

23According to Paul Boersma, the voiceless variant might be more common in fast speech,
which situation could be modelled using Tstep values larger than the turning point.
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haviour can be nicely interpreted. Fast speech phenomena were analysed using
the parameter Tstep in the previous chapter, whereas the present phenomenon
is different, and is consequently analysed employing another parameter, namely
Kmax. If the o[bd]ie ∼ o[pt]ie variation is dialect dependent, speaker depend-
ent or register dependent, then this variation should be driven by a parameter
different from the one driving speech-rate dependent variations.

Furthermore, this observation also helps in explaining the difference between
op die as opposed to zakdoek. An important point about Simulated Annealing
Optimality Theory is that it is not only able to account for the presence and the
absence of variation by tuning its parameters, but that the parameters can also
be interpreted. Namely, parameter settings yielding variation often correspond
to a faster production process than parameter settings yielding almost exclus-
ively a given form. Now, production speed may not depend only on speech rate,
but also on word frequency: frequent words, such as the unstressed function
words in op die, are probably more quickly processed than relatively less fre-
quent nouns. That is, processing zakdoek involves a much greater Kmax, which
causes the computation to take longer even for the same speech rate, and con-
sequently the frequency of the regressive assimilation form to converge to 1.
(Note, however, that our argument will be different for the Hungarian definite
article, which is a phenomenon related to speech rate: there, we employ the
fact that a larger Kmax requires a longer computational time, and thus may be
viewed as also corresponding to a slower speech rate.)

The second model also shows the usefulness of an infinite candidate set.
Candidates that can never win are not only necessary for the mathematical
consistency and beauty of the model, but they may also influence the search
algorithm. In traditional OT, loser candidates (candidates winning for no con-
straint ranking) could be already excluded from GEN, but in SA-OT they play
a role behind the scenes. Even if they are never returned as outputs, the system
may rove through them, and it is exactly because the search space is infinite
that the output frequencies can be tuned by varying Kmax.

The analysis of this second model for voice assimilation with an infinite
search space reveals an additional peculiarity. Let us alter slightly the definition
of the constraints so that [pt] is the global optimum:

/pd/ Dep Assim[Voice] C3 Faith[Voice]

∼ [bd] *! *
+ [pt] *

[pd] *! *
[bt] *! * **
[b@d] *! *
[p@t] *! * *
[p@d] *! *
[b@t] *! * **
... ... ... ... ...
[b@nd] *n! *
[p@nt] *n! * *
[p@nd] *n! *
[b@nt] *n! * **
... ... ... ... ...

(6.25)
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This model is expected to display the same behaviour as the original one.
At small Kmax values, both local optima, [pt] and [bd], have 50% chance to be
returned; but channelling through the [b@nd] river becomes significant as Kmax

increases, making [bd] more probable. Consequently, we have a model in which
the global optimum, now [pt], can never be returned in more than half of the
cases, and its frequency can even converge to zero.



Chapter 7

Word Structure and
Syllable Structure with
SA-OT

This chapter enlarges further the scope of techniques that the Simulated An-
nealing Optimality Theory Algorithm offers us. Two phenomena are dealt with,
both related to syllabification and syllable structure. First, the results of Judit
Gervain’s psycholinguistic experiments on the cliticisation of the definite article
in Hungarian are modelled, and then Prince and Smolensky (1993)’s well-known
basic syllable structure theory is implemented using SA-OT.

The topologies of the candidate sets in both models are similar to that
presented in section 6.5. Recall the infinite search space used there (Fig. 6.3
on page 169), and the fact that we distinguished between radial and tangential
moves. In fact, the search space had a centre, an origin in which candidates
had no epenthetic segments. Centrifugal moves involved applying epenthesis
recursively, centripetal moves undid epenthesis, whereas tangential moves cor-
responded to other operations on the candidate string, which did not change
the number of epenthetic elements, that is, the “distance” from the origin. As
a typical candidate had four neighbours, and each of them was assigned the
same a priori probability, therefore performing a tangential step had an a pri-
ori probability of 50%, whereas centripetal and centrifugal steps had 25% each
(with the remark at the end of footnote 17 on page 181).

In the case of both phenomena to be introduced, we shall start with a similar
topology, but then make them more complex. Some of the conclusions to be
drawn can also be applied to the description of phenomena discussed earlier.

7.1 Th’ article in Hungarian

7.1.1 The behaviour of the definite article

Let us now review a model accounting for the behaviour of the definite article
in Hungarian, which is similar to the model we have just discussed (section 6.5),

195
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but which displays further features of SA-OT.1 The definite article has two
allomorphs, and the choice between them depends on whether the next word
begins with a consonant or with a vowel. For instance:

az alma ‘the apple’,
a szalma ‘the straw’.

(7.1)

The pause between the az allomorph of the article and the subsequent word
is prone to omission, resulting in the cliticising of the article. The hypothesis
has been that cliticising is more frequent with an acceleration of the speech rate
(Kiefer, 1994). In order to support the hypothesis, Judit Gervain has performed
a series of controlled psycholinguistic experiment measuring the frequency of
the phenomenon (so far unpublished, reported by B́ıró and Gervain, 2006). Her
experiments confirmed this hypothesis by measuring the presence and the overall
length of pauses in critical minimal pairs (e.g. az ár ‘the price’ as opposed to
a zár ‘the lock’) excised from test sentences pronounced by four female native
speakers in three conditions.

She reports that for the a allomorph, cliticisation is the default, irrespective
of speed. However, az cliticises (i.e., the length of pause is less than 3 msec)
only in 1 case out of 12 (8.3%) at a slow speaking rate. This proportion grows
to 4 cases out of 12 (33.3%) at a medium rate, and to 8 cases out of 12 (66.7%)
at a fast rate. Furthermore, detailed results show that the length of the pauses
correlates inversely with speed, the average length of the pause being signific-
antly shorter at a medium speech rate than in slow speech. A first explanation
based on the intuition of the native speakers could be that if the a allomorph
cliticises, the syllable boundaries still align with the morpheme boundaries; if,
however, the az allomorph cliticises, the segment [z] is resyllabified into the
onset of the subsequent word, resulting in a violation of the relevant alignment
constraint, which should be avoided at slower speech rate.

7.1.2 Constructing a model

The model to be presented resembles the one employed to account for the magic
square-type phenomena, such as Dutch voice assimilation. This model is also
based on the infinity of the search space, even if its structure is slightly different.
Moreover, we shall tune the frequencies again by having the random walker rove
away from the origin due to large Kmax values.

The candidates to be considered for an input such as az ár will have the
form [azn#mE]: between the [a] segment of the article and the arbitrary initial
vowel E of the subsequent word, segment [z] of length n is followed by a pause of
length m (n, m ≥ 0). Exponents n and m can also be thought of as time units,
for instance given in msec. The initial candidate, from which the simulations
are launched, will always be [az#E], that is n = m = 1, and basic steps alter
the values of n and m. Thus, candidates of the form [a#mznE] (n, m > 0)
are never reached, even though these would come into play if the input were
something like a zebra (‘the zebra’) or a zár (‘the lock’). The pause between the
article and the subsequent word is considered to be omitted if the exponent m

1The present section builds upon B́ıró and Gervain (2006), but presents a more elaborate
model for the same phenomenon.
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of the pause symbol # is less than three, corresponding to Gervain’s definition
of cliticising (measuring a pause shorter than 3 msec).2

A basic step consists of changing both n and m by 1—one may not change
only n orm. This stipulation may sound ad hoc, but the success of the model will
depend on it, and has the advantage of creating a simple topology.3 A general
candidate [azn#mE] has four neighbours only: [azn−1#m−1E], [azn+1#m+1E],
[azn−1#m+1E] and [azn+1#m−1E]. Obviously, if n or m is 0, the candidate has
fewer neighbours. In other words, one may shorten the candidate by 2, one may
lengthen the candidate by 2, and one may change the proportions of [z] and the
pause without changing the overall length.

The resulting topology, presented in Fig. 7.1, has a similar structure to the
topology dealt with in section 6.5 (Fig. 6.3 on page 169). There are radial steps
(shortening the candidate is a centripetal step, while lengthening the candidate
is taking a centrifugal step), as well as tangential steps, perpendicular to the
radial ones, which change the difference of the number of z’s and #’s. If changing
only n without changing m, and changing only m without changing n were
also allowed, then diagonal steps could be also possible. In some sense, radial
moves change the “quantity”, and tangential steps change the “quality” of the
candidate, and combining the two is not possible within one basic step. In the
present case, permitting n or m not to change in a basic step, that is, having
for instance [azn±1#mE] as a neighbour of [azn#mE], might be viewed as a
diagonal move in Fig. 7.1, which would be a combination of both qualitative
and quantitative changes in the candidate. Such diagonal moves would, however,
prevent the candidates that should be returned by the algorithm to become local
optima.

The markedness constraints to be used are very simple:

C1(w) = KeepShort([azn#mE]) = n+m
C0(w) = KeepSegmentShort([azn#mE]) = n (7.2)

Both reflect some principles of economy: KeepShort punishes long strings
in general, whereas KeepSegmentShort disprefers long segments. Import-
antly, “pronouncing” the pause requires negligible energy, so no separate con-
straint KeepPauseShort—whose value on candidate [azn#mE] would be m—
is needed; alternatively, such a constraint should be ranked (universally) lower
for the same rationale. Observe, furthermore, that these constraints follow also

2As correctly remarked by Paul Boersma, the exponents of [z] and of [#] cannot have both
the interpretation of measuring the respective durations in msec, because the outputs are
going to be candidates with n = 1, while the duration of a segment [z] in reality is about 100
milliseconds. Hence, this asymmetry has to be accounted for, either in the definition of the
exponents, or otherwise.

3Readers criticised this stipulation, similarly to the decision in Chapter 5 of not allowing
the insertion and deletion of a bisyllabic foot as a basic step. As proposed there, too, the
general principle might be that the set of basic steps should be minimal in the sense that
leaving out one of them would create a topology in which not all candidates can be reached
from any other candidate. Now, as both n and m should change, the candidates with an odd
n + m value cannot be reached from candidates with an even n+ m value. And yet, I have
the impression (which will not be shared by most readers) that leaving out the “odd half” of
the candidate set does not really influence the general structure, while including further basic
steps breaks the logic of the structure to be explained soon. Changing n only (or m only)
corresponds to the idea of a “diagonal” step that could be decomposed into a radial and a
tangential one. Nonetheless, I am also open to alternative proposals.
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Figure 7.1: Search space for the Hungarian article az.

the logic of the search space: KeepShort is the constraint that bridles re-
cursive insertions of [z#], while KeepSegmentShort influences the tangential
movements. In Fig. 7.1, the first constraint forces the system to stay left, and
the second constraint to stay as close to the bottom as possible.

Each of the four possible basic steps involves a well-defined change in the
violation level of each constraint, so there is no need to re-evaluate the candid-
ates at every iteration of the algorithm. The difference of the violation profiles
follows directly from the basic step chosen by the algorithm. This strong con-
nection between the structure of the candidates, the topology and the (marked-
ness) constraints improves the speed of the algorithm, and is an illustration of
what I refer to as the SA-OT implementation being built organically upon the
underlying traditional OT model.

Our goal is to have the system return candidates [az#2k+1E]: the consonant
of the article is kept always short, while the pause might have different lengths.
The special case k = 0 corresponds to cliticisation, because the pause is so short
that it is unperceivable (our system is unable to return candidate [azE]), whereas
a larger m = 2k+1 corresponds to a (shorter or longer) audible pause. In order
to make these candidates local optima, we still need to disqualify the bottom
left-most candidates ([a#2kE]), which are more harmonic than their neighbours
for the constraints introduced so far. That is a simple task, once we observe
that the candidates to be disqualified miss the [z] segment of the input. The
following constraint will do the work:

C2(w) = Faithfulness([azn#mE]) =

{
1 if n = 0

0 if n ≥ 1
(7.3)

It is only by ranking this latter constraint above both markedness constraints
that candidates [az#2k+1E] become local optima in our topology:

Faithfulness� KeepShort� KeepSegmentShort (7.4)

The expected behaviour of this system is similar to that of the one analysed
in section 6.5. After being launched from candidate [az#E], the random walker
may freely rove in the initial phase of the simulation. The larger the Kmax,
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Figure 7.2: Frequencies of [az#mE] employing different Kmax values, as
a function of m, with a linear (left box) and a logarithmic (right box) frequency
axis. The different graphs correspond to Kmax = 1 (solid line), Kmax = 3 (dot-
ted line), Kmax = 5 (dotdashed line) and Kmax = 7 (dashed line) respectively.
Tstep = 0.1.

the farther it gets. Once temperature reaches the domain of constraint Keep-
Short, insertions are prohibited, and the random walker slowly gravitates back
towards the origin. In this second phase, approximately half of the time steps
are employed to perform “tangential” moves, that is, vertical ones in Fig. 7.1.

As soon as the temperature cools down to the domain of constraint Keep-
SegmentShort, candidates [az#2k+1E] become traps wherein the random
walker may get stuck. The “competition” analysed in the previous section
translates here to a competition between the centripetal moves leading back to
candidate [az#E] and the tangential moves trapping the system to another can-
didate [az#2k+1E]. The difference between the two models is that the [b@+d]
channel was only a trap to the tangential moves and “channelled the water”
towards [bd] in a centripetal direction, whereas now candidates [az#2k+1E] are
local optima, for centripetal steps are also prohibited by the high-ranked con-
straint Faithfulness. The “water channel” is replaced here by a series of
“water reservoirs”. Even without working out the formal analysis that would
be similar to the one presented in the previous section, we expect the chance of
returning candidate [az#2k+1E] (k > 0) to increase as parameter Kmax grows
larger.

Running the simulation under the “usual” conditions results in Fig. 7.2.
Constraints were assigned the indices 2, 1 and 0. The parameters were Tmax = 3,
Tmin = 0, Tstep = 0.1 and Kstep = 1. Furthermore, instead of employing Kmin,
the algorithm was run each time until the random walker had not moved for
30 iterations: in the case of four neighbours, the likelihood of having a more
harmonic neighbour but not finding it in 30 trials is 0.7530 < 0.0002. This
technique corresponds to measuring the “specific heat” in standard simulated
annealing: there, the stopping condition is that the specific heat—the decrease
in the target function divided by the decrease in temperature—drops below a
certain value, that is, not much is expected to be gained if going further. Finally,
the simulation was run 25000 times using each of four different Kmax values,
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and Fig. 7.2 presents the frequency of being returned candidate [az#mE] as a
function of m (only odd m’s appear on the graphs).

The graphs confirm our prediction. While the probability of m ≤ 25 is
around 99.5% if Kmax = 5 and around 95% if Kmax = 10, increasing the length
of the initial phase results in only 84% for Kmax = 20, and 68% for Kmax = 40.
Candidates with a probability above 1% are the candidates [az#mE] with m <
21 for Kmax = 5, m < 29 for Kmax = 10, m < 39 for Kmax = 20, and m < 53
for Kmax = 40. In brief, the larger Kmax, the broader the distribution of the
outputs. As a larger Kmax requires a longer running time, our model correctly
predicts longer pauses at slower speech rates.

7.1.3 Refining the model by changing the topology

This result does not satisfy us, however. These distributions are, namely, centred
around the origin, and the candidate with m = 1 (omission of the pause) has
always the highest chance; whereas experimental results observed a longer gap
in most of the cases for slower speech rates, with the pause being almost never
omitted. Therefore, we need a model that produces a distribution similar to
those in Fig. 7.3: in fast speech, the length of the pauses has a distribution
around zero, but at a slower rate, the distribution is centred around some larger
m. The slower the rate, the further is the distribution shifted to the right. How
can we produce such a distribution?

Observe that so far the random walker has had an equal chance to move to
the centripetal and to the centrifugal direction in the initial phase. Hence, both
in the section on voice assimilation and in the present model, the distribution
of the random walker’s position at the end of the initial phase has been centred
around the origin. It has been true that larger Kmax values increase the chance
of reaching a more remote region of the search space, but the region with the
highest probability has always remained the centre.

It is by introducing a bias into the random walk that one can force the
random walker to leave the central region. As pointed out in footnote 19 on
page 183, the expected position of the random walker in an asymmetric, one-
dimensional Brownian motion is proportional to the difference of the probability
of moving left and moving right. Consequently, if the a priori probability of
lengthening the candidate is increased, and the a priori probability of shortening
the candidate is decreased, a drift is introduced into the system, and the random
walker’s position by the end of the initial phase will be some distribution centred
around a more remote point in the search space. Then, even if lengthening
the candidate becomes impossible after the temperature has reached constraint
KeepShort, and the system starts gravitating backwards, the final distribution
is not necessarily centred around the origin. If the most probable position of
the random walker at the end of the initial phase is far enough, then the chance
is very low for the random walker to get back to the origin, and most probably
it will be stuck in some farther local optimum.

Figure 7.3 has been obtained by introducing a simple change into the a
priori probabilities. Earlier, the exponent of [z] was increased or decreased
by one with a probability of 0.5 each, and the same applied, independently,
to the exponent of [#] (whenever possible). Now, we first toss a coin, and
with a chance of 0.5, we lengthen the candidate (both exponents are increased
by 1), and with a chance of 0.5, we apply the earlier algorithm. Thereby, the
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Figure 7.3: Frequencies of [az#mE] employing different Kmax values, as
a function of m, with the altered a priori probabilities. The frequency axis is
linear on the left box, and logarithmic on the right one. The different graphs
correspond to Kmax = 5 (solid line), Kmax = 10 (dotted line), Kmax = 20
(dotdashed line) and Kmax = 40 (dashed line) respectively. Tstep = 0.1.

earlier a priori probabilities of 0.25 each (in the general case) have been altered:

Pchoice

(
[azn+1#m+1E]

∣∣∣ [azn#mE]
)

= 5/8, whereas the a priori probabilities of

the three other neighbours have been reduced to 1/8 (in the case of n, m > 0).
This technique enables us to have the model fit the empirical observations better.
But it also demonstrates the important role that a further component of the
SA-OT algorithm, namely, the a priori probabilities, play in determining the
output frequencies.

7.1.4 Refining the model by demoting constraints

Judit Gervain’s psycholinguistic experiment has also confirmed the different
behaviour of the a allomorph from that of the az allomorph. So far, our model
accounts for the speech-rate dependent cliticisation of the az allomorph, but are
we also able to include the fact that the a allomorph almost always cliticises
(the case of a zebra ‘the zebra’)? The solution demonstrates a further dimension
of SA-OT models.

Figure 7.4 shows the search space analogous to the previous one (Fig. 7.1),
but for the a+zebra case. As our constraints have been insensible to the order of
the pause and the segment [z] within a candidate, the two models should display
exactly the same behaviour. (The definitions in (7.2) and in (7.3) can be easily
generalised to a candidate of the form [a#mznE].) Which is not what we aim
at, because a certain parameter setting is supposed to be characteristic for a
particular speaker, a particular speech situation or a particular speech rate, so
our goal is to predict significantly different frequencies for the two types (a+zár
‘the lock’, as opposed to az+ár ‘the price’) using the same parameter setting.

It has been already mentioned that in the a+zár case, a support or per-
mission to cliticisation might be that the concatenation creates a sequence in
which the well-formed syllable structure preserves the morphological structure.
In the az+ár case, however, either the syllables are suboptimal (by including a
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Figure 7.4: Search space for the Hungarian article a.

coda and missing an onset), or the resyllabified structure does not align with
the morphological boundaries. Can we introduce this difference into our model?

A simple proposal could be to reinterpret constraint KeepSegmentShort.
Without having to change its definition in (7.2) for our purposes, let us regard it
as the well-known constraint *ComplexCoda in the az+ár case, and constraint
*ComplexOnset if a+zár is the input:4

C0(w) = *ComplexCoda([azn#mzkE]) = n
C−1(w) = *ComplexOnset([azn#mzkE]) = k (7.5)

Both constraints disfavour a higher complexity on the respective edge of a
syllable. These two constraints should be ranked with respect to each other,
thus:

Faithfulness� KeepShort� *ComplexCoda� *ComplexOnset
(7.6)

Arguments for the relative ranking of constraints *ComplexCoda and
*ComplexOnset should be brought traditionally from the syllabification of
words with an internal consonant cluster such as asztronómia ’astronomy’, in
which one can either avoid having a complex onset or a complex coda. The nat-
ive speaker is, however, uncertain about the syllabification of such cases, and is
unavoidably influenced by orthographic rules learned in school. However, a dif-
ferent type of argument will be brought for the ranking of these two constraints
based on our modelling of cases where these two constraints do not even conflict
seemingly.

In short, if constraint Faithfulness is associated with domain 2 and Keep-
Short with domain 1, then *ComplexCoda can be assigned index (domain)

4Prince and Smolensky (2004, p. 108) introduce the constraint *Complex, which prescribes
that “[n]o more than one C or V may associate to any syllable position node”, and they add
in a footnote that “[t]he constraint *Complex is intended as no more that a cover term for
the interacting factors that determine the structure of syllable margins”. Nevertheless, several
variants of constraint *Complex are widespread in contemporary phonological literature, each
of which apply only to a certain domain, especially to codas. For examples, see Wheeler (2005)
or Bye (2005).
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Figure 7.5: The effect of demoting constraint KeepSegmentShort: The
frequency of an output with a pause of length m among 105 outputs is displayed
as a function of m, for Tstep = 0.1 (upper left box), for Tstep = 0.05 (upper right
box), and for Tstep = 0.01 (lower boxes, with linear and logarithmic frequency
axes respectively; notice the change of the horizontal scale, as well). In each
box, constraint KeepSegmentShort is associated either with domain 0 (solid
line, rightmost), or with domain −2 (dotted line), −4 (dotdashed line), −6
(shortdashed line), or −8 (longdashed line, leftmost, only in the lower boxes).
Kmax = 3.

0, while the index of *ComplexOnset should be −1 or even lower (if further
constraints intervene).

In the az+ár case, the vacuously fulfilled, low-ranked *ComplexOnset
does not interfere with our previously presented simulation results. Similarly,
constraint *ComplexCoda is vacuously fulfilled in the a+zár case, but it does
influence the frequencies. Namely, it lengthens the phase during which the
random walker gravitates back to the origin, and candidates [a#2k+1zE] do not
act yet as a trap. This idea corresponds to increasing n1 in (6.19) on page 184:
the random walker has a larger probability of reaching the origin [a#zE], or at
least of getting stuck in a local optimum [a#mzE] with a small m.

The plots in Fig. 7.5 presents experimental results on demoting constraint
KeepSegmentShort to lower domains, while constraint Faithfulness is kept
associated with index (domain) 2, and KeepShort with 1. In each box, the
solid line represents what we have had so far (cf. Figure 7.3, but Kmax = 3),
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that is, constraint KeepSegmentShort is associated with domain 0. This situ-
ation corresponds to the case when KeepSegmentShort is in fact constraint
*ComplexCoda for input [az+E]. As discussed in the previous subsection, the
distribution of the outputs is shifted to the right due to the bias introduced into
the topology. If, however, constraint KeepSegmentShort is demoted and as-
sociated with a lower domain (that is, the lower ranked *ComplexOnset is
acting on input [a+zE]), while no effective constraint is associated with domain
0, then this distribution is shifted back to the left. In the extreme case, if Keep-
SegmentShort is ranked very low, then the normal-like distribution centred
around some m turns into a quickly decreasing distribution. For Tstep = 0.1
and constraint KeepSegmentShort demoted to domain −6, output m = 1 is
returned in 20% of the cases, and m = 3 in another 11%. The same values are
50% and 5.5%, if Tstep = 0.01 and constraint KeepSegmentShort is demoted
to domain −8. Besides, this figure also demonstrates the influence of Tstep on
this model: lower Tstep involves more steps in the initial phase, therefore the
distribution is shifted further to the right, and is broader.

Here, we make crucial use of the way temperature decreases through the
domains of the constraints. The length of the pause in a+zár or in a+zebra
can be tuned (or an observable pause can be practically eliminated) by introdu-
cing further domains between *ComplexCoda and *ComplexOnset—either
by inserting other constraints in between, or by simply associating constraint
*ComplexOnset with a lower index. Hence, the temperature has to cross
empty domains (domains not associated with any constraint or with any relev-
ant constraint) before it reaches *ComplexOnset.

Here, we touch upon the role of parameter Kstep, so far absolutely neg-
lected, since by varying this parameter it is also possible to tune the model.
Without changing the indices of constraints *ComplexCoda and *Complex-
Onset, but by decreasing parameter Kstep, you can also introduce empty do-
mains between these constraints. If, for instance, Kstep = 0.5, then a phase is
added to the simulation during which the first component of the temperature is
−0.5, and which phase does not differ from the case when the first component
of the temperature is −1, but *ComplexOnset is associated with index −2.

Finally, this solution also has a consequence for traditional OT. In a tradi-
tional approach, based on the data presented, one would not be able to rank
constraints *ComplexCoda and *ComplexOnset relative to each other, be-
cause for some inputs *ComplexCoda is vacuously satisfied, whereas in other
cases *ComplexOnset does not influence the computation. In SA-OT, how-
ever, the hierarchy must be such as in (7.6), because this is the hierarchy that
guarantees that allomorph a cliticises much more often than allomorph az. The
reversed ranking would reverse the frequency of cliticisation.

7.1.5 Conclusion

In the present section, a model has been presented to account for the resyl-
labification or cliticisation of the Hungarian article. Similarly to the extended
magic square model advanced in section 6.5, this model also exploits the infin-
ity of the search space, but has an infinite number of local optima. The major
difference is therefore the fact that the local optima, the candidates [az#nE],
are not neighbours of each other, so they do not form a “channel” any more.

Explaining the different behaviour of the two allomorphs was possible by
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employing two different constraints, ranked into different domains. Both con-
straints measured the number (or length) of the segment [z], but temperature
reached that domain later in the [a+zE] case. In other words, an empty do-
main (the domain of a vacuously satisfied constraint) is introduced for [a+zE]
inputs. Consequently, not only does this model demonstrate the proper role of
domains to be traversed by temperature above the highest ranked constraint, it
also shows that empty domains between the constraints can also influence the
model. Moreover, introducing empty domains can be replaced by employing
Kstep ≤ 0.5, too, thus even this parameter of the algorithm might influence the
output.

Finally, if lengthening the candidate is assigned a higher a priori probability
than shortening it, we introduce a bias in the random walk, that is, a drift,
which helps us better reproducing experimental observations. This alternation
of the topology already leads us to discussing the next model, the goal of which
is to see what happens if the a priori probabilities vary in a given interval.

7.2 Syllabification (CVT) theory

In the following section, we implement the basic CV Theory for syllabification
using simulated annealing. There are a few reasons for doing that. Besides
being the most known example of an OT grammar since Prince and Smolensky
(1993), it is also a model that has been implemented using different technologies.
As already mentioned in section 1.2, Tesar and Smolensky (2000, Chapter 8)
employ dynamic programming (chart parsing) for this task, whereas Gerdemann
and van Noord (2000) demonstrate the matching approach to Finite-State OT
exactly on syllabification. Furthermore, it offers us the possibility to discuss
further the role of the topology in SA-OT.

To begin with, the search space generated is infinite due to the possibility of
inserting epenthetic vowels and consonants in a recursive way. Not only that,
but the number of neighbours will grow with the length of the candidate, since
a longer candidate can be altered at more places. The topology will, therefore,
turn more complex than any other topology discussed in my dissertation, even
though its basic structure consisting of radial and tangential moves is the same
as the structure of the topologies discussed so far. Additionally, the constraints
also operate on each substring of a candidate independently, which results in a
high number of local optima and, hence, in a drop in the precision of SA-OT.

By enlarging the set of basic transformations in an ad hoc way, the per-
formance of the model can be improved; nevertheless, further work is required
to create a really elegant model. As it is the case for SA-OT in general, the
precision of SA-OT lags behind the precision of other techniques (dynamic pro-
gramming, finite state OT); but I conjecture that SA-OT will be able to account
for typical performance phenomena, such as the drop (underparsing) of syllable
parts in fast speech (partij ’political party’ becoming p’tij in Dutch, azt hiszem
’I think’ shortening to asszem in Hungarian, as well as numerous examples from
other languages). Indeed, a major claim of my thesis is that human performance
lags also behind the precision of dynamic programming and finite state OT.
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7.2.1 Basic CV Theory

First, we repeat Prince and Smolensky (1993)’s syllable theory, which follows
Jakobson’s typology.

The input is a string of segments, such as abab. What GEN does is to parse
its segments into a syllable structure. A candidate is a series of syllables, each
syllable containing a nucleus, preceded by an optional onset, and followed by
an optional coda. Additionally, the string may contain underparsed (deleted)
segments, which we shall return to soon. For the sake of simplicity, we assume
that the phonemes of the language can be divided into two distinct sets, vowels
may appear only as nuclei, and consonants only as onsets or codas.5

Hence, an underlying vowel can be either underparsed or parsed as a nuc-
leus, and an underlying consonant can be either underparsed or parsed as an
onset or as a coda. Additionally, overparsing may insert onsets, nuclei and
codas that do not contain underlying segments, but epenthetic (default) ma-
terial, such as a schwa or a [t]. Ignoring the underparsed segments, which are
not pronounced, the result must be a well-formed word, that is, a sequence of
well-formed syllables (exactly one nucleus, preceded optionally by an onset and
followed optionally by a coda). The candidate set corresponding to an input is
the set of all possible candidates whose underlying (i.e., not epenthetic) material
forms that input, by also keeping the linear order of the segments.6

For the sake of convenience, we do not allow complex (branching) onsets and
codas, that is, a syllable may contain at most one consonant as onset, and at
most one consonant as coda. This constraint applies only to certain languages,
but now our only aim is to keep the model as simple as possible.

Following the notation of Gerdemann and van Noord (2000), let N[a] denote
an underlying element (the phoneme /a/ in this case) parsed as a nucleus;
moreover, O[b] and D[b] refer to the consonant /b/ parsed as onset and coda
respectively. By X[a] or X[b] we represent the underparsing (deletion) of some
underlying material, whereas N[ ], O[ ] and D[ ] shows the insertion of the
default epenthetical vowel or consonant in the position of nucleus, onset or
coda. Not surprisingly, X[ ] is avoided: deleting a previously inserted element
is realised by simply removing it from the string.

For example, if the underlying representation is ba, possible candidates
include O[b]N[ ]O[ ]N[a], O[ ]N[ ]D[b]N[a], and X[b]N[a]N[ ]. However,
O[b]O[ ]N[a] or O[b]D[ ]N[a] are not valid candidates, since the first one
includes a branching onset, while the first syllable of the second one lacks a
nucleus. The otherwise well-formed candidates N[a]D[b], O[b]N[a]D[b] or
O[d]N[e] are not element of the candidate set either, for they correspond to
different inputs.

Following Prince and Smolensky (1993), and most work in their footsteps,
we use the following five constraints:

• Onset (ons): the number of nuclei in the candidate that are not preceded
immediately by an onset.7

5Syllabic consonants are therefore seen as vowels. What we ignore is the possibility of
changing the syllabicity of a segment, such as turning a vowel into a glide or a plain consonant
into a syllabic consonant. In that respect, we follow in the footsteps of the earlier work referred
to, as our first goal is to illustrate SA-OT, and not to account exhaustively for specific linguistic
phenomena.

6Consequently, this model does not allow metathesis and reduplication.
7Immediate precedence is understood in the surface form. That is, underparsed segments
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• NoCoda (noc): the number of codas (Ds) in the candidate.

• Parse (prs): the number of underlying segments that is underparsed in
the candidate (the number of Xs).

• FillOnset (fio): the number of onsets in the candidate that are not
parses of an underlying segment (the number of O[ ]s).

• FillNucleus (fin): the number of nuclei in the candidate that are not
parses of an underlying segment (the number of N[ ]s).

Motivated by Jakobson’s typology, and found in Prince and Smolensky
(2004, p. 106), constraint Onset requires each syllable to have an onset, and
constraint NoCoda prefers each syllable not to have a coda. Unlike these
markedness constraints, the last three are faithfulness constraints : they punish
any difference between the input and the output.

7.2.2 Syllabification with simulated annealing I.

From the building blocks of the SA-OT Algorithm, we have introduced the
constraints, so let us now concentrate on the definition of the topology. Through
what basic step shall we construct a neighbour from the actual candidate, the
present position of the random walker? Unlike so far, instead of defining formally
the set of neighbours Neighb(w) and the a priori probability distribution on it,
now we rather advance a procedure that constructs some neighbour w′ which
the present candidate w will be compared to.

The proposed algorithm first checks if there is any intervocalic consonant
that can be reparsed (turn an onset into a coda or a coda into an onset). If
there is at least one, the algorithm generates a random number r between 0 and
1 with an equal distribution, and if r < Preparse, the basic step to be performed
is reparsing. In this case, one of the possible loci for reparsing is chosen with
equal probability, where subsequently reparsing takes place.

If no such locus exists, or if r ≥ Preparse, then the word is lengthened or
shortened. The next decision to be made is whether to lengthen or to shorten
the candidate. If shortening is not possible (the random walker is located in
the centre of the search space), then lengthening takes place. Otherwise, each
has a chance (Pcentrifugal and Pcentripetal) of 50%, because if shortening would
be preferred over lengthening, then the random walker would stay around the
origin (the candidate with no epenthetical position and all underlying segments
underparsed). Increasing the probability Pcentrifugal of lengthening might be
an option for future research, analogous to the model producing Fig. 7.3 (on
page 201, in subsection 7.1.3), but does not seem to be very promising: here—
unlike there—falling into distant local optima is not attested in speech. In
fact, the 50%-chance-each model parallels the earlier model described in section
7.1, as well as the model in section 6.5: moving away from the centre has
the same a priori probability as moving backwards (Pcentrifugal = Pcentripetal).
This stipulation allows us to concentrate on further parameters of the topology,
whereas the role of parameter Pcentrifugal has already been analysed in subsection
7.1.3.

intervening between an onset and a nucleus do not cause the candidate to violate this con-
straint.
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Subsequently, once it has been decided that the candidate will be shortened,
then all possibilities of shortening the candidate are listed, and one of the pos-
sibilities is chosen with equal chance. A possibility involves performing one of
the following operations at a given locus of the candidate string:

1. Underparse an underlying consonant (parsed as an onset or coda).

2. Delete an epenthetic onset (O[ ]) or coda (D[ ]).

3. Underparse an underlying vowel (parsed as a nucleus), supposing that
what remains is a well-formed candidate.8

4. Delete an epenthetic nucleus (N[ ]), supposing that what remains is a
well-formed candidate.

For instance, candidate O[b]N[a]N[ ]D[c]N[a] can be shortened at five
different points, so each possibility has a chance of 20%.

Similarly, if the candidate’s fate is to be lengthened, then one is picked from
the possibilities, where a possibility is rewriting a single locus using one of the
following operations:

1. Insert an epenthetic nucleus (N[ ]), which is possible everywhere (between
any two parsed, underparsed or overparsed elements, at the beginning and
at the end of the string).

2. Insert an epenthetic onset (O[ ]), supposing that the previous parsed (or
overparsed; if there is one) element is not an onset, and the next one is a
nucleus.

3. Insert an epenthetic coda (D[ ]), supposing that the previous parsed (or
overparsed) element is a nucleus, and the next one (if there is one) is not
a coda.

4. Turn an underparsed vowel into a nucleus.

5. Turn an underparsed consonant into an onset, supposing that the previous
parsed (or overparsed; if there is one) element is not an onset, and the next
one is a nucleus.

6. Turn an underparsed consonant into a coda, supposing that the previous
parsed (or overparsed) element is a nucleus, and the next one (if there is
one) is not a coda.

So far, we have a topology similar to those in sections 6.5 and 7.1, but more
complex. The similarity is that the search space has a centre, the candidate
whose length is minimal in pronunciation. Furthermore, possible moves are
either radial or tangential with respect to this centre. The present model is more
complex, however, for a candidate string can be lengthened at any point. Not
only that, but we have also introduced a parameter, Preparse, that determines
the probability of the tangential moves. In the earlier models, the probability

8A nucleus can be deleted if it is the first parsed element of the candidate and the next
parsed element is not a coda; if the previous or the next parsed element is a nucleus; or if the
previous parsed element is a coda and the next one is not a coda.



7.2. Syllabification (CVT) theory 209

of considering a tangential move was 50%, because each neighbour had equal
a priori probabilities, and most often two neighbours out of four represented a
tangential move.

Additionally, we render our model even more complex by introducing further
neighbours. The reason for that is that if you run a simulation with the present
model, you will most often be stuck in some local optimum, similarly to the
search spaces in section 7.1. But unlike that case, one is unhappy now if this
happens, because local optima are non-attested in speech. These local optima
include cases such as epenthetical syllables: if the substring O[ ]N[ ] is followed
by a consonant or by the end of the word, then deleting the nucleus is impossible,
while deleting the onset makes the candidate worse if Onset � FillOnset.
Another type of local optima is formed by candidates with a substring such as
N[ ]X[a] if Onset � Parse: deleting the epenthetical nucleus might bring to
an ill-formed string, whereas reparsing the vowel [a] first increases the violations
of constraint Onset.

Therefore, an additional parameter Ppostproc is introduced in the definition
of the topology. After having performed exactly one basic operation (resyl-
labification, lengthening or shortening), some post-processing may also occur.
Each substring O[ ]N[ ] is considered, and if the next parsed element is not a
coda, than this substring is deleted with probability Ppostproc. Similarly, each
substring N[ ]X[v], X[v]N[ ], O[ ]X[c] and X[c]O[ ] (where v stands for any
vowel and c for any consonant) is collapsed into N[v] or into O[c] with the
same probability. These operations help to avoid certain traps, but the ana-
lysis of the experiments performed demonstrate that further operations should
also be allowed in the future.9 Note finally that due to the irreversibility of
these post-processing operations, the neighbourhood relation is not symmetric
anymore.

In sum, two parameters determine the a priori probabilities of the topology,
Preparse and Ppostproc. How do they influence the precision of the algorithm?
The experiments display huge differences in function of the input string and of
the hierarchy employed, but also of Tstep. The role of the latter here is similar to
its role in section 6.5: lower values allow for the random walker to move farther
away from the origin in the initial stage of the simulation.

Here, I report on some short experiments performed with the hierarchy

noc � prs � ons � fin � fio

and with initial form O[l]N[a]D[b]O[d]N[a]D[k] (from input /labdak/). The
optimal candidate is O[l]N[a]O[b]N[ ]O[d]N[a]O[k]N[ ] with two epenthet-
ical nuclei, as epenthesis is preferred to deletion and to having codas. The
constraints were associated with ranks 0 to 4, and the parameters of the al-
gorithm were: Tmax = 3, Tmin = 0, Tstep = 0.01, Kmax = 5, Kmin = −2 and
Kstep = 1. The simulations were run 750 times for a certain (Preparse, Ppostproc)
pair, so that the mean and the standard deviation (σ(N −1)) of the frequencies

9These include deleting sequences of N[ ]O[ ], as well as reparsing whole syllables: turning
X[c]X[v] into O[c]N[v], and X[c] into O[c]N[ ] in one go. The gradual inclusion of such ad
hoc operations lessens the simplicity of the model, and future research will hopefully propose
a more elegant solution. Another direction has also been advanced, namely, to prevent GEN
from generating candidates with similar redundant or verbose substructures.
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Preparse O[l]N[a]O[b]N[ ]O[d]N[a]O[k]N[ ] O[l]N[a]O[b]N[ ]O[d]N[a]X[k]

0.1 0.57 ± 0.05 0.10
0.3 0.50 ± 0.02 0.11
0.5 0.38 ± 0.05 0.17
0.7 0.24 ± 0.04 0.17
0.9 0.11 ± 0.03 0.18

Ppostproc O[l]N[a]O[b]N[ ]O[d]N[a]O[k]N[ ] O[l]N[a]O[b]N[ ]O[d]N[a]X[k]

0.1 0.23 ± 0.02 0.11
0.3 0.41 ± 0.01 0.11
0.5 0.50 ± 0.02 0.11
0.7 0.53 ± 0.01 0.12
0.9 0.55 ± 0.04 0.13

Table 7.1: Varying the parameters of the a priori probabilities: The
frequencies of the optimal form and of the most frequently returned non-global
local optimum are reported in function of the parameters Preparse and Ppostproc.
See text for more details. In the upper table Ppostproc = 0.5, while in the lower
table Preparse = 0.3.

could be calculated based on the values measured in three groups of 250 runs
each.

The results appear in Table 7.1 and Fig. 7.6. The differences in the precision
across different parameter combinations are significant in most of the cases,
demonstrating how important role the a priori probabilities play in the SA-OT
algorithm. Moreover, an interesting observation has been that the second most
frequent candidate, O[l]N[a]O[b]N[ ]O[d]N[a]X[k], has a much more stable
chance to be returned, even though there seems to be a major jump between
Preparse = 0.3 and Preparse = 0.5. For Preparse = 0.9, this candidate is the most
frequent one, but there are also further non-optimal candidates that emerge
more frequently than the optimal one.

However, precision varies enormously with hierarchy and input. The next
subsection (Tables 7.3 and 7.4) exemplifies the precision’s dependence on the
constraint ranking, and preliminary experiments not reported here demonstrated
the dependence upon the input. Even for the same hierarchy and input, a differ-
ent Tstep value results in a very different behaviour of the system. For instance,
if Tstep = 0.1, the random walker in the model just discussed is unable to get
far enough from the origin in the initial stage of the simulation, therefore heav-
ily underparsed candidates (such as X[l]X[a]X[b]X[d]X[a]X[k]) are returned
most often. By introducing further post-processing steps, more local optima
can be avoided, but the model becomes more complex. It is only to be hoped
that a more elegant model will emerge from future research.

7.2.3 Syllabification with simulated annealing II.

Now, let us turn to a few further interesting lessons that might be learnt from
early, preliminary experiments. These experiments were performed using a
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Figure 7.6: Varying the parameters of the a priori probabilities: The
frequency of the optimal form is plotted as a function of parameters Preparse

and Ppostproc (cf. Table 7.1). On the left panel Ppostproc = 0.5, while on the
right panel Preparse = 0.3.

slightly different topology, so first let us describe it.10

Similarly to the previous model, we first have to decide whether we want
to change the length of the candidate (by inserting, deleting or underparsing
segments), or to reparse the present structure, that is, to move the syllable bor-
ders. Let Preparse denote again the probability of the latter, whenever possible;
whereas 1− Preparse is the probability of changing the word’s length.

If we have chosen to reparse, we move one syllable border, that is, we reparse
randomly one of the intervocalic consonants: if it has been an onset, we reparse
it as a coda, and vice versa (for instance, we turn O[b]N[a]O[b]N[a]D[ ] into
O[b]N[a]D[b]N[a]D[ ]).

Alternatively to reparsing, a basic step can either insert an epenthetical
vowel or consonant, or delete a phoneme.

Both insertion and deletion of a segment are chosen with a probability of
50%, similarly to an unbiased, one-dimensional random walk. Hence, after t time
steps, the expected value of the distance of a random walker’s position from its
origin is proportional to t1/2. Therefore, if we want our simulated annealing
algorithm to reach even remote regions of the search space that correspond to
k insertions, we must allow a number of steps proportional to k2 in the first
phase of the simulation, when temperature is high and any move is allowed
with transition probability 1.

The positions of insertion or deletion are chosen with equal probability again.
But from this point onwards come a few differences compared to the topology
presented in the previous subsection.

Insertion means only overparsing randomly either an onset, or a nucleus,
or a coda, that is, to insert an O[ ], a N[ ] or a D[ ]. The three options are
chosen with a probability of 40%, 40% and 20%, respectively, making the chance

10This topology involves too many decision points, involving too many (hidden) parameters.
Furthermore, it may run into an infinite loop, because it checks the possibility of an operation
only after having performed it. These are the reasons why this topology was revised. How-
ever, I did not have the time to reproduce all experiments reported here, using the topology
described earlier.



212 Chapter 7. Word Structure and Syllable Structure with SA-OT

Preparse % Preparse %
0.00 15 0.60 20
0.10 15 0.70 15
0.20 15 0.80 14
0.30 16 0.90 9
0.40 14 1.00 3
0.50 17

Ppostproc % Ppostproc % Ppostproc %
0.00 19 0.35 19 0.70 14
0.05 11 0.40 15 0.75 15
0.10 8 0.45 12 0.80 16
0.15 10 0.50 13 0.85 14
0.20 14 0.55 11 0.90 16
0.25 18 0.60 11 0.95 21
0.30 14 0.65 14 1.00 25

Table 7.2: The role of (Preparse and Ppostproc) in CV Theory: Percentage of
simulations returning the correct parse O[ ]N[a]D[n]O[t]N[a], for UR anta

and hierarchy Onset � FillNucleus � Parse � FillOnset � NoCoda.
Each (Preparse, Ppostproc) parameter combination was run 10 times. The left
panel shows the results for different Preparse values (average over all possible
Ppostproc values), whereas the right panel presents the role of Ppostproc (averaged
over all possible values of Preparse).

of inserting a consonant slightly higher than inserting a vowel. I acknowledge
that these values are fully arbitrary, and further research may investigate the
role of that choice. Once it has been decided that we want to overparse an onset
(similarly in the case of overparsing a nucleus or a coda), a random position is
chosen, and the insertion takes place (unless the result is an ill-formed string).
Sometimes, forced reparsing takes place in order to obtain a valid candidate.

If deletion is the operation to perform, then a random element of the candid-
ate is chosen, and depending on its present parse, we alter its status. If it has
been a parsed, underlyingly existing element, then it gets underparsed (turned
into X[.]). If it is an epenthetical element, then it gets deleted. Lastly, and dif-
ferently from the previous model, if it has been underparsed so far, then it gets
reparsed (vowels as nuclei, consonants as onsets or codas). This last operation
belonged to insertion (lengthening the candidate) in the previous subsection.

Finally, we can “cheat” again by allowing some post-processing, that is some
greater changes in the string, larger steps in the search space that improve the
word. Let Ppostproc denote again the probability of these changes, whenever pos-
sible. These steps help the system to escape from trivial local minima. In our
case, we have considered deleting O[ ]N[ ] substrings (whole epenthetical syl-
lables), furthermore, contracting adjacent epenthetical nuclei with underparsed
vowels, as well as epenthetical onsets with underparsed consonants. The right
panel of Table 7.2 shows how increasing Ppostproc has improved our results.

After having defined the basic step, applying simulated annealing is straight-
forward. The algorithm presented in Figure 2.8 requires some values for Tmax,
Tmin and Tstep. Now, we used 4, 0 and 0.1 respectively.

Note that Preparse and Ppostproc are parameters of the model that determine
the a priori probabilities of the topology. The left panel on Table 7.2 reports
on some experiments on the role of parameter Preparse. Significant difference
was found only for the highest Preparse values. Seemingly, a low value for this
parameter does not affect the results too much, because a number of insertions
and deletions, involving also some forced reparses (in order to make the string a
valid word), can replace reparsing. However, increasing Preparse too much will
prevent the model from performing the insertions and deletions required in the
optimal candidate.
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Finally, one may ask whether precision depends on the hierarchy, besides—
as we have seen—parameters of the topology (such as Preparse or Ppostproc) and
of the cooling schedule (such as Tstep or Kmax).

Therefore, simulated annealing was run for the input anta, with parameters
Preparse = 0.60 and Ppostproc = 0.95, and with all the possible 120 rankings.
By comparing the outputs to the correct output produced by a finite state
technique (Gerdemann and van Noord, 2000), 17 out of the 20 outputs for
ranking Parse � FillOnset � NoCoda � FillNucleus � Onset were
found correct, whereas only 3 for Parse � FillOnset � FillNucleus �
Onset � NoCoda. For more results, see Tables 7.3 and 7.4.

Ranking %
prs fio fin noc ons 31
prs fio fin ons noc 26
prs fio noc fin ons 78
prs fio noc ons fin 84
prs fio ons fin noc 14
prs fio ons noc fin 72
prs fin fio noc ons 38
prs fin fio ons noc 25
prs fin noc fio ons 30
prs fin noc ons fio 23

Table 7.3: Percentage of correct outputs for different rankings, out of 100 sim-
ulations for each.

7.2.4 Conclusion

The present chapter aimed at realising the potential in the model introduced
in section 6.5. This model had assigned equal a priori probabilities to tangen-
tial and radial moves, and within the second, to centripetal and to centrifugal
moves (Ptangential = 0.5, Pcentripetal = 0.25, Pcentrifugal = 0.25).11 Subsec-
tion 7.1.3 increased the chance of centrifugal moves, whereas the present section
demonstrated the role of Ptangential, called here Preparse. As mentioned, not all
possibilities have been tried out yet, for only Pcentripetal = Pcentrifugal has been
considered in the present section.

A further connection between the models in sections 7.1 and 7.2 is the high
number of local optima. However, it was exactly our goal to have the algorithm
be stuck in them in section 7.1, and thereby to account for the observed pause
following the definite article in Hungarian; whereas these local optima are not
attested in speech in the case of CV-Theory. Thus, we had to introduce some
post-processing steps, that is, to enlarge the set of neighbours of some can-
didates, in order not to make them local optima. Interestingly, these post-
processing steps are not reversible, so the new neighbourhood relation is not
symmetric any more. The role of parameter Ppostproc, determining the chance
of applying these post-processing steps, has also been analysed.

11As mentioned in footnote 17 on page 181, one should reconsider the a priori probabilities
for unepenthesised candidates in order to fully meet this definition.
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Ranking Correct output % %
prs fio fin noc ons N[a]D[n]O[t]N[a] 31 33
prs fio fin ons noc N[a]D[n]O[t]N[a] 26 24
prs fio noc fin ons N[a]O[n]N[ ]O[t]N[a] 78 76
prs fio noc ons fin N[a]O[n]N[ ]O[t]N[a] 84 77
prs fio ons fin noc N[a]D[n]O[t]N[a] 14 18
prs fio ons noc fin N[a]O[n]N[ ]O[t]N[a] 72 75
prs fin fio noc ons N[a]D[n]O[t]N[a] 38 32
prs fin fio ons noc N[a]D[n]O[t]N[a] 25 28
prs fin noc fio ons N[a]D[n]O[t]N[a] 30 27
prs fin noc ons fio O[ ]N[a]D[n]O[t]N[a] 23 22
prs fin ons fio noc O[ ]N[a]D[n]O[t]N[a] 22 19
prs fin ons noc fio O[ ]N[a]D[n]O[t]N[a] 27 12
prs noc fio fin ons N[a]O[n]N[ ]O[t]N[a] 77 84
prs noc fio ons fin N[a]O[n]N[ ]O[t]N[a] 80 78
prs noc fin fio ons N[a]O[n]N[ ]O[t]N[a] 76 76
prs noc fin ons fio O[ ]N[a]O[n]N[ ]O[t]N[a] 59 47
prs noc ons fio fin O[ ]N[a]O[n]N[ ]O[t]N[a] 57 48
prs noc ons fin fio O[ ]N[a]O[n]N[ ]O[t]N[a] 65 45
prs ons fio fin noc O[ ]N[a]D[n]O[t]N[a] 19 16
prs ons fio noc fin O[ ]N[a]O[n]N[ ]O[t]N[a] 65 46
prs ons fin fio noc O[ ]N[a]D[n]O[t]N[a] 19 15
prs ons fin noc fio O[ ]N[a]D[n]O[t]N[a] 21 18
prs ons noc fio fin O[ ]N[a]O[n]N[ ]O[t]N[a] 56 42
prs ons noc fin fio O[ ]N[a]O[n]N[ ]O[t]N[a] 61 38
fio prs fin noc ons N[a]D[n]O[t]N[a] 39 35
fio prs fin ons noc N[a]D[n]O[t]N[a] 32 39
fio prs noc fin ons N[a]O[n]N[ ]O[t]N[a] 46 57
fio prs noc ons fin N[a]O[n]N[ ]O[t]N[a] 47 47
fio prs ons fin noc N[a]D[n]O[t]N[a] 32 19
fio prs ons noc fin N[a]O[n]N[ ]O[t]N[a] 45 45
fio fin prs noc ons N[a]D[n]O[t]N[a] 32 39
fio fin prs ons noc N[a]D[n]O[t]N[a] 34 37
fio fin noc prs ons N[a]X[n]O[t]N[a] 48 35
fio fin noc ons prs X[a]X[n]O[t]N[a] 30 28
fio fin ons prs noc X[a]X[n]O[t]N[a] 15 20
fio fin ons noc prs X[a]X[n]O[t]N[a] 33 23
fio noc prs fin ons N[a]O[n]N[ ]O[t]N[a] 34 38
fio noc prs ons fin N[a]O[n]N[ ]O[t]N[a] 34 27
fio noc fin prs ons N[a]X[n]O[t]N[a] 42 29
fio noc fin ons prs X[a]X[n]O[t]N[a] 29 24
fio noc ons prs fin X[a]O[n]N[ ]O[t]N[a] 24 25
fio noc ons fin prs X[a]X[n]O[t]N[a] 34 34
fio ons prs fin noc X[a]O[n]N[ ]O[t]N[a] 35 35
fio ons prs noc fin X[a]O[n]N[ ]O[t]N[a] 27 26
fio ons fin prs noc X[a]X[n]O[t]N[a] 17 10
fio ons fin noc prs X[a]X[n]O[t]N[a] 38 38
fio ons noc prs fin X[a]O[n]N[ ]O[t]N[a] 26 23
fio ons noc fin prs X[a]X[n]O[t]N[a] 31 25
fin prs fio noc ons N[a]D[n]O[t]N[a] 57 56
fin prs fio ons noc N[a]D[n]O[t]N[a] 58 56
fin prs noc fio ons N[a]D[n]O[t]N[a] 64 58
fin prs noc ons fio O[ ]N[a]D[n]O[t]N[a] 67 55
fin prs ons fio noc O[ ]N[a]D[n]O[t]N[a] 52 50
fin prs ons noc fio O[ ]N[a]D[n]O[t]N[a] 57 65
fin fio prs noc ons N[a]D[n]O[t]N[a] 58 57
fin fio prs ons noc N[a]D[n]O[t]N[a] 54 65
fin fio noc prs ons N[a]X[n]O[t]N[a] 63 53
fin fio noc ons prs X[a]X[n]O[t]N[a] 54 37
fin fio ons prs noc X[a]X[n]O[t]N[a] 23 21
fin fio ons noc prs X[a]X[n]O[t]N[a] 48 37
fin noc prs fio ons N[a]X[n]O[t]N[a] 63 55

Ranking Correct output % %
fin noc prs ons fio O[ ]N[a]X[n]O[t]N[a] 56 47
fin noc fio prs ons N[a]X[n]O[t]N[a] 64 60
fin noc fio ons prs X[a]X[n]O[t]N[a] 46 48
fin noc ons prs fio O[ ]N[a]X[n]O[t]N[a] 19 19
fin noc ons fio prs X[a]X[n]O[t]N[a] 35 22
fin ons prs fio noc O[ ]N[a]D[n]O[t]N[a] 38 39
fin ons prs noc fio O[ ]N[a]D[n]O[t]N[a] 38 30
fin ons fio prs noc X[a]X[n]O[t]N[a] 13 11
fin ons fio noc prs X[a]X[n]O[t]N[a] 15 25
fin ons noc prs fio O[ ]N[a]X[n]O[t]N[a] 22 19
fin ons noc fio prs X[a]X[n]O[t]N[a] 32 23
noc prs fio fin ons N[a]O[n]N[ ]O[t]N[a] 39 38
noc prs fio ons fin N[a]O[n]N[ ]O[t]N[a] 37 42
noc prs fin fio ons N[a]O[n]N[ ]O[t]N[a] 31 29
noc prs fin ons fio O[ ]N[a]O[n]N[ ]O[t]N[a] 29 32
noc prs ons fio fin O[ ]N[a]O[n]N[ ]O[t]N[a] 29 28
noc prs ons fin fio O[ ]N[a]O[n]N[ ]O[t]N[a] 19 28
noc fio prs fin ons N[a]O[n]N[ ]O[t]N[a] 34 33
noc fio prs ons fin N[a]O[n]N[ ]O[t]N[a] 34 36
noc fio fin prs ons N[a]X[n]O[t]N[a] 44 38
noc fio fin ons prs X[a]X[n]O[t]N[a] 34 35
noc fio ons prs fin X[a]O[n]N[ ]O[t]N[a] 33 31
noc fio ons fin prs X[a]X[n]O[t]N[a] 34 20
noc fin prs fio ons N[a]X[n]O[t]N[a] 38 34
noc fin prs ons fio O[ ]N[a]X[n]O[t]N[a] 36 22
noc fin fio prs ons N[a]X[n]O[t]N[a] 44 40
noc fin fio ons prs X[a]X[n]O[t]N[a] 34 35
noc fin ons prs fio O[ ]N[a]X[n]O[t]N[a] 11 14
noc fin ons fio prs X[a]X[n]O[t]N[a] 13 18
noc ons prs fio fin O[ ]N[a]O[n]N[ ]O[t]N[a] 14 5
noc ons prs fin fio O[ ]N[a]O[n]N[ ]O[t]N[a] 10 9
noc ons fio prs fin X[a]O[n]N[ ]O[t]N[a] 14 17
noc ons fio fin prs X[a]X[n]O[t]N[a] 17 13
noc ons fin prs fio O[ ]N[a]X[n]O[t]N[a] 14 9
noc ons fin fio prs X[a]X[n]O[t]N[a] 13 11
ons prs fio fin noc O[ ]N[a]D[n]O[t]N[a] 17 16
ons prs fio noc fin O[ ]N[a]O[n]N[ ]O[t]N[a] 11 14
ons prs fin fio noc O[ ]N[a]D[n]O[t]N[a] 20 12
ons prs fin noc fio O[ ]N[a]D[n]O[t]N[a] 13 27
ons prs noc fio fin O[ ]N[a]O[n]N[ ]O[t]N[a] 7 4
ons prs noc fin fio O[ ]N[a]O[n]N[ ]O[t]N[a] 11 8
ons fio prs fin noc X[a]O[n]N[ ]O[t]N[a] 9 8
ons fio prs noc fin X[a]O[n]N[ ]O[t]N[a] 16 10
ons fio fin prs noc X[a]X[n]O[t]N[a] 17 7
ons fio fin noc prs X[a]X[n]O[t]N[a] 12 11
ons fio noc prs fin X[a]O[n]N[ ]O[t]N[a] 16 8
ons fio noc fin prs X[a]X[n]O[t]N[a] 8 8
ons fin prs fio noc O[ ]N[a]D[n]O[t]N[a] 22 22
ons fin prs noc fio O[ ]N[a]D[n]O[t]N[a] 20 17
ons fin fio prs noc X[a]X[n]O[t]N[a] 15 8
ons fin fio noc prs X[a]X[n]O[t]N[a] 16 8
ons fin noc prs fio O[ ]N[a]X[n]O[t]N[a] 14 15
ons fin noc fio prs X[a]X[n]O[t]N[a] 10 8
ons noc prs fio fin O[ ]N[a]O[n]N[ ]O[t]N[a] 19 7
ons noc prs fin fio O[ ]N[a]O[n]N[ ]O[t]N[a] 10 10
ons noc fio prs fin X[a]O[n]N[ ]O[t]N[a] 12 16
ons noc fio fin prs X[a]X[n]O[t]N[a] 5 7
ons noc fin prs fio O[ ]N[a]X[n]O[t]N[a] 14 16
ons noc fin fio prs X[a]X[n]O[t]N[a] 10 8

Table 7.4: For the input anta, the number of correct outputs for different
rankings, out of 100 runs. In each hierarchy, the highest ranked constraint
appears first. The third column shows the results with parameters Preparse =
0.60 and Ppostproc = 0.95, while the results in the fourth column was obtained
with parameters Preparse = 0.60 and Ppostproc = 0.30. The correct outputs were
calculated using finite state techniques. The precision does not depend on the
output either, for there are significant differences between rankings that yield
the same optimal candidate.
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It has been mentioned that implementing the CV Theory for syllabification
allows us to compare the SA-OT Algorithm to other computational approaches
to Optimality Theory. It should not be surprising by now that SA-OT has a
lower computational complexity than most of its competitors, but in exchange,
it has a lower precision. It is to be hoped that a new and more elegant topology
for CV Theory will be able to increase precision and account for fast speech
phenomena, such as dropping of syllables or syllable parts.

Indeed, SA-OT is polynomial in time: quadratic in the number of con-
straints, and approximately cubic in the length of the word. Evaluating candid-
ates is linear in the number of constraints, and linear in the length of the input
word (however, as candidates blow up with inserted materials, the evaluation
becomes longer). The more constraints, the higher Kmax, i.e. the interval tra-
versed by T . Furthermore, the longer the word, the larger the region to walk
through, i.e. the more insertions and deletions to try out. A good estimate for
the number of steps required is proportional to the square of the distance we
want to walk.

How can one make use of simulated annealing, if it sometimes returns the
correct output only in 20% of the cases? One can run more simulations in
parallel, and then choose the output returned the most often. This solution
would work if the erroneous outputs have an even lower probability, which is
true only in part of the SA-OT models.

Another possibility is to compare the few different outputs obtained by par-
allel simulations, using the classical OT evaluation methods. Although this
solution seems to returning to the original methods, it is not the case, for now
we only need to compare a few candidates, and not the entire boundless can-
didate set. In fact, if our algorithm returns the optimal candidate only with a
probability of 20%, but we run it ten times, then the optimal candidate will be
returned at least once with a chance of almost 90%. However, once the optimal
candidate appears in the output set, it will win using traditional tableau com-
parison of the ten outputs. Running 20 parallel simulations will increase the
precision to almost 99%.

It is also possible to combine the previous two solutions: run many simula-
tions in parallel, choose the most frequent outputs, and compare them using a
tableau.

If SA-OT is indeed an adequate model of language production, then the
observation about the differences in precision across different rankings also has
an important consequence for OT’s claim on factorial typology. The traditional
approach in a Chomskyan style is that attested and non attested language types
result from what the human brain (the Universal Grammar) is able or is unable
to realise—that is, the idea of factorial typology in Optimality Theory. Jäger
(2003a) has proposed however that some gaps in factorial typology (i.e., a lan-
guage type predicted by some constraint ranking, but not attested among the
languages of the world) may be explained by it being unstable during evolu-
tion (across generations). Boersma (2004a) has raised a second option: some
constraint rankings may turn out to be not learnable. Now, we may add a
third, even more trivial possibility: some constraint rankings might not appear
in attested languages, just because they are not producible. That is, SA-OT
has only a very low chance to find the correct output. From the observation
that some constraint rankings are much more advantageous than other ones,
we predict that hard-to-compute rankings are less likely to be attested in the
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languages of the world.
What happens if the global optimum is relatively hard to reach (because it

is located in a narrow valley), whereas some other local optima are returned
relatively often? If this is the case for most words, we expect this language
not to be stable: the next generation will learn another ranking. But if this
phenomenon happens only to a few words, we may predict the surfacing of the
sub-harmonic form, seen as either irregularity, or free alternation, or slip of the
tongue.



Chapter 8

Conclusion: Is Simulated
Annealing Optimality
Theory, thus, Better?

8.1 Summary

This dissertation aimed at introducing a new variant of Optimality Theory,
namely, the Simulated Annealing for Optimality Theory Algorithm (SA-OT).

After having overviewed existing variants and the “philosophical” back-
ground of OT in Chapter 1, Chapter 2 motivates the use of heuristic optimisation
algorithms—such as simulated annealing—and then introduces the SA-OT Al-
gorithm (Fig. 2.8, on page 64). The main argument for simulated annealing was
that it is a plausible model for the “implementation” of language in the brain: it
is fast, efficient, does not require large computational power, but makes certain
mistakes, the ratio of which increases with production rate. Therefore, SA-OT
could be used as a model of some aspects of performance in phonology.

Subsequently, Chapter 3 introduced some formal approaches to OT in order
to underpin the SA-OT Algorithm. Both polynomials and ordinal numbers were
introduced for that purpose. The following chapter, a set of open questions more
than full-fledged proposals, points to related linguistic issues—such as the role
of the lexicon and learnability—that should be elaborated in the future. It also
introduced a new definition for Output-Output Correspondence.

The remaining chapters present several applications. The goal of these
chapters is not so much linguistic, but methodological. Even though I tried
to argue for the linguistic well-foundedness of the models, more cooperation
with fellow linguists might have been useful here and there to reach an ana-
lysis which might withstand linguistic criticism. It is only to be hoped that the
model will arouse enough interest among general linguists to help improve these
models. More importantly, I urge experimental linguists to provide quantitative
experimental data so that the predicted frequencies of new models can be tested
in the future against empirical results. Nevertheless, these chapters have hope-
fully illustrated the methodological issues arising if one decides to use SA-OT
as the framework for a linguistic (performance) model.

217
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Indeed, SA-OT is a complex model involving many parameters and many
decisions to be made, such as the definition of the topology, the choice of the
constraints and their indices (their association with the domains of temper-
ature), and so on. Consequently, it offers the possibility for tuning at many
different points. Some may even argue that there are too many such points. To
this criticism my answer is threefold.

First, SA-OT’s aim is to account for a complex quantitative data set (the
frequencies of different forms in different conditions), hence the complexity of
the model. If the model is simpler than the data to be described, then the
model has explained something from the observable complexity. There is an
indication that such a reduction in complexity happens when the model correctly
accounts for something that has not been aimed at originally: for instance,
when the model in Chapter 5 was tuned to return the correct andante and
allegro forms, but it also turned out to correctly predict which word type is
more likely to change in fast speech. Second, practice has demonstrated that
the high number of parameters does not trivialise the task of tuning the model,
and finding a correct model is far from being a sinecure. It is not the case that
just “anything” can be reproduced simply using SA-OT. Third, the parameters
are restricted by further guidelines. The topology and the constraints should
be cross-linguistically universal and well-founded, so they cannot be defined in
an ad hoc way.1 Varying certain parameters (typically Tstep) can and should
be interpreted as varying the run time of the algorithm (the speed of speech
production), whereas varying other parameters (e.g., those related to the a priori
probabilities) may not have such an interpretation. If the variation depends on
the frequency of the word (rare content words being pronounced more carefully
than frequent function words), one may tune the parameters of the cooling
schedule again, while the a priori probabilities of the topology, I hypothesise,
accounts for differences among speakers only, since a certain speaker does not
alter his or her topology.

In particular, Chapter 5 works out a model accounting for Dutch stress as-
similation in normal and fast speech, and thereby analyses the role of parameters
Tstep, Tmax and Tmin. Varying the former is the simplest and probably the most
straightforward tool for reproducing fast speech, whereas the later two also have
a slight influence on the output frequencies. Besides, this chapter also analysed
the role of the definition of the constraint Output-Output Correspondence, em-
ploying what had been introduced in the previous chapter.

If Chapter 5 focuses on parameters Tstep, Tmax and Tmin, then Chapter 6
and section 7.1 add parameters Kstep, Kmax and Kmin to the analysis. Here,
unlike in traditional OT, candidates that can never win and constraints that are
vacuously satisfied may significantly interfere with a model’s output frequencies.
In particular, section 6.5 presents a model—followed by a mathematical discus-
sion and experiments—that relies heavily on parameter Kmax in addition to
Tstep. Due to the infinity of the search space, a larger initial stage in the simula-
tion enhances the “channelling effect”. A similar model appears in section 7.1,

1Many readers have not been convinced by my arguments for certain topologies being a nat-
ural choice in the particular case. Future work should therefore either proliferate the number
of phenomena that require a certain topology, so that the choice becomes an unquestionable
necessity; or some general principles should determine the topology. For instance, Gerhard
Jäger has proposed to connect the neighbourhood structure to a psycholinguistic notion of
similarity, whereas Adam Albright has suggested Steriade’s P-Map.
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which ends by remarking that the different behaviour of the two allomorphs of
the Hungarian article can be tuned by varying the indices (domains of temper-
ature) with which the relevant constraints are associated. Introducing empty
domains (or inactive constraints) between these two constraints lengthens the
period in which temperature is located between these constraints, thereby mak-
ing the divergence in the behaviour of the two allomorphs more pronounced.
This technique is related to the way the first component of the temperature is
diminished in the outer loop of the SA-OT Algorithm, hence also an observation
on the role of Kstep. Finally, the same model makes parameterKmin dispensable
by measuring the “specific heat”: the algorithm runs until the random walker
has not moved for 30 consecutive iterations.

An additional morale of the first sections in Chapter 5 is that—unlike stand-
ard simulated annealing and the SA-OT models presented in earlier chapters—
some SA-OT models do not converge to maximal precision if the number of
iterations is increased. This remark has also opened some speculation about
how to account for linguistic irregularities by using a simple grammar together
with an algorithm that is not always correct but which makes predictable errors.

Finally, Chapter 7 (especially subsection 7.1.3 and section 7.2) brings an-
other parameter to our attention, namely, the definition of the topology (the
neighbourhood structure). We demonstrate how changing the parameters of the
a priori probabilities influences the output frequencies. The issue turns more
important as the candidate set becomes larger (infinite), and as candidates are
assigned a larger number of neighbours.

In what follows, we return to the assessment of the OT variants in section
1.3, and ask the question: is SA-OT any better?

8.2 Advantages (and disadvantages) of SA-OT

8.2.1 SA-OT and specific linguistic phenomena

Arguments for some approach and against other ones can be of three different
sorts. People often present cases where a given model is unable to account
for some phenomenon. Second, one may show that an approach is in general
unable to come to grips with some aspects of the explanandum. Finally, one
might formulate “philosophical” preferences and theoretical expectations not
matched by that approach. As an example, the reader is referred to Keller and
Asudeh (2002)’s criticism of Boersma and Hayes (2001)’s Stochastic OT, replied
to by Boersma (2004b).

Concerning the first sort of criticism, I refer to tableau (5.4) on page 128.
It shows that for both Types 0 and 2 in Dutch stress assignment, all possible
parses of the observed fast speech forms are harmonically bounded, so that
therefore, the loser forms cannot win for any hierarchy. This fact could be
a counter-argument for all approaches that wish to generate the alternative
forms with constraint reranking (such as an ad hoc reranking, Anttila’s proposal
or Boersma’s Stochastic OT). The same tableau demonstrates why Coetzee’s
approach would fail: an attested alternative form violates the highest ranked
constraint, hence the critical cut-off point must be above this highest ranked
constraint, therefore all candidates should be attested. At the same time, I
could argue that Simulated Annealing Optimality Theory does the job nicely.
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Although this type of argument may support a certain approach, and can
help it become more popular, it is certainly not decisive. Namely, nothing
shows that using different constraints would not work within the alternative
approaches (cf. e.g., Boersma, 1998a). Add a new constraint to the top of the
hierarchy, and the train of thought holds no longer. Keeping in mind that the
set of constraints is supposed to be universal across languages, even while it
varies across linguists and papers, we have been shown only that we have not
been creative enough.

Similar remarks apply to any argument demonstrating that a certain SA-
OT model is not able to reproduce a certain phenomenon: in which the output
frequencies do not match the experimentally observed frequencies, or in which
the local optima are not exactly the attested alternating forms. An example
for both was actually the case of Type 2 words—such as perfectionist—in Table
5.17 on page 155. But such a fact is not an argument against SA-OT in general,
for nothing proves that different rankings, different constraints and different
neighbourhood relations would have no chance to work either. This failure only
points to the need for future work. Only the repetitive failure of a model and
the lack of success might slowly motivate the linguistic community to drop it
and to adopt different approaches.

Therefore, we now turn to the second type of arguments. A number of
observations show that several linguistic phenomena—such as Dutch stress as-
signment or the behaviour of the Hungarian article—are about a gradual shift
of frequencies in function of certain parameters (speech rate, sociolinguistic
parameters, and so forth). This fact is a serious argument against Coetzee’s ap-
proach, who refuses to predict the frequencies quantitatively, as well as against
Anttila’s proposal, which requires a very different grammar in order to approx-
imate a slightly different frequency distribution (as mentioned by Boersma and
Hayes, 2001). Nonetheless, Stochastic OT, MaxEnt OT and SA-OT make it
possible to vary the output frequencies as a function of external parameters.

Our SA-OT experiments on the definite article in Hungarian showed how
simply the frequency of the most harmonic candidate can be fine-tuned between
0% and 100%. For instance, in Fig. 7.3 (page 201), Kmax = 20 or 40 never
returned the globally optimal form [az#E], whereas Kmax = 3 would have done
it with a frequency close to 100%. On the other hand, remember that in section
6.5 the channelling effect could also enforce the alternate form using a slightly
modified tableau: then the global optimum can never be produced in more
than half of the cases. Hence, the framework of SA-OT does not restrict the
possibilities in a purely categorical fashion. As language data do not seem to be
restricted too strongly, either, a strong prediction would be an argument against
a certain approach. Indeed, Stochastic Optimality Theory requires the interplay
of at least three, almost equally ranked constraints, otherwise it predicts that
the grammatical form must have a probability exceeding 50%. While this would
seem to count against it, only time can decide which of the two approaches fits
better all kinds of linguistic phenomena.

Additionally, the parameter that determines the output frequencies can often
be simply interpreted in SA-OT, because it is directly related to the algorithm’s
run time. Therefore, fast speech phenomena indeed emerge in a speeded up
algorithm. In other cases, nonetheless, similarly to the parameters determining
the output frequencies in Stochastic OT and MaxEnt OT, the connection is not
so obvious: why would for instance sociolinguistic factors or word frequency
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(familiarity) influence Kmax?2

A further argument can be brought in favour of SA-OT based on the Dutch
fast speech data, which, again, is not decisive, for different constraints might do
the job within Stochastic OT, as well. As mentioned, the empirical data dis-
play a huge difference in the behaviour of different word types. Output-Output
Correspondence (Output-Output Faithfulness) is able to account for the differ-
ent winning forms, but is it also able to account for the different frequencies?
In Stochastic OT, the frequency of the alternating form was derived from the
probability of reranking the constraints at evaluation time. Thus, we have to
postulate that different morphological types either employ a different evaluation
noise (why?); or associate Output-Output Correspondence with a slightly dif-
ferent rank. The latter possibility is not absurd, for OOC is an odd constraint
anyway, and its rank might depend on an argument, the reference string.3 But
how? On the other hand, SA-OT predicted correctly which form is more likely
to be mispronounced—a surprising result, since we had not created our model
with this goal in mind. The reason why different word types result in different
frequencies in SA-OT is that OOC alters the landscape, due to which the local
optima have a catchment area (the basin from which rain flows into a particular
river) of different size for different inputs. Again, the candidates not appearing
on the surface heavily influence the output frequencies.

In brief, while Coetzee’s proposal explicitly rejects accounting for quantit-
ative phenomena that SA-OT can explain, Anttila’s approach is unable to cope
with them, but Boersma’s Stochastic OT, similarly to MaxEnt OT, is theoretic-
ally able to face them. Nonetheless, there are certainly cases where competitors
of SA-OT could turn out to be more convincing.

For instance, it seems to be a coincidence for SA-OT that fast speech prefers
the forms that are phonologically less marked, and slower speech is more faithful
to morphology. In the constraint reranking approaches, however, these intuitive
observations become the explanation of the phenomenon. SA-OT’s replies that
it is exactly the neighbourhood structure and the “landscape” that explain
why faithfulness becomes less important and markedness more significant in
fast speech: if faithfulness is ranked higher than markedness, then the faithful
global optimum seems to be difficult to find in fast speech, and less faithful but
unmarked local optima may be returned more easily.

In general, however, a major disadvantage of Simulated Annealing Optim-
ality Theory—compared to its competitors—is that it is hard to understand
exactly why it works in certain cases. Developing an exact analysis of SA-OT’s
behaviour is difficult even for relatively simple landscapes. The interactions
between SA-OT’s components (the neighbourhood structure, the constraint
hierarchy and the algorithm’s parameters) are so complex that the success or

2Kmax is not necessarily to be interpreted as being connected to the speed of the algorithm.
Its role is to determine the length of the initial phase of the simulation, in case the simulation
is launched from the same one or few candidates. If the initial candidate is chosen from a wider
pool, however, then the initial phase can be omitted. Therefore, different observed frequencies
can be reproduced by changing the way the initial candidate is chosen, while Kmax (hence,
run time) is kept constant. In other words, the random walk in the initial phase can be viewed
as not belonging to the SA-OT algorithm, but as a way to chose the initial candidate from
this wider pool. Then, Kmax is a parameter that determines the choice of the candidate from
where (the most interesting part of) the algorithm is launched.

3In other words, a whole family of OOC constraints should exist, with each member being
associated with a slightly different rank, and each member acting upon a different word type.
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failure of a model cannot be simply predicted using paper-and-pen linguistics,
without implementing the simulation on computers.4 (For an extreme case, re-
call Table 5.10 on page 151 where the frequency of a local optimum surprisingly
increased as we diminished Tstep.) This is the reason why the reader is welcome
to try out the SA-OT demo page at http://www.let.rug.nl/∼birot/sa-ot/.

8.2.2 SA-OT, competence and performance

Finally, let us turn to the third level of criticism against various approaches,
that is, to “more philosophical issues”. In particular, we shall ask how SA-OT,
as well as its competitor models reflect the traditional dichotomy of competence
and performance.

Often, both forms A and B are equally grammatical. In other cases, however,
the use of the two forms is not symmetrical, and one may argue for form A to be
the “grammatical form”, while B is regarded as a “performance error”—without
any value judgement. For instance, in Chapter 5 on Dutch stress assignment,
we identified the grammatical form with the andante pattern, that is, whose
frequency diminishes at higher speech rate. (Otherwise, one should claim that
fast speech is more grammatical, which would be odd.) Therefore, we expect a
linguistic model to predict which form is grammatical (whatever that means),
as well as what other forms may also emerge under certain conditions.

Here I refer to the idea sketched on Fig. 2.1 (page 43), which replaces
the competence-performance dichotomy with a three-level picture. Between
the competence in-the-narrow-sense (the static linguistic knowledge encoded in
one’s brain) and the performance in-the-narrow-sense (including all the extra-
linguistic factors influencing linguistic products, speech), one also finds the dy-
namic language production process. Phenomena that are traditionally reckoned
to belong to performance, but are determined by linguistic factors, might be
analysed on this intermediate level. Consequently, let us ask the various ap-
proaches how they distinguish the static knowledge of the language from the
dynamic language production, and whether they see a difference between the-
oretically grammatical forms and forms observable, say, in a corpus.

MaxEnt OT assigns a positive probability to all candidates generated by
GEN. Consequently, there is no chance to differentiate in a principled way
between forms that are so agrammatical (even absurd) that they cannot be
attested for sure, and forms attested, though only rarely—unless one restricts
GEN in a language specific manner, or the assigned probabilities drop drastic-
ally at a certain point. Such a model might be most welcome in cases where all
candidates are attested in a corpus, and only their frequencies require explan-
ation, such as was the case in Jäger and Rosenbach (2006)’s model for English
genitive constructions.

Assigning the same violation profile to several candidates, creating a new
grammar by reranking some constraints by hand, and the unranked hierarchies
of Anttila form the next group of models. They all account for linguistic vari-
ation on the level of the competence model, at the core of the OT architecture.
These approaches are adequate when the alternating forms are not differenti-
ated with respect to their grammaticality, which definitely is the case in certain
forms of variation.

4Note that Lauri Karttunen has made the same remark on Optimality Theory in general
in his FSMNLP talk in Helsinki in September 2005 (cf. also Karttunen, 2006).
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Coetzee’s model is different. It distinguishes sharply between the form that
is grammatical, by making it the optimal output, on the one hand, and alter-
nate forms, the second, third best candidates still emerging, on the other. His
model can be, thus, used for phenomena displaying alternation of an arguably
grammatical and most frequently occurring form with ungrammatical ones.

Even if it is not necessary, Boersma’s Stochastic Optimality Theory may
also be seen as reflecting the distinction between competence and performance.
Namely, the unperturbed hierarchy can represent competence, in conformance
with standard OT; whereas the noisy evaluation cycles are the model for the
dynamic language production process. The form optimal for the unperturbed
hierarchy is the grammatical form, whereas perturbations explain why other
forms are also attested. Postulating, for instance, a larger σ in the evaluation
noise at a higher speech rate will account for the increased frequency of the
allegro form. The decoupling of the model’s two levels is appealing, but it is
unclear why noise should increase in fast speech.

I argue that competence and performance are most radically separated in
Simulated Annealing OT. Similarly to the unperturbed hierarchy in Stochastic
OT, the underlying traditional OT model accounts again for linguistic compe-
tence: the grammatical form is the (global) optimum. On top of that, however,
we have introduced a separate search algorithm, which models the function-
ing brain during speech production. The search algorithm is computationally
simple, arguably plausible: each time only one form has to be stored, which is
then altered in an elementary way, supposing that this basic change does not
incur too many extra violations. Not only in memory requirements is the al-
gorithm a plausible model of the brain’s functioning, but also in run time, which
can be kept constant. Moreover, the precision of the algorithm (the probability
of returning the grammatical form) depends also upon parameters that have a
direct connection to speech rate: Tstep can easily be argued to change in function
of speech rate, since it directly influences the algorithm’s run time.

SA-OT also competes with different implementations of OT whose goal is
to find the optimal candidate in the candidate set. Even if SA-OT does not
guarantee that one always finds the optimal candidate, it may still be more
adequate in a cognitive sense than its competitors.

Indeed, I argue that simulated annealing is an adequate model for the compu-
tations in the human mind for several reasons. First of all, no severe restrictions
must be made on GEN and on the constraints as in Finite State Optimality The-
ory (Eisner, 1997; Frank and Satta, 1998; Karttunen, 1998; Gerdemann and van
Noord, 2000; Jäger, 2002; B́ıró, 2003, 2005c; Karttunen, 2006). As described
elsewhere (B́ıró, 2005c), two approaches exist within Finite State Optimality
Theory: either a new automaton must be built for each input, requiring huge
computational power, or a finite state transducer maps any input to its optimal
output, but this latter approach works in very restricted cases only.

Simulated annealing is an algorithm that may find the optimal candidate
of a combinatorial problem in a reasonable time with a reasonable precision,
even in the case of NP-complete problems, which Optimality Theory may pose
(Eisner, 2000b). It does not require computational capacities as large as the ones
finite-state approaches need, or even those genetic algorithms or chart-parsing
may ask for. Simulated annealing produces some output within constant time,
similarly to speech, where something must be produced within a specific time
span—conversation partners are not computer users who are willing to watch
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the hourglass! Furthermore, simulated annealing can be speeded up, just as
human speech: in both cases the price to pay for shortening the time span is
precision. In fast speech, indeed, we accept some ungrammatical forms for the
sake of expressing ourselves more quickly. Hence, I argue again, a linguist may
gain an explanation of fast speech phenomena, alternation forms or performance
errors by adding some topology to the candidate set.

Paul Smolensky’s implementation of Harmony Grammar (closely related to
Optimality Theory) within a connectionist framework has already long included
a notion of neighbourhood, whence follows the possibility of local optima ex-
isting in the system. Yet, his goal, which he successfully reaches, is to avoid
allowing the system to find them.5 My approach, however, differs from his not
only in that I turn the errors made by the algorithm (when the system gets
stuck in local optima) into my advantage; but also in that mine is not confined
to neural networks. So non-connectionist scholars—linguists, but also other
cognitive scientists—may employ it.

8.3 SA-OT as a general cognitive model

More than a decade before 1993, the year when Optimality Theory appeared in
linguistics, Seymour Papert (1980) proposed a remarkable cognitive model.

Imagine a child is shown the following experiment: the water is poured from
a broader vessel into a narrower one, so the level of the water will be higher than
it was in the original vessel. According to observations, children below the age of
six or seven will tell you that the amount of liquid has increased, whereas above
this age children suddenly change their mind and give an answer in conformance
with the principle requiring that the amount of liquid be conserved. How to
explain both answers and the switch between them?

Papert suggested the following model (Papert, 1980, p. 166f). Suppose
there are (at least) three homunculi present in the brain of a person who has
to compare quantities. Each of them works very simply, and the answer of the
child is derived from the answers given by these homunculi.

The first of them, Papert proposes, judges the amount of anything accord-
ing to its height. As objects in the world usually have more or less constant
dimensional ratios, judging from the height should be reliable. After all, many
important judgements in the world—for instance, the age, role, power and might
of an unknown fellow human—can be made based on the other’s height. Ac-
cording to Papert, this homunculus serves even the youngest children very well,
when they have to distribute Coca Cola or hot chocolate equally among glasses.

The second homunculus relies on the horizontal dimensions. Papert writes
that this homunculus is usually not as skilled as the first one, so he influences the
judgements of the child much less frequently. He comes to a role in statements
such as “there might be really much water in the sea”.

The third homunculus is called History, and teaches that “if two amounts
were equal, then they remain equal”. It is a “folk” version of the principle of
conservation of matter in physics. Even if we increased the amount of the water,
this homunculus of Papert would come to this conclusion.

5Chapter 20, sections 3.7.4, 3.7.5 of an October 2004 print out of Smolensky and Legendre
(2006), which was made available before the KNAW Masterclass “Cognitive Foundations of
Interpretation” in Amsterdam.
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Now, how to account for the answers of the younger children, and for those
of the older ones? When the younger child is asked the question whether the
amount of water has changed while pouring it from one vessel to the other, the
first homunculus, the vertically minded one, will give the answer.

Concerning the older child, Papert offers three explanations. Either the
first two homunculi become more “sophisticated”, so that they interfere only
if everything else remains unchanged: for instance, the first homunculus learns
to have an opinion only if the width of the object is the same. The second
explanation—the most interesting one from the point of view of the develop-
ments in linguistics ten years after Papert’s book was published—proposes a
reordering in the relative prominence (he calls it the “seniority”) of the homun-
culi: homunculus History suddenly jumps forward, and becomes the “dominant
voice”. Does not this idea remind you of OT learning algorithms? Papert’s third
possible answer introduces a fourth homunculus from the critical age onwards
that combines the answers given by the first two homunculi (the geometrical
ones), so this fourth homunculus will cancel their contradictory opinions.

We can summarise and reinterpret Papert’s model in the following way. In
order to solve a cognitive task, the human brain invites several of its “modules”
to give some answer. (Modularity of the brain was probably in the air already
in 1980.6) Out of the pool of possibilities, each module picks one, and returns it
as the solution. These modules work in very simple ways, and would quite often
mislead the brain if they had to work alone. However, the interaction of them
(unspecified by Papert, although he already alludes to some hierarchy in import-
ance among them) results in a cognitive capacity leading to an evolutionarily
successful behaviour. The brain does not necessarily return the mathematic-
ally exact solution always, and yet, even with such an “imperfect human logic”,
humanity has been reasonably successful.

Indeed, this kind of Optimality Theory as a general cognitive strategy, to-
gether with simple heuristics, such as “take the higher”, “take the wider”,
“quantities do not change”, form the building blocks of the Heuristic-and-Biases
Program launched by Tversky and Kahneman (1974), and of the ABC Research
Project (Gigerenzer et al., 1999).

Gigerenzer et al. (1999, p. 24-25) summarise the ABC Research Project with
the following words:

The research program [...] is designed to elucidate three distinct
but interconnected aspects of rationality [...]:

1. Bounded rationality. Decision-making agents in the real world
must arrive at their inferences using realistic amounts of time,
information, and computational resources. We look for infer-
ence mechanisms exhibiting bounded rationality by designing
and testing computational models of fast and frugal heuristics
and their psychological building blocks. The building blocks
include heuristic principles for guiding search for information
or alternatives, stopping the search, and making decisions.

6The reader who would like to argue against the strong modularity of the brain in the
sense of Jerry Fodor, is welcome to replace the term “module” used here with something like
“basic computational unit”, probably smaller ones than those argued for by the proponents
of the modularity of the brain.
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2. Ecological rationality. Decision-making mechanisms can exploit
the structure of information in the environment to arrive at
more adaptively useful outcomes. To understand how differ-
ent heuristics can be ecologically rational, we characterize the
ways information can be structured in different decision envir-
onments and how heuristics can tap that structure to be fast,
frugal, accurate, and otherwise adaptive at the same time.

3. Social rationality. The most important aspects of an agent’s
environment are often created by the other agents it interacts
with. [...] Social rationality is a special form of models of
fast and frugal heuristics that exploit the information structure
of the social environment to enable adaptive interactions with
other agents. [...]

These three aspects of rationality look toward the same central goal:
to understand human behavior and cognition as it is adapted to
specific environments (ecological and social), and to discover the
heuristics that guide adaptive behavior.

Typical examples for the “fast and frugal heuristics” used in the ABC Re-
search Program include for instance: “if one of two objects is recognized and
the other is not, then infer that the recognized object has the higher value”
(which of the two cities mentioned is larger?, Gigerenzer et al., 1999, p. 41) or
“feed your children from youngest to oldest” (Gigerenzer et al., 1999, p. 314).
The claim is that modelling decision-making using such heuristics is a cognit-
ively adequate description of the human mind, on the one hand; and that such
heuristics are computationally simple, and yet efficient techniques, on the other.

The key to the success of such heuristics is the structure of the world: the
structure of the information, of the society, of communication, and so on. In
Todd’s words: “[i]n our program, we see heuristics as the way the human mind
can take advantage of the structure of information in the environment to arrive
at reasonable decisions, and so we focus on the inferences” (p. 28).

Still, nothing guarantees avoiding errors. If human mind makes decision
based on such heuristics, then... errare humanum est ! But the interpretation
of these errors had changed much in 25 years: what was seen by the heuristics-
and-biases program (Tversky and Kahneman, 1974) as a hindrance to sound
reasoning (“rendering Homo sapiens not so sapient”, Gigerenzer et al., 1999, p.
29), is perceived by the ABC Research Group rather as “enabling us to make
reasonable decisions and behave adaptively in our environment—Homo sapiens
would be lost without them” (ibid).

In the context of the cognitive research lines just described, Prince and
Smolensky (1993)’s Optimality Theory can be seen as a concrete case for the
specific cognitive subfield of language. OT constraints are similar heuristics,
that is, simple rules to evaluate the possibilities (candidates): “take the one
with the least codas”, “take the one with the most onsets”, “take the one with
the least epenthetic segments”, and so forth.7 Finding the most harmonic can-
didate (“take the best” for the ABC Research Group) is performed in OT with

7Here I leave open the question whether “simplicity” is also meant in computational terms,
in the form of requirements that, for example, constraints must be “primitive”, finite-state
friendly (Eisner, 1997; B́ıró, 2003). Even constraints that do not meet these requirements are
immensely simpler than grammars themselves.
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respect to the lexicographic strategy, one of the three possibilities besides the
linear model and the classification trees (Gigerenzer et al., 1999, p. 136-139).
Cognitive research on decision making in general, therefore, corroborates the use
of Optimality Theoretical grammars, and the emergence of OT-style linguistic
systems during the evolution of general cognitive skills becomes more plausible.

A major difference still remains, however. In Optimality Theory, the candid-
ate optimising the constraints is by definition the solution sought, whereas “fast
and frugal heuristics” aim only at approximating the solution of the complex
problem posed to the cognitive faculties (by seeking “good (i.e. near-optimal)
solutions at a reasonable computational cost”, Reeves, 1995, p. 6). Indeed, “fast
and frugal heuristics” are employed to answer problems under time pressure and
when information may be incomplete. In a different study, Gary Klein reports
that fireground commanders make around 80 percent of their decisions in less
than one minute, sometimes within a few seconds, whereas chess players under
blitz conditions make a move in average in six seconds Klein (1999, p. 4).

This difference between Optimality Theory and its cognitive background,
“fast and frugal heuristics” can be explained, though. Suppose that (OT-style)
language evolved from the heuristic inference system, and used its architecture
to define the rules of linguistic communication. Unlike in the case of a question
such as “which amount of water / which city is larger”, however, there is no a
priori uniquely good solution to the problem how to encode a thought into a
utterance. Hence, the system that had had only limited precision when solv-
ing cognitive problems, could now perfectly encode the rules of language—just
because these rules8 were formulated in terms of this system.

And yet, this new system of communication did not work so perfectly—
maybe due to the proliferation of meanings to be expressed, leading to the
proliferation of lexical items and possible structures. Here came a second level
of heuristics into play, at least according to the main claim of my thesis. Even
though the best candidate sought after is well defined in terms of the constraints,
still, it is not always possible to find it at production time. Now we move from
the first level to the second level on Table 2.1. Once the language community has
accepted a form as the grammatical (the optimal) one, locating it becomes an
analogous task to finding the a priori correct answer to any other question faced
by the cognitive system: the individual is expected to make her utmost effort
to approximate the correct solution as closely as possible, within a reasonable
time, and by using a limited computational capacity.

Therefore the individual will utilise heuristic techniques again. Even though
simulated annealing as a “heuristic optimisation algorithm” is “heuristic” in a
very different sense from the way the ABC Research Group employs the word
“heuristic”, some crucial similarities still point to a possibly deeper connection.
Namely, the tolerance of errors, as well as the use of the information’s structure.
Errors often emerge from the trade-off between the precision required by the
situation, on the one hand, and the computational resources and time available
to the system, on the other. Moreover, the structure of the wor(l)d—i.e., of
the search space—is taken into account. That is to say, the “fast and frugal
heuristics” of the ABC Research Group have developed during evolution so that
they reflect the structure of the world, and thereby help increasing precision;

8The word “rules” does not refer here to traditional generative rewrite rules, whose dis-
missal was exactly OT’s main agenda. By “rules” I simply mean the laws governing language.
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while in SA-OT, the neighbourhood structure mirrors what GEN does, due to
which SA-OT can exploit features of the candidate set.

Additionally, it can be argued that the larger human cognitive system also
employs some “heuristic optimisation algorithm” that has features remark-
ably reminding us of simulated annealing. Klein (1999, p. 30) observes that
“[d]ecision makers usually look for the first workable option they can find, not
the best option”, that “they do not have to generate a large set of options to be
sure they get a good one”, and that “[t]hey generate and evaluate options one
at a time and do not bother comparing the advantages and disadvantages of
alternatives”.9 All that because “[t]he emphasis is on being poised to act rather
than being paralyzed until all the evaluations have been completed”. Later,
Klein (p. 287) summarises his model for human decision making as “analytical”:
“... generative, channeling the decision making from opportunity to opportun-
ity rather than exhaustively filtering through all the permutations”. He even
adds that human decision making mechanisms “trade accuracy for speed and
therefore allow errors” [emphasis added—T. B.].

To turn to a very different domain, to believe systems, Bainbridge (2006)
introduces simple connectionist networks to model agents in a society. He con-
cludes then that “[l]ocal minima are actually very interesting, because they
represent a very human quality: a reluctance to give up beliefs that function
pretty well at the cost of never finding the real truth. One way of expressing the
thesis of this book is to say: Religious faith is a local minimum” (p. 83, italics in
the original text). Hence, unlike Klein’s firefighters, but like the random walker
in SA-OT, Bainbridge’s believer agents are happy with being stuck in a local
optimum.

In sum, I propose to view linguistic competence in its narrow sense (the
first level on Table 2.1) as a by-product of the heuristics used by the human
cognitive capacities. Then, on a second level, when the individual comes to
produce the grammatical form defined by the first level and accepted by the
language community, then these (or similar) heuristics ought to be used again,
in order to solve an otherwise computationally challenging task. As a result,
errare humanum est, even in matters of language, which is a domain created
by the human mind. For is it not surprising that the system of communication
developed by the human mind poses to the same mind problems whose difficulty
is similar to the difficulty of the problems posed by external factors? Why is it
so hard to find the right words?

9This last observation does not contradict the argument that Klein’s decision makers follow
an algorithm similar to simulated annealing. Namely, he does not describe here how the
decision maker comes up with particular options on a micro-level, but this process could
be imagined as the random walk in gradient ascent or simulated annealing. My only point
here is that neither Klein’s model, nor simulated annealing perform global comparisons or
comparisons of distant options.

An important difference is indeed that Klein’s model, unlike simulated annealing, is able to
decide whether a particular option (a local optimum) is in itself “good enough” or the search
should be continued further. On the other hand, if the experienced speaker could somehow
judge whether the local optimum returned by SA-OT is “good enough”, then the precision of
SA-OT could be improved. So, similarly to Klein’s firefighter who decides to search further if
the solution arrived at involves too much risk, the speaker would also run another simulation
if the locally optimal output still incurs too many violation marks.
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[Realising the Optimality Theoretical Model with Simulated Annealing]. sem-
inar paper, Eötvös Loránd University, 1997.
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Summary

This dissertation presents an implementation of Optimality Theory (OT, Prince
and Smolensky, 1993) that also aims at accounting for certain variations in
speech. The Simulated Annealing for Optimality Theory Algorithm (SA-OT,
Fig. 2.8, on page 64) combines OT with simulated annealing, a widespread heur-
istic optimisation technique. After a general introduction to Optimality Theory
and the discussion of certain “philosophical background questions” (especially
on the role of probabilities in linguistics; Chapter 1), the SA-OT Algorithm is
introduced (informally in section 2.2, mathematically in sections 3.3 and 3.4),
put into a broader context (section 2.1, Chapter 4, and sections 8.2 and 8.3),
and experimented with (section 2.3, Chapters 5-7).

Reeves (1995) defines heuristic as “a technique which seeks good (i.e. near-
optimal) solutions at a reasonable computational cost without being able to
guarantee either feasibility or optimality, or even in many cases to state how
close to optimality a particular feasible solution is.” Even if they are not ex-
act, these algorithms are very useful in solving efficiently hard computational
problems, similar to the task of finding the optimal candidate in an OT candi-
date set. A good solution suffices in many applications, and there is no need to
allocate huge computational resources to find the best solution. As section 2.1
argues, heuristic algorithms—such as SA-OT—may serve as adequate models
of the computations performed by the human brain for at least three reasons:
(1) many of these algorithms are simple, (relatively) efficient and produce some
output within a predefined time span, even if (2) they may make errors, and
finally (3) the algorithm can be speeded up with a price to be paid in reduced
precision. A faster computation is possible, but more prone to make errors. The
adequacy of such a model is corroborated if besides the grammatical forms it also
reproduces the empirically observable error patterns under different conditions.
Importantly, these predictions are quantitative, and the algorithm’s parameters
can “fine-tune” the output frequencies of the erroneous or alternating forms.

Table 2.1 (page 43) formulates this idea: by distinguishing between a lin-
guistic model and its implementation, one can account for both linguistic com-
petence and certain types of linguistically motivated performance phenomena.
Thus an adequate linguistic model (a grammar, such as a well-founded OT gram-
mar) predicts correctly which forms are judged as grammatical by the native
speaker. This layer refers to the static knowledge of the language in the native
speaker’s brain. On top of that is built the implementation of the grammar as a
model of the dynamic language production process. Similarly to human speech,
the implementation of the grammar need not be exact, but the errors made by
the implementation should correspond to the observed performance errors.
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In particular, SA-OT requires a topology (a neighbourhood structure) on the
OT candidate set. Consequently, the notion of a local optimum is introduced:
a candidate that is more harmonic than all its neighbours is a local optimum,
independently of whether it is the most harmonic element of the entire candidate
set. Local optima are the candidates that can emerge as outputs in SA-OT. The
global optimum predicts the grammatical form, whereas all other outputs should
model performance errors.

How does the SA-OT Algorithm work? A random walk is performed on
the candidate set. In each iteration, the random walker chooses randomly a
candidate w′ among the neighbours of its present position w. For instance, a
minimal basic operation transforms w into w′. The definition of the topology on
the candidate set also includes the a priori probabilities Pchoice(w′|w) , which
determine the chance of choosing w′ with the condition that the random walker
is in w. Then, the random walker truly moves to w′ with some other transition
probability P (w → w′|T )—which depends on the harmonies (violation profiles)
of candidates w and w′—else it stays in w.

The a priori probabilities Pchoice(w′|w) do not depend on the violation pro-
files of the candidates (hence, on the constraint ranking) and are constant during
the simulation. The transition probabilities P (w → w′|T ), however, diminish
as a function of the parameter T (called temperature), gradually, from 1 at the
beginning of the simulation to 0 at its end—if w′ is less harmonic than w. Other-
wise, the transition probability from w to w′ remains 1, so the random walker is
always allowed to move to a better neighbour. (See equation (2.2) on page 39
for this idea in traditional simulated annealing, and equation (2.17) on page 63
and the subsequent “Rules of moving” for SA-OT.) Thus, the random walker
will be stuck in some local optimum by the end. The output of the algorithm
is the final position of the random walker, and its precision is the likelihood of
this local optimum being also globally optimal. Frequently—but certainly not
always, as Chapter 6 demonstrates—a slower pace of diminishing the parameter
T (that is, a larger number of iterations performed, a slower cooling schedule)
results in a reduced chance of being stuck in a local optimum that is not globally
optimal.

Combining simulated annealing with Optimality Theory has been far from
trivial. Traditional simulated annealing optimises a real-valued target function,
which is different from the Harmony function employed in OT. In order to intro-
duce the transition probabilities, first the difference of two violation profiles has
to be defined, and then temperature T is introduced as a pair 〈K, t〉. The idea
is first presented in section 2.2 in a relatively informal way, whereas Chapter 3
argues for the same algorithm by making use of several mathematical formal-
isms. Chapter 3 starts with the mathematical definition of OT—also in order
to show which assumptions are needed in OT and what assumptions can be
generalised in future research—followed by a discussion on how to realise the
Harmony function using polynomials, on the one hand, and using ordinal num-
bers, on the other. Both approaches lead to the same way of combining OT
with simulated annealing.

The following chapter speculates about two “hot topics” in linguistics: the
lexicon and learnability. Apart from trains of thought that are left open for
future research and do not play a central role in this dissertation, it intro-
duces a new and formal definition of Output-Output Correspondence, or rather
Constituent-Output Correspondence, which is used in the subsequent chapter.
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The remaining three chapters before the conclusion present how concrete lin-
guistic phenomena could be tackled within the framework of SA-OT. In these
chapters the emphasis lies not so much on the phonological details of the spe-
cific analyses, rather on the methodological problems raised by SA-OT. The
experiments with the models demonstrate the role of certain parameters of
the algorithm, as well as the importance of certain decisions that have to be
made when one decides to use SA-OT. Additionally, different techniques and
tricks, different ways of experimenting with the models and different ways of
understanding their behaviour are presented throughout these chapters. Sec-
tion 8.1 summarises in details the various methodological issues dealt with in
these chapters.

Using a few observations on Dutch metrical stress assignment, Chapter 5
demonstrates how fast speech phenomena can be reproduced by varying the
speed of the algorithm. If the algorithm is run more quickly (with fewer iter-
ations, with a faster cooling schedule), then the frequencies of the alternating
forms change similarly to the way they change when moving from slow (normal,
careful) speech to fast speech, as reported by laboratory experiments.

The toy models in section 2.3 advanced some of the problems that are further
dealt with in Chapter 6, using the example of Dutch regressive and progressive
voice assimilation. Two models are presented, the first one involving a very
simple and restricted candidate set, and the second one displaying an infin-
ite topology. The landscapes, that is, the topologies of the OT candidate set
with the Harmony function, were simpler in these models than in the previous
chapter, and therefore an analytical discussion of the behaviour of the mod-
els could also be included, besides the experimentation with the parameters.
Furthermore, these models demonstrated that in the case of SA-OT—unlike
in the case of traditional simulated annealing—increasing the number of iter-
ations (having a slower cooling schedule) does not always necessarily lead to
an increased probability of returning the globally optimal candidate. Supposing
that SA-OT is indeed an adequate model for speech production, this observation
opened the floor to speculations about how to keep a grammar simple while still
accounting for “irregularities”. Namely, the “irregular” forms are conjectured
to be the erroneous outputs (the non-global local optima) that the dynamic
language production process cannot avoid producing under any condition.

Chapter 7 discusses two phenomena, both related to word or syllable struc-
ture. First, the cliticisation of the article in Hungarian is accounted for, as a
function of the speech rate and of the allomorph chosen. The topology of the
model has an overall structure that makes it similar to the second topology
analysed in Chapter 6. The same type of topology is enriched in the last model
presented in this dissertation, which is a first and preliminary attempt to im-
plement the classical OT paradigm for syllabification (basic CV Theory) using
SA-OT. So the simulations presented in Chapters 6 and 7 also demonstrate
how a certain type of model—which, I conjecture, might become important in
future research—can be made gradually more complex. In the same chapters
we see how never winning (loser) candidates can still influence the output fre-
quencies and should therefore be included in the candidate set (the Godot ef-
fect). Moreover, section 7.1 demonstrates how SA-OT can supply arguments
for ranking constraints that could not be ranked based on the arguments used
in traditional OT.

The concluding Chapter 8 summarises the results of the present thesis and
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compares SA-OT to other OT approaches to linguistic variation. Future re-
search should decide whether SA-OT or its competitors, the already existing
stochastic OT models are more fruitful, but I believe that they may comple-
ment each other. Moreover, future research should also work out certain details,
which have been judged so far by many readers as ad hoc, in a more persua-
sive manner. Finally, in section 8.3, SA-OT is put into the context in which
Optimality Theory was born more than a decade ago, namely, the cognitive
sciences.



Samenvatting

Het doel van dit proefschrift is Optimality Theory (Prince and Smolensky, 1993)
zo te implementeren dat we de variatie in spraak kunnen beginnen te verklaren.
Het Simulated Annealing Optimality Theory algoritme (SA-OT, Fig. 2.8, pagina
64) combineert Optimaliteitstheorie met de zogenaamde Simulated Annealing,
een wijd verspreid heuristisch optimalisatie-algoritme waarmee we de frequentie
van verschillende alternatieven nauwkeurig kunnen modelleren. Verder onder-
zoek zal in de toekomst moeten uitwijzen of SA-OT op termijn succesvoller is
dan de bestaande, stochastische optimaliteitstheoretische modellen.

In Hoofdstuk 1 worden deze concurrerende modellen op een rijtje gezet, en
wordt de “filosofische” achtergrond van het proefschrift geschetst. In Hoofd-
stuk 1 wordt het gebruik van een heuristisch optimalisatiealgoritme – zoals
Simulated Annealing – verantwoord, en het SA-OT algoritme gëıntroduceerd.
Tabel 2.1 (pagina 43) formuleert een van de centrale ideeën van dit proefschrift:
door het scheiden van het taalkundige model en de implementatie ervan, kun-
nen taalkundige competentie èn performancefouten verklaard worden. Een ade-
quaat model, zoals een optimaliteitstheoretische grammatica, kan voorspellen
welke vormen door de moedertaalspreker als grammaticaal worden beoordeeld.
Dit deel van het model komt overeen met de statische kennis van de taal in de
hersenen van de moedertaalspreker. Daarnaast is er de implementatie van de
grammatica, die gezien kan worden als model van het dynamische taalproductie-
proces. Net als de menselijke spraak hoeft de implementatie van de grammatica
niet exact (juist) te zijn, maar de door de implementatie gemaakte fouten dienen
wel overeen te komen met geobserveerde performancefouten.

SA-OT introduceert een topologie van de verzameling optimaliteitstheore-
tische kandidaten, namelijk een nabijheidsstructuur (Engels: ‘neighbourhood
structure’). Op deze manier kan het begrip lokaal optimum gedefinieerd wor-
den: een lokaal optimum is een kandidaat die een hogere harmonie heeft dan
zijn directe omgeving. Het zijn deze lokale optima die, ookal zijn ze niet globale
optima, als ‘onjuiste’ uitvoer geselecteerd kunnen worden, en zo performance-
fouten modelleren. Het globale optimum komt overeen met de grammaticale
vorm.

Hoe gaat dit in zijn werk? SA-OT voert een random walk uit op de kan-
didatenverzameling. Bij elke iteratie kiest de random walker willekeurig vanuit
de huidige positie w een naburige kandidaat w′ (er is bijvoorbeeld een basisope-
ratie die kandidaat w in w′ verandert), op basis van de a priori probabilities.
Vervolgens verplaatst de random walker zich naar w′ met een waarschijnlijk-
heid die we de transition probability zullen noemen. De a priori probabilities
blijven constant tijdens de simulatie, maar de transition probability neemt af,
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als functie van de paramater T (‘temperatuur’), tenzij w′ een harmonieuzere
(of een even zo harmonieuze) kandidaat is dan w, in welk geval de transition
probability altijd 1 is. Aan het eind van een simulatie staat de random walker
altijd in een lokaal optimum dat niet noodzakelijk het globale optimum is. De
uitvoer van het algoritme is de eindpositie van de random walker. Vaak – maar,
zoals is gebleken, lang niet altijd – is de kans dat het juiste, globale optimum
wordt bereikt groter wanneer de temperatuur T langzamer afneemt, en er meer
iteraties worden uitgevoerd.

Het combineren van Simulated Annealing en Optimaliteitstheorie is niet tri-
viaal. De targetfuncties die geoptimaliseerd worden in de traditionele Simulated
Annealing hebben reeële getallen als functiewaarden, maar de Harmoniefunctie
uit de Optimaliteitstheorie niet. De oplossing voor dit probleem wordt informeel
gëıntroduceerd in sectie 2.2, en wiskundig uitgewerkt in hoofdstuk 3. Dit hoofd-
stuk begint met een formele definitie van Optimaliteitstheorie, gevolgd door een
bespreking van twee manieren om de Harmoniefunctie te formuleren: door mid-
del van polynomen, of met ordinale getallen. Beide benaderingen leiden tot
dezelfde combinatie van Optimaliteitstheorie met Simulated Annealing.

In het daaropvolgende hoofdstuk speculeer ik over twee taalkundige ‘hot
topics’: het mentale lexicon (de woordenschat), en het leren van een grammatica.
Naast vragen die ik in dit hoofdstuk en deze dissertatie verder onbeantwoord
zal laten, introduceer ik ook een nieuwe formele definitie van de zogenaamde
Output-Output Correspondence, of liever Constutituent-Output Correspondence,
die in het volgende hoofdstuk gebruikt zal worden.

De laatste drie hoofdstukken laten zien hoe een aantal concrete, taalkundige
verschijnselen aangepakt kunnen worden met behulp van SA-OT. Hier ligt de
nadruk dan ook niet op de fonologische details van de analyses, maar op de
methodologie van het toepassen van SA-OT. De besproken modellen laten het
belang van de modelparameters zien in het algoritme. Daarnaast worden er
enkele technieken en trucs gëıntroduceerd en verschillende experimenten die
men kan uitvoeren met de modellen, en wordt besproken hoe de uitkomsten
van deze experimenten begrepen moeten worden. Sectie 8.1 vat de verschillende
methodologische observaties nog eens uitvoerig samen.

Metrische klemtoon in het Nederlands dient in hoofdstuk 5 als voorbeeld van
hoe spreeksnelheid met behulp van het algoritme gemodelleerd kan worden. Bij
een langzamere simulatie (met meer iteraties, met een geleidelijker cooling sche-
dule) veranderen de relatieve frequenties van de door het model geproduceerde
vormen op dezelfde wijze als de door een mens geproduceerde vormen bij het
veranderen van de spreeksnelheid in een laboratoriumexperiment.

Hoofdstuk 6 gaat over stemassimilatie, en de methodologische kwesties uit
dit hoofdstuk gaan terug op enkele problemen uit sectie 2.3. De ‘landschappen’,
dat wil zeggen de topologieën met de Harmoniefunctie, zijn eenvoudiger in deze
modellen dan die van de modellen in hoofdstuk 5, waardoor een analytische
bespreking van het gedrag van de modellen mogelijk is. Verder bewijzen deze
modellen dat – in tegenstelling tot traditionele Simulated Annealing – een ho-
ger aantal iteraties niet altijd leidt tot een grotere kans het globale optimum, de
beste kandidaat, te vinden. Als SA-OT daadwerkelijk een adequaat model van
de spraakproductie is, dan suggereert dit dat we onregelmatige vormen ook met
een eenvoudige grammatica kunnen uitleggen. Namelijk, de onregelmatige vor-
men zijn dan de ‘foutjes’ die het dynamische taalproductieprocess onherroeplijk
maakt.
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In hoofdstuk 7 passeren twee verschijnselen de revue, die met woord- en let-
tergreepstructuur te maken hebben. Eerst bestudeer ik de clitisering van het
Hongaarse lidwoord, afhankelijk van het spreektempo en de gekozen allomorf.
Daarna implementeer ik met SA-OT het klassieke paradigma van lettergreeps-
tructuur van Prince en Smolensky: Basic CV Theory. De topologie in het model
van het Hongaarse lidwoord heeft een algemene structuur die overeenkomt met
een van de topologieën die in hoofdstuk 6 gebruikt zijn. De topologie die ge-
bruikt is bij het implementeren van Basic CV Theory is een verdere ontwikkeling
hiervan. Samengenomen hebben we in hoofdstukken 6 en 7 verschillende aspec-
ten van modellen met een vergelijkbare topologie bestudeerd. Ik vermoed dat
deze ‘familie’ van modellen in toekomstig werk ook prominent aanwezig zal zijn.

In het achtste en laatste hoofdstuk worden de bevindingen samengevat, en
SA-OT vergeleken met andere modellen van variatie in taal. Tot slot wordt
SA-OT geplaatst in de context waarin de Optimaliteitstheorie meer dan een
decennium geleden ontstond: de cognitiewetenschap.
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Összefoglalás

Az Optimalitáselmélet (Optimality Theory, OT Prince and Smolensky, 1993) az
elmúlt évtized egyik legnépszerűbb elmélete, elsősorban a fonológiában (a hang-
tanban), de más nyelvészeti területeken is. A jelen disszertáció célja a modell
számı́tógépes implementációja, vagyis olyan algoritmus kidolgozása, amely meg-
találja az OT jelöltek halmazán az optimális jelöltet, amely az elmélet szerint
az adott nyelv grammatikus alakjának felel meg.

Az optimális jelölt megkeresésére a szimulált hőkezelés (szimulált lehűtés,
simulated annealing) nevű algoritmust használtam, amely a statisztikus fizikából
a számı́tástudományba átvett, elterjedt heurisztikus optimalizálási algoritmus.
Az SA-OT Algoritmust (Simulated Annealing for Optimality Theory Algorithm)
a 2.8. ábra mutatja be, a 64. oldalon. Mint a legtöbb heurisztikus algorit-
mus, az SA-OT sem garantálja azt, hogy mindig megtaláljuk az alaphalmaz
legjobb elemét, pontossága (a keresett elem megtalálásának a valósźınűsége)
általában kisebb 100%-nál. Mégis azt álĺıtom, hogy az emberi beszédprodukció
adekvát modellje, mivel (1) egyszerű, (2) tetszőleges időtartam alatt produkál
egy outputot, és (3) ez az időtartam lerövid́ıthető, az algoritmus felgyorśıtható
a pontosság rovására. A beszédpartnerünknek nem kell várnia egy komplexebb
mentális számı́tás esetén sem, és ha gyorsan kell beszélnünk, legfeljebb bevállal-
juk a hibázás nagyobb esélyét. Ezért az SA-OT Algoritmus a performanciahibák
modellezésére is alkalmas.

A nyelvi kompetencia és a nyelvészetileg motivált performanciajelenségek
egységes kezelésére tett javaslatomat mutatja be a 2.1 táblázat a 43. oldalon.
Ha különválasztjuk a nyelvészeti modellt, például egy OT-nyelvtant, annak az
implementációjától, akkor az előbbi a nyelvi kompetenciát (a nyelv statikus
ismeretét az agyban), utóbbi pedig a perfomanciát (a dinamikus nyelvpro-
dukciót) adhatja vissza. A nyelvtan jóslatot tesz arra nézve, hogy mely alakokat
tartja az anyanyelvi beszélő grammatikusnak, mı́g a nyelvtan implementációja
kvantitat́ıv előrejelzéseket tehet a grammatikus, ill. a kevésbé grammatikus
alakok előbukkanási gyakoriságára. Az SA-OT Algoritmus, paramétereinek fi-
nombeálĺıtása révén, éppen ezen valósźınűségek reprodukciójára alkalmas.

Az SA-OT egy topológiát (egy szomszédsági struktúrát) igényel az OT jelölt-
halmazon. Így lokális optimumokról is beszélhetünk, vagyis olyan jelöltekről,
amelyek harmonikusabbak a szomszédjaiknál, függetlenül attól, hogy az egész
halmaznak globális optimumjai-e. Az SA-OT outputjai épp ezek a lokális op-
timumok lesznek, vagyis azok a jelöltek felelnek meg a performanciahibáknak,
amelyek globálisan nem optimálisak, de amelyeket, lokális optimumok lévén, az
algoritmus kiadhat.

Hogyan történik ez? Az SA-OT Algoritmus egy véletlen bolyongást valóśıt
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meg a jelöltek halmazán. Ha a véletlen bolyongó épp a w poźıcióban található,
a szomszéd jelöltek közül kiválaszt egyet, w′-t, Pchoice(w′|w) a priori valósźınű-
séggel. Ezek a valósźınűségek állandóak, függetlenek a jelöltek harmóniájától,
a constraint-ek rendezésétől, és a topológia defińıciójának a részei. Majd össze-
hasonĺıtja w-t és w′-t, és egy másik P (w → w′|T ) valósźınűséggel átlép w′-be.
Utóbbi valósźınűségek függenek a jelöltek constraint-sértéseitől, és változnak az
algoritmus T paramétere (a

”
hőmérséklet”) függvényében. Ha a w′ jelölt nem

rosszabb, mint w, akkor ez a valósźınűség mindig 1 (harmonikusabb jelöltre
mindig át szabad lépni), ellenkező esetben pedig a szimuláció elején 1, majd
fokozatosan lecsökken 0-ra. Ezért a véletlen bolyongó a szimuláció elején még
ki tud szabadulni a lokális optimumokból, mı́g a végén belejük ragad, és ez a
végállapot válik az algoritmus outputjává. Ha a T

”
hőmérsékletet” lassabban

csökkentjük, vagyis több lépést, több iterációt engedünk meg, akkor sok eset-
ben (de nem mindig, lásd a 6. fejezetet) megnő annak a valósźınűsége, hogy a
véletlen bolyongó az algoritmus végére megtalálja a globális optimumot, amelyet
a hagyományos Optimalitáselmélet a grammatikus alaknak feleltet meg.

Az 1. fejezet bemutatja az Optimalitáselméletet és néhány változatát, vala-
mint a sztochasztikus módszerek nyelvészeti relevanciáját veti fel. A 2. fejezet
a heurisztikus módszerek mellett érvel, majd bevezeti az SA-OT Algoritmust.
A 3. fejezet az Optimalitáselmélet matematikai megalapozását nyújtja, annak
érdekében, hogy az SA-OT Algoritmust formális eszközökkel is bevezethesse.
Bemutatja azt, hogy miképp lehet a jelöltek harmóniáját polinomokkal, valamint
(transzfinit) rendszámokkal ábrázolni. A 4. fejezet spekulációi az SA-OT és a
lexikon, illetve a tanulhatóság viszonyát feszegetik.

Az 5. fejezettől kezdve konkrét nyelvészeti példákon teszteljük az SA-OT-t.
Az 5. fejezet a holland hangsúlyok eltolódását szimulálja gyorsbeszédben. A
lassan lefuttatott szimuláció a két lehetséges alak normális tempójú beszédben
előforduló gyakoriságait, mı́g a gyorsan lefuttatott szimuláció a gyorsbeszédbeli
gyakoriságait hivatott visszaadni. A 6. fejezet a regressźıv és progressźıv
zöngésségi harmóniát, mı́g a 7. fejezet a magyar névelő tapadását és a Prince
és Smolensky-féle szótagolás-modellt tárgyalja.

Ezekben a fejezetekben a sok ponton támadható fonológiai modelleknél fon-
tosabb az, ahogyan az SA-OT lehetőségeit fokozatosan kiaknázzuk. Az emĺıtett
jelenségek ürügyén az algoritmus paramétereit és a különféle topológiákat tesz-
teljük, különböző trükköket alkalmazunk. A rendszer viselkedését, a kisérletek
mellett, a 6. fejezetben analitikus eszközökkel is igyekszünk megérteni. A 6.
és a 7. fejezetben egy topológia-t́ıpust fokozatosan teszünk egyre összetettebbé.
A 6. fejezetben arra is példát látunk, hogy egy nyelvtant meg lehet őrizni
egyszerűnek, ha a

”
szabálytalan” alakokat a performanciamodell területére szám-

űzzük: a vizsgált példában az algoritmus mindig elő fogja álĺıtani a globálisan
nem optimális lokális minimumot, vagyis azt jósoljuk, hogy a nyelvtannak ellent-
mondó alak minden körülmények közt elő fog fordulni. Érveket láttunk amellett
is, hogy a felsźınen soha meg nem jelenő alakokat is bevegyünk a jelöltek hal-
mazába, és az SA-OT olyan constraintek rendezésében is seǵıt, amelyeket a
hagyományos OT nem tudna rendezni.

Az 5-7. fejezet tanulságait részletesebben a 8.1 alfejezet foglalja össze. A 8.2
alfejezet az Optimalitáselmélet korábban már tárgyalt változataival veti össze
az SA-OT Algoritmust. Végezetül pedig az SA-OT-t visszahelyezzük abba a
környezetbe, amelyben az Optimalitáselmélet eredetileg született, a kognit́ıv
tudományok közé.
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