Mathematical Modeling
A tutorial

Tamás Biró

Eötvös Loránd University

Network Theory and Computer Modeling in the Study of Religion
August 31, 2016
A note on myself

June 1997: two exams on the same day

- János Kertész: Computer simulations (physics major)
- József Schweitzer: Jewish liturgy (Hebrew major)

Anything common in these two topics?

HOPEFULLY…
A note on myself

June 1997: two exams on the same day

- János Kertész: Computer simulations (physics major)
- József Schweitzer: Jewish liturgy (Hebrew major)

Anything common in these two topics?

HOPEFULLY...
A note on myself

Theses on

- Analysis of DNA sequences using text analysis methods (physics major, supervisor: Tamás Vicsek)
- Modeling Mathematically the Statistical Properties of Written Texts (theoretical linguistics major)

From physics to linguistics: was it a big step?

NO!
A note on myself

Theses on

- Analysis of DNA sequences using text analysis methods (physics major, supervisor: Tamás Vicsek)

- Modeling Mathematically the Statistical Properties of Written Texts (theoretical linguistics major)

From physics to linguistics: was it a big step? NO!
Overview

1. Computation ≠ computers
2. Mathematics and computer simulations as methodologies
3. On differential equations
4. Differential equations for dynamic systems
5. Conclusions
Overview

1. Computation ≠ computers

2. Mathematics and computer simulations as methodologies

3. On differential equations

4. Differential equations for dynamic systems

5. Conclusions
Let us create a calculating machine

The machine has to be able to sum up (two) numbers.

Input: Tamás Biró
Output: István Czachesz
Programmer: Luther Martin
Processing units: everybody else

Only rule type allowed for each processing unit:

\[
\text{if } \text{you hear } X_1 \quad \text{[and } X_2 \quad \text{[and } X_3 \ldots \text{]} \quad \text{],}
\]
\[
\text{then } \text{say } Y_1 \text{ to } Z_1 \quad \text{[and say } Y_2 \text{ to } Z_2 \quad \text{[and } Y_3 \text{ to } Z_3 \text{[…]} \text{] }
\]

20 minutes for the project!
Let us create a calculating machine

The machine has to be able to sum up (two) numbers.

Input: Tamás Biró

Output: István Czachesz

Programmer: Luther Martin

Processing units: everybody else

Only rule type allowed for each processing unit:

\[
\text{if you hear } X_1 \quad \text{[and } X_2 \quad \text{[and } X_3 \ldots] \quad \text{],}
\]

\[
\text{then say } Y_1 \text{ to } Z_1 \quad \text{[and say } Y_2 \text{ to } Z_2 \quad \text{[and } Y_3 \text{ to } Z_3 \ldots]\quad \text{]} \]

20 minutes for the project!
Let us create a calculating machine

The machine has to be able to sum up (two) numbers.

Input: Tamás Biró
Output: István Czachesz
Programmer: Luther Martin
Processing units: everybody else

Only rule type allowed for each processing unit:

\[
\text{if } \text{you hear } X_1 \text{ [and } X_2 \text{ [and } X_3 \ldots] \text{],} \\
\text{then } \text{say } Y_1 \text{ to } Z_1 \text{ [and say } Y_2 \text{ to } Z_2 \text{ [and } Y_3 \text{ to } Z_3 \ldots] \text{]}
\]

20 minutes for the project!
What have we learned?

- Computation ≠ computers!
- Seemingly intelligent processes can be automated.
- Computational resources: memory (number of processing units) and time.
- Human resources: the time to create the program.
- Need to precisely define everything. Bugs and debugging.
- Continuous time vs. discrete time ticks.
- . . .
What have we learned?

- Computation \neq computers!
- Seemingly intelligent processes can be automated.
- Computational resources: memory (# of processing units) and time.
- Human resources: the time to create the program.
- Need to precisely define everything. Bugs and debugging.
- Continuous time vs. discrete time ticks.
- ...
David Marr: Three levels of analysis

1. **Computational level:** What does the system do? What is the function (i.e., mapping input onto output) performed by the system? E.g., summation; face recognition; ritual performance.

2. **Algorithmic/representational level:** How is it performed? Representations, and manipulations of those representation. E.g., summation digit-by-digit.

3. **Implementational/physical level:** How is this algorithm physically realized? E.g., in silico; wetware; workshop participants.
Overview

1. Computation \neq computers

2. Mathematics and computer simulations as methodologies

3. On differential equations

4. Differential equations for dynamic systems

5. Conclusions
Methodologies in physics

A. Experimental physics: data collection
 (exploratory research vs. hypothesis testing)

B. Theoretical physics: mathematics for modeling the word/nature
 + [Thought experiments]
 + Computer simulations (e.g., Kertész and Vicsek)

Analogy in other disciplines?
“Complicatedness” of theories

0. **Thought experiments**: handled mentally.

1. **Mathematical models**: handled analytically.

2. **Computer simulations**: can be more complex than mathematically tractable models, but simpler than real life.

Are we happy with

- *Level of abstraction?*
- *Simplifications?*

3. **Experiments**: complexities of real life controlled.

4. **Observations**: complexities of real life at their best.
Numerical solution vs. analytic solution

\[1 + 2 + 3 + \ldots + 98 + 99 + 100 = ? \]

- **Numerical solution**: go and compute it with sheer force. For more complex problems: often an approximate solution, only.

- **Analytic solution**: clever math provides a closed formula. Exact solution with pencil and paper
 \[\rightarrow \text{on the condition that an analytic solution exists!} \]

\[1 + 2 + \ldots + 99 + 100 = \frac{100 \times (100 + 1)}{2} = 50 \times 101 = 5050 \]
Numerical solution vs. analytic solution

1 + 2 + 3 + ... + 98 + 99 + 100 = ?

- **Numerical solution**: go and compute it with sheer force. For more complex problems: often an approximate solution, only.

- **Analytic solution**: clever math provides a closed formula. Exact solution with pencil and paper → on the condition that an analytic solution exists!

\[
1 + 2 + \ldots + 99 + 100 = \frac{100 \times (100 + 1)}{2} = 50 \times 101 = 5050
\]
Issues with computer simulations

- Helps you better understand your theory/hypothesis.
- Forces you to formulate details of theory/hypothesis precisely.
- Faster. Can also be applied to past/remote/unreal conditions. Etc.
- Level of optimal abstractions:
 - If too simple: no connection to reality? *What do the results tell us?*
 - If too complex, too many parameters: easy to tweak the model. *What do the results tell us?*

→ Possible answer:
 - Understand the behavior of the model as a function of its parameters.
 - Seek results that are not too dependent on parameter setting.
Overview

1. Computation ≠ computers
2. Mathematics and computer simulations as methodologies
3. On differential equations
4. Differential equations for dynamic systems
5. Conclusions
Derivatives

\[y = f(x) \]

\[f(x) = x \sin(x^2) + 1 \Rightarrow f'(x) = \sin(x^2) + 2x^2 \cos(x^2) \]
Derivatives

<table>
<thead>
<tr>
<th>$f(x)$</th>
<th>$f'(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>0</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>x^2</td>
<td>$2x$</td>
</tr>
<tr>
<td>x^3</td>
<td>$3x^2$</td>
</tr>
<tr>
<td>$c \cdot f(x)$</td>
<td>$c \cdot f'(x)$</td>
</tr>
<tr>
<td>$f(x) + g(x)$</td>
<td>$f'(x) + g'(x)$</td>
</tr>
<tr>
<td>e^x</td>
<td>e^x</td>
</tr>
<tr>
<td>$\sin(x)$</td>
<td>$\cos(x)$</td>
</tr>
<tr>
<td>$\cos(x)$</td>
<td>$-\sin(x)$</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
Differential equations

What is $f(x)$, if

$$f'(x) = 2x$$

Solution:

$$f(x) = x^2$$

$$f(x) = x^2 + c$$
Differential equations

What is $f(x)$, if

\[f'(x) = 2x \]

Solution:

\[
\begin{align*}
f(x) &= x^2 \\
f(x) &= x^2 + c
\end{align*}
\]
What is \(f(x) \), if

\[f'(x) = f(x) \]

Solution:

\[f(x) = e^x \]

\[f(x) = c \cdot e^x \]
Differential equations

What is \(f(x) \), if

\[
f'(x) = f(x)
\]

Solution:

\[
\begin{align*}
f(x) &= e^x \\
f(x) &= c \cdot e^x
\end{align*}
\]
Differential equations

What is \(f(x) \), if

\[
 f''(x) = -f(x)
\]

Solution:

\[
 f(x) = \sin(x) \\
 f(x) = \cos(x) \\
 f(x) = c_1 \cdot \sin(x) + c_2 \cdot \cos(x)
\]

Thus far: analytic solutions
Differential equations

What is \(f(x) \), if

\[
f''(x) = -f(x)
\]

Solution:

\[
\begin{align*}
f(x) &= \sin(x) \\
f(x) &= \cos(x) \\
f(x) &= c_1 \cdot \sin(x) + c_2 \cdot \cos(x)
\end{align*}
\]

Thus far: analytic solutions
Differential equations

What is $f(x)$, if

\[f''(x) = -f(x) \]

Solution:

\[
\begin{align*}
 f(x) & = \sin(x) \\
 f(x) & = \cos(x) \\
 f(x) & = c_1 \cdot \sin(x) + c_2 \cdot \cos(x)
\end{align*}
\]

Thus far: analytic solutions
Numerical solutions for differential equations

What is $f(x)$, if

$$f''(x) + x \cdot f'(x) - 2 \cdot x^2 \cdot f(x) + \cos(x^3) - 15 = 0$$

Solution:

Use computers to solve this problem.
Numerical solutions: e.g., using step-by-step approximations.
NB: various sources of errors.
Numerical solutions for differential equations

What is \(f(x) \), if

\[f''(x) + x \cdot f'(x) - 2 \cdot x^2 \cdot f(x) + \cos(x^3) - 15 = 0 \]

Solution:

Use computers to solve this problem.
Numerical solutions: e.g., using step-by-step approximations.
NB: various sources of errors.
Overview

1. Computation ≠ computers
2. Mathematics and computer simulations as methodologies
3. On differential equations
4. Differential equations for dynamic systems
5. Conclusions
Population dynamics

$y(t)$: size of the population at time t.

$\Delta y(t) = y(t + 1) - y(t)$: population growth at time t.

Suppose that population growth is equal to population size:

\[
y(t + 1) - y(t) = y(t)
\]
\[
y(t + 1) = 2y(t)
\]

Then: $y(1) = 2y(0)$, $y(2) = 2y(1) = 4y(0)$, $y(3) = 2y(2) = 8y(0), \ldots$, $y(t) = 2^t y(0)$.
Population dynamics

\(y(t) \): size of the population at time \(t \).

\(\Delta y(t) = y(t + 1) - y(t) \): population growth at time \(t \).

Suppose that population growth is equal to population size:

\[
\begin{align*}
 y(t + 1) - y(t) &= y(t) \\
 \Delta y(t) &= y(t) \\
 \frac{dy}{dt} = y'(t) &= y(t)
\end{align*}
\]

And so: \(y(t) = e^t \).
Dynamic system

1, 2, ... n: the components of the dynamics system.

\(y_1(t), y_2(t), \ldots y_n(t)\):
“value” of each component in the dynamics system at time \(t\).

The equations defining the dynamic system (discrete time!):

\[
\begin{align*}
y_1(t + 1) &= \ldots y_1(t) + \ldots y_2(t) + \ldots y_n(t) + \ldots t + \ldots \\
y_2(t + 1) &= \ldots y_1(t) + \ldots y_2(t) + \ldots y_n(t) + \ldots t + \ldots \\
\vdots \\
y_n(t + 1) &= \ldots y_1(t) + \ldots y_2(t) + \ldots y_n(t) + \ldots t + \ldots
\end{align*}
\]

So what functions are \(y_1(t), y_2(t), \ldots y_n(t)\)?
Solve those differential equations either numerically, or analytically.
Dynamic system

1, 2, \ldots n: the components of the dynamics system.

\(y_1(t), y_2(t), \ldots y_n(t): \) “value” of each component in the dynamics system at time \(t \).

The equations defining the dynamic system \textbf{(continuous time!)}:

\[
\begin{align*}
y_1'(t) &= \ldots y_1(t) + \ldots y_2(t) + \ldots y_n(t) + \ldots t + \ldots \\
y_2'(t) &= \ldots y_1(t) + \ldots y_2(t) + \ldots y_n(t) + \ldots t + \ldots \\
&\quad \vdots \\
y_n'(t) &= \ldots y_1(t) + \ldots y_2(t) + \ldots y_n(t) + \ldots t + \ldots
\end{align*}
\]

So what functions are \(y_1(t), y_2(t), \ldots y_n(t) \)?
Solve those differential equations either numerically, or analytically.
Overview

1. Computation \neq computers
2. Mathematics and computer simulations as methodologies
3. On differential equations
4. Differential equations for dynamic systems
5. Conclusions
Conclusions

And now: I am expected to provide smart conclusions!

But what if

- you gave them
- or postpone them to the end of the day/end of the week?

Anyway…
Conclusions

And now: I am expected to provide smart conclusions!

But what if

- you gave them
- or postpone them to the end of the day/end of the week?

Anyway...
Thank you for your attention!

Tamás Biró:
tamas.biro@btk.elte.hu

Tools for Optimality Theory
http://www.birot.hu/OTKit/

Work supported by:

European Union
Marie Curie Actions