Language and Computation

week 2, Thursday, January 23, 2014

Tamás Biró

Yale University

tamas.biro@yale.edu

http://www.birot.hu/courses/2014-LC/

Practical matters

- Sections
- Slight change in program (moving "automata" earlier)
- Post-reading after next Tuesday: JM 3 and JM 16 (t.b.a.)
- Pre-reading by Thursday 01/30: JM 4.1-4.3, then 5.1-5.3.
- Project-based **term paper** in lieu of final exam (undergrads): approx. 10-15 pp, details on classes v2 and website.

Automata and transducers

Computation

 Map input onto output (e.g., meaning to utterance, sound to text)

We need a mechanism to compute that mapping.

Define the set of grammatical forms/sentences/utterances:

We need a mechanism to compute that set, or to compute whether a form/sentence/utterance \in that set.

We focus on "text-like" information!

Defining a formal language

Formal language \mathcal{L} of alphabet Σ defined as $\mathcal{L} \subseteq \Sigma^*$. How to define an \mathcal{L} ?

- using prose and/or human intuition
- enumeration
- regular expressions
- automata
- formal grammars

Language classes

Given a mechanism, and given an alphabet Σ what is the class of languages (a subset of $\mathcal{P}(\Sigma^*)$) that can be defined using that mechanism?

Regular languages

Regular languages over Σ : language that can be defined using regular expressions / regular grammars / finite-state automata.

intersection	if L_1 and L_2 are regular languages, then so is $L_1 \cap L_2$, the language consisting of the set of strings that are in both L_1 and L_2 .
difference	if L_1 and L_2 are regular languages, then so is $L_1 - L_2$, the language consisting of the set of strings that are in L_1 but not L_2 .
complementation	If L_1 is a regular language, then so is $\Sigma^* - L_1$, the set of all possible strings that aren't in L_1 .
reversal	If L_1 is a regular language, then so is L_1^R , the language consisting of the set of reversals of all the strings in L_1 .

Regular languages

- 1. Ø is a regular language
- 2. $\forall a \in \Sigma \cup \epsilon$, $\{a\}$ is a regular language
- 3. If L_1 and L_2 are regular languages, then so are:
 - (a) $L_1 \cdot L_2 = \{xy \mid x \in L_1, y \in L_2\}$, the **concatenation** of L_1 and L_2
 - (b) $L_1 \cup L_2$, the **union** or **disjunction** of L_1 and L_2
 - (c) L_1^* , the **Kleene closure** of L_1

Can we prove these facts using regular expressions?

Automata and transducers

Automaton:

Transducer:

• Input: string $\in \Sigma^*$

• Input: string $\in \Sigma^*$

Output: accept or reject.

• Output: string $\in \Delta^*$

Finite state automaton

- Q finite set of states
- Σ (input) alphabet
- $q_0 \in Q$ start state
- $F \subseteq Q$ set of final states (can be empty)
- $\delta(q,i)$ transition function $Q \times \Sigma \cup \{\epsilon\} \to Q$

Finite state automaton

First approximation:

Automaton accepts string $i_1i_2\dots i_n$ iff there is a series of states $q_1,q_2,\dots q_n$ such that $\delta(q_i,i_i)=q_{i+1}$ for all j.

Finite state transducers

- Q finite set of states
- ullet Σ input alphabet and Δ output alphabet
- $q_0 \in Q$ start state
- $F \subseteq Q$ set of final states (can be empty)
- $\delta(q,i)$ transition function $Q \times \Sigma \cup \{\epsilon\} \to Q$
- $\sigma(q,i)$ output function $Q \times \Sigma \cup \{\epsilon\} \to \Delta \cup \{\epsilon\}$

See you next week!

