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Practical matters

• Post-reading: JM 23.1.1, 4.1-4.3

• Pre-reading: JM 5.1-5.4 (eventually: chapter 7)

• Python: this week H 3 and 4; next week H 5.

• Previous Problem Set

• Next Problem Set: published tomorrow, due Tu 02/18.

• Session: pseudo-codes.
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Today

• Text classification

• Machine learning (evaluation metrics)

• N -grams

• Smoothing (basics)

• Probability (refresher)

Next time: Markov-models

Tamás Biró, Yale U., Language and Computation p. 3



Comparing documents with n-grams
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Task: document categorization/classification

Many documents entering a news agency, to be classified by

• language

• topic

• author

• genre

• political preference
etc.
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Machine learning: the basic idea

• Given set X (e.g., of [possible] documents)

Given set Y of tags (e.g., of languages, of topics, of authors, etc.)

• Unknown correct mapping M∗ : X → Y

• Training set of learning data {(x1, y1), (x2, y2), . . . (xn, yn)},
where (xi, yi) ∈ X × Y , yi = M∗(xi),

• is employed to identify some mapping M : X → Y ∈M

• such that M approximates M∗ on the test set X ′:
maximize performance on |{x ∈ X ′|M(x) = M∗(x)}|.
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Excursus: Evaluating a document classifier

aij: number of documents categorized by M as i, and being
in reality (categorized by M∗) as j.

In reality: English French Spanish
Categorized as English aee aef aes
Categorized as French afe aff afs
Categorized as Spanish ase asf ass

Accuracy =
aee + aff + ass∑

i,j∈{e,f,s} aij
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Excursus: Evaluating a binary classifier

In reality: positive negative
Categorized as positive true positives false positives
Categorized as negative false negatives true negatives

Accuracy =
#tp

#tp +#fp +#fn +#tn
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Excursus: Evaluating a binary classifier

In reality: positive negative
Categorized as positive true positives false positives
Categorized as negative false negatives true negatives

Precision =
#tp

#tp +#fp

Recall =
#tp

#tp +#fn

F -measure =
2PR

P +R
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The practice of doing Machine Learning

• Define task: text classification, disambiguation, parse
selection, part-of-speech tagging, information retrieval, etc.

• Define your goal: which evaluation metric most important?

• Choose a training set/corpus and a test set/corpus.

• Choose a machine learning technique (entails M)

• Go!

Tamás Biró, Yale U., Language and Computation p. 10



Back to text classification. A text as. . .

• a meaning, a message

• as a series of sentences

• a string of words

• a bag of words

• a series of n-grams:

– a string of n characters / letters / words / etc.

– overlapping or non-overlapping
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Vector Space Models and the Cosine Metric

• f(wi, D) : frequency of word / n-gram wi in document D.

• Given document D, create vector (f(w1, D), f(w2, D), . . . f(wn, D))

• Distance of two vectors: use their cosine distance
(normalized dot product):

d(a,b) =

∑n
i=1 ai · bi√∑n

i=1 a
2
i ·

√∑n
i=1 b

2
i

• For each y ∈ Y , create reference vector Dy.
To categorize document D, find closest reference vector.
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Vector Space Models

Document D and references Dy characterized by a vector of

• word frequencies, including / excluding stopwords

• character frequencies aka unigrams of words, letters. . .

• character bigrams frequencies

• word bigram frequencies

• trigrams, . . . n-grams (aka n-tuples)

• which do / do not overlap
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Vector Space Models

How to create the reference vector Dy for each y ∈ Y ?

• Best guess: from the training set.

• Optimal if training set = test set.

• But what about generalizability?

• Goal: optimize on yet-unknown test set.

• Training set → held-out sets (and devset) → test-set.
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Vector Space Models

How to create the reference vector Dy for each y ∈ Y ?

• Best guess: from the training set.

• Word/letter/n-gram frequencies estimated from training set.

• The sparse data problem, as well as

• room for unknown words (aka out-of-vocabulary words)?

• Therefore, obtain a better approximation of the ideal Dy

(the one “used” by M∗) by introducing smoothing.
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Smoothing (overview only)

• N : corpus size (# of tokens)
V : vocabulary size (# of types)
ci: count of word (type) wi.

• Unsmoothed Maximum Likelihood Estimate:

P (wi) =
ci
N
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Smoothing (overview only)

• N : corpus size (# of tokens)
V : vocabulary size (# of types, including those with 0 frequency!)

ci: count of word (type) wi.

• Laplace Smoothing or add-one smoothing:

PL(wi) =
ci + 1

N + V

• as if we used c∗i = (ci + 1) N
N+V in MLE,

discounting ci and reallocating probability mass to unseen words.
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Smoothing (overview only)

• N : corpus size (# of tokens), ci: count of word (type) wi

Nc: # of types that occur c times (frequency of frequency)

• Good-Turing Smoothing/discounting:

PGT (wi) =
(ci + 1)Nci+1

NNci

• as if we used c∗i = (ci + 1)
Nci+1

Nci
in MLE,

discounting ci and reallocating probability mass to unseen words.

• Count the hapaxes → estimate the count of types unseen in
training: PGT (unseen) = N1/N .
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From frequency to probability to scores

What is “probability” P?

• Observed frequency in the training set/corpus?

• Expected frequency in the test set/corpus?

• Expected frequency in the “entire” set/corpus X?

• A technicality that sums up to 1?
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Basics of probability

• Sample space: possible outcomes of an experiment.

• Event: a subset of the sample space.

• Given set X of events (a random variable)),

• probability P : X → [0, 1].

• P (X) = 1, P (A ∨B) = P (A) + P (B)− P (A ∧B)

• Conditional probability: P (A|B) = P (A ∧B)/P (B).
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See you next week!
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