Language and Computation

week 5, Tuesday, February 11, 2014

Tamás Biró

Yale University

tamas.biro@yale.edu

http://www.birot.hu/courses/2014-LC/

Practical matters

- Background reading: JM 7 and 8 (know what is in there).
- Python: this week H 5.
- **Sections**: probability theory
- Problem set 2 posted

Today

Probability and smoothing

ullet From n-grams to Markov models

Next time:

Remarks on assignment 1

Months of different length:

```
/((0[13578]|1[02])\/(0[1-9]|[12][0-9]|3[01])|
```

/(0[1-9]|1[0-2])\/(0[1-9]|[12][0-9]|3[01])/

```
(0[469]|11)\/(0[1-9]|[12][0-9]|3[0]))|
(02)\/(0[1-9]|[12][0-9]))/
```

- Leap years in Julian calendar: \d \d ([02468][048]|[1359][26])
- Leap years in Gregorian calendar:
 \d \d (0 [48] | [2468] [048] | [1359] [26]) |
 ([02468][048] | [1359][26]) 00

Remarks on assignment 1

Finite-state technology:

- Finite number of states
- No "memory": no infinite memory
- Technically speaking: any large finite memory
- Is the phenomenon "inherently" finite-state?
 E.g., 01: January. Reduplicative morphology.
 M. translation (Eng to Fr, Sp, Heb, Arb etc.): Adj N → N Adj

The "probability" of a document in language L?

Basics of probability

- Sample space: possible outcomes of an experiment.
- Event: a subset of the sample space.
- ullet Given set X of events (a $random\ variable$)),
- probability $P: X \rightarrow [0,1]$.
- P(X) = 1, $P(A \vee B) = P(A) + P(B) P(A \wedge B)$
- Conditional probability: $P(A|B) = P(A \wedge B)/P(B)$.

From frequency to probability to scores

What is "probability" P?

- Observed frequency in the training set/corpus?
- Expected frequency in the test set/corpus?
- Expected frequency in the "entire" set/corpus X?
- A technicality that sums up to 1?

Smoothing (overview only)

• N: corpus size (# of tokens)

V: vocabulary size (# of types)

 c_i : count of word (type) w_i .

Unsmoothed Maximum Likelihood Estimate:

$$P(w_i) = \frac{c_i}{N}$$

Smoothing (overview only)

- N: corpus size (# of tokens)
 - V: vocabulary size (# of types, including those with 0 frequency!)
 - c_i : count of word (type) w_i .
- Laplace Smoothing or add-one smoothing:

$$P_L(w_i) = \frac{c_i + 1}{N + V}$$

• as if we used $c_i^*=(c_i+1)\frac{N}{N+V}$ in MLE, discounting c_i and reallocating probability mass to unseen words.

Smoothing (overview only)

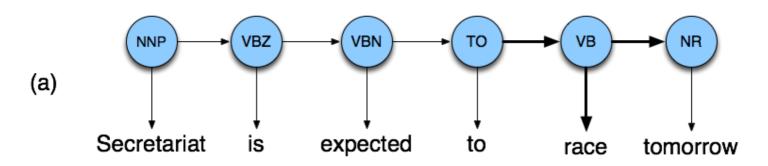
- N: corpus size (# of tokens), c_i : count of word (type) w_i N_c : # of types that occur c times (frequency of frequency)
- Good-Turing Smoothing/discounting:

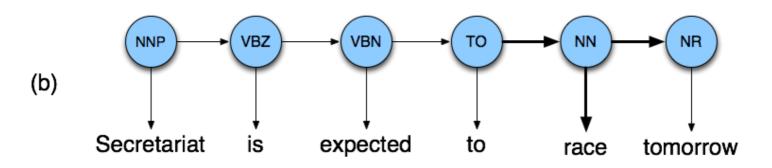
$$P_{GT}(w_i) = \frac{(c_i + 1)N_{c_i+1}}{NN_{c_i}}$$

- as if we used $c_i^*=(c_i+1)\frac{N_{c_i+1}}{N_{c_i}}$ in MLE, discounting c_i and reallocating probability mass to unseen words.
- Count the hapaxes \rightarrow estimate the count of types unseen in training: $P_{GT}(\text{unseen}) = N_1/N$.

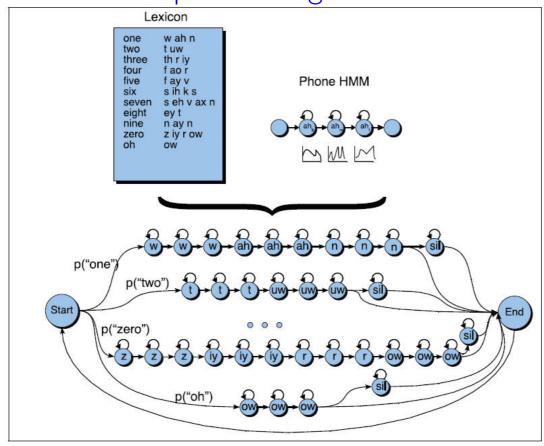
From n-grams models to Markov chains

Part-of-Speech Tagging

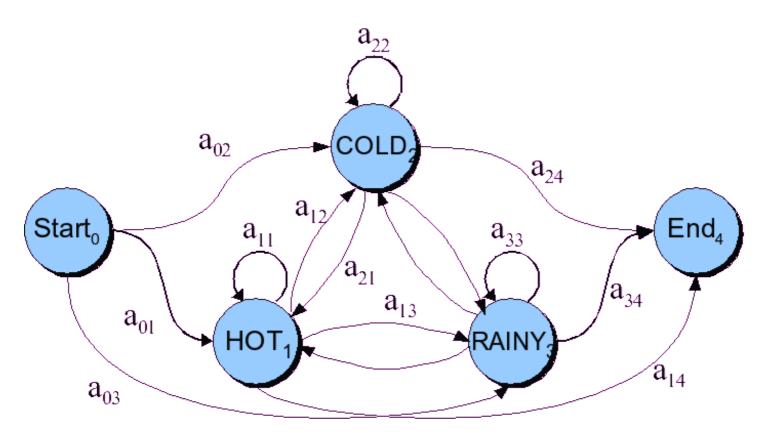




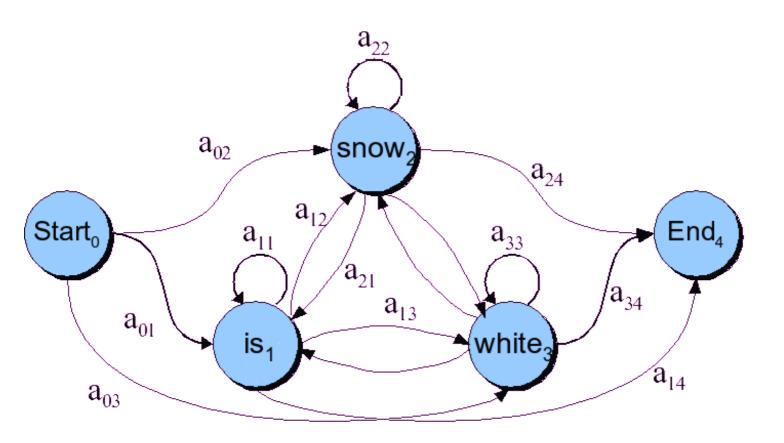
Speech recognition



Markov Chain for Weather



Markov Chain for Words



Markov Chain: "First-order observable Markov Model"

- Set of states Q. The state at time t is q_t .
- a_{ij} : probability transitioning $q_i \to q_j$.
- Transition matrix $A = (q_{ij})$.
- Current state depends only on previous state:

$$P(q_i|q_1...q_{i-1}) = P(q_i|q_{i-1})$$

(Hidden) Markov Models

$Q = q_1 q_2 \dots q_N$	a set of states
$A = a_{01}a_{02}\dots a_{n1}\dots a_{nn}$	a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \ \forall i$
$O = o_1 o_2 \dots o_N$	a set of observations , each one drawn from a vocabulary $V = v_1, v_2,, v_V$.
$B = b_i(o_t)$	a set of observation likelihoods , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state i
q_0, q_{end}	special start and end states that are not associated with observations

(Hidden) Markov Models

Next task:

learn how to estimate the parameters.

- Markov chain: use n-gram probabilities
- Markov models: decoding with Viterbi algorithm
- Hidden Markov models: parameter estimation with Expectation-Maximization Algorithm

See you on Thursday!

