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Practical matters

e Background reading: JM 7 and 8 (know what is in there).
e Python: this week H 5.
e Sections: probability theory

e Problem set 2 posted
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Today

e Probability and smoothing

e From n-grams to Markov models

Next time:
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Remarks on assignment 1

e Months of different length:
/(0[1-9]|1[0-2])\/(0[1-9]|[12] [0-9]|3[01])/

/((0[13578]111[02]1)\/(0[1-9]|[12]1 [0-9]|3[01])]
(0[469]|11)\/(0[1-9]|[12] [0-91|3[01))]
(02)\/(0[1-9]1|[12] [0-9]1))/

e Leapyearsin Julian calendar: \d \d ([02468] [048]|[1359] [26])

e leap years in Gregorian calendar:
\d \d (0[48]|[2468] [048]|[1359] [26])|

([02468][048]|[1359][26])00
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Remarks on assignment 1

Finite-state technology:

e Finite number of states

e No "memory”: no infinite memory

e Technically speaking: any large finite memory
e |s the phenomenon “inherently” finite-state?

E.g., 01:January. Reduplicative morphology.
M. translation (Eng to Fr, Sp, Heb, Arb etc.): Adj N — N Adj
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The "probability” of a document in language L~

Tamas Bir6, Yale U., Language and Computation



Basics of probability

e Sample space: possible outcomes of an experiment.
e Event: a subset of the sample space.

e Given set X of events (a random variable)),

e probability P: X — [0,1].

e P(X)=1 P(AVvB)=P(A)+ P(B)— P(AANB)

e Conditional probability: P(A|B) = P(

Tamas Bir6, Yale U., Language and Computation



From frequency to probability to scores

What is “probability” P7

e Observed frequency in the training set/corpus?
e Expected frequency in the test set/corpus?
e Expected frequency in the “entire” set/corpus X7

e A technicality that sums up to 17
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Smoothing (overview only)

e N: corpus size (# of tokens)
V. vocabulary size (# of types)
c;: count of word (type) w;.

e Unsmoothed Maximum Likelihood Estimate:

Ci
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Smoothing (overview only)

e N: corpus size (# of tokens)
V. vocabulary size (# of types, including those with 0 frequency!)
c;: count of word (type) w;.

e Laplace Smoothing or add-one smoothing:

c; + 1

Plw) =Ny

® asif we used ¢ = (¢; + 1)NL+V in MLE,

discounting ¢; and reallocating probability mass to unseen words.

L '
-Iml ’
L
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Smoothing (overview only)

e N: corpus size (# of tokens), ¢;: count of word (type) w;
N¢: # of types that occur ¢ times (frequency of frequency)

e Good-Turing Smoothing/discounting;

(ci +1)Ne, 41

Per(w;) = N

® asif weused c; = (¢; + 1) C@H in MLE,

discounting ¢; and reallocating probablllty mass to unseen words.

e Count the hapaxes — estimate the count of types unseen in
training: Por(unseen) = N1 /N.

BB
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From n-grams models to Markov chains
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Part-of-Speech Tagging

Secretariat is expected to race tomorrow
(b) |
Secretariat is expected to race tomorrow
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Speech recognition

Lexicon
one w ah n
two t uw
three thriy
four faor
five faywv
Six sihks
seven sehvaxn
eight eyt

nine nayn
zero  Ziyrow
oh ow

Phone HMM
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Markov Chain for Weather
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Markov Chain for Words

Tamas Bir6, Yale U., Language and Computation p. 16



Markov Chain: "First-order observable Markov Model”

e Set of states (). The state at time t is ¢;.
® a;;: probability transitioning ¢; — ¢;.
e Transition matrix A = (q;;).

e Current state depends only on previous state:

P((]¢|CI1 e %—1) = P(Qi|€l¢—1)
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(Hidden) Markov Models

Q=q192...9N
A=apiap...ay1 ...y

0:0102...ON

B = Z)j(O;)

q0:-9end

a set of states

a transition probability matrix A, each ¢;; rep-
resenting the probability of moving from state i
to state j, s.t. } 5_;a;; =1 Vi

a set of observations, each one drawn from a vo-
cabulary V =vy,v2,...,vy.

a set of observation likelihoods, also called
emission probabilities, each expressing the
probability of an observation o; being generated
from a state i

special start and end states that are not associ-
ated with observations
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(Hidden) Markov Models

Next task:

learn how to estimate the parameters.

e Markov chain: use n-gram probabilities
e Markov models: decoding with Viterbi algorithm

e Hidden Markov models: parameter estimation with Expectation-
Maximization Algorithm
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See you on Thursday!
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