
Language and Computation
LING 227 01 / 627 01 / PSYC 327 01
Interim summary
(in lieu of the lecture cancelled due to snow storm)
February 13, 2014

1 Introductory remarks

The following pages summarize the topics covered in the last few lectures
and prepares the floor for the following ones. It is meant as a replacement
for the lecture of 02/13, cancelled due to the snow storm. While reading the
seemingly redundant repetition of earlier topics, please also pay close attention
to the minor remarks added here and there.

In the previous lectures, I introduced the basics of machine learning,
which is the major focus of contemporary computational linguistics. We used
text classification as an example. Texts (or documents) were characterized by
frequencies: either with word or letter frequencies, or with n-gram frequencies.
Please remember that n-grams can be defined both on the character level (for
instance, pairs of characters) and on the word level (for example, triplets of
words). In most applications, we fix both n and the unit (character or word)
using which n-grams (a.k.a. n-tuples) are collected. 1 One also has to make
clear whether n-grams overlap (as almost always), or they don’t.

Introducing the notion of n-grams has paved the way to Markov Models
(to be defined below), a concept extremely useful in many NLP applications.
Following the textbook, we shall discuss Markov Models with two applications
in mind: parts-of-speech tagging (POS-tagging) and speech recognition (ASR).

Beside (re-)introducing these and further concepts, an additional goal of
mine is to explain how the popular concept of probability is used (or, some-
times, misused) in computational linguistics. The turn toward probabilistic
models in the 1990s has resulted in an unprecedented explosion in the field, a
consequence of which is that language technology has broken the barriers of the
theoretical labs, and has penetrated our everyday life.

1. A future homework might involve a method that makes use of n-grams generated with
several n values at the same time: pairs, triplets etc. are considered together. Yet, such an
approach is rare. Please remember the terms unigram, bigram and trigram, standing for n-
grams with n = 1, n = 2 and n = 3, respectively. The term n-tuple generalizes over the terms
single, double (or pair), triple, quadruple, quintuple, etc. Finally, note that word frequencies
and character frequencies are simply unigram frequencies on the word and character levels,
respectively. Therefore, speaking about n-grams is just a convenient shorthand to cover many
similar options: unigrams and non-unigrams, with either characters or words as units.

1

2 The notion of probability

2.1 Two approaches: frequentist and measure-theoretic

The mathematical concept of probability developed in the seventeenth and
early eighteenth century from the concept of frequency : the probability of an
event corresponds to the frequency of that event, when the experiment is re-
peated many times. For instance,

the probability of throwing a 6 with a dice is 1/6 because if you throw a
dice many times, you will obtain a 6 in approximately 1/6 of the cases.

However, this naive, frequentist approach has been recast into a for-
mal theory in the nineteenth and twentieth century, resulting in a measure-
theoretic approach. Here is a summary that is slightly less abstract than
what you would find in mathematical textbooks:

1. Let Ω be a set, called a sample space. You can think of this set as the
set of elementary outcomes in an experiment, such as the six possibilities
when rolling a dice. However, Ω can be any set, not necessarily finite or
enumerably infinite. In a few pages, when defining probability over words
(or n-grams), the set Ω will correspond to the set of words (or of n-grams).

2. A subset A of Ω is called an event. Events (as any subset) can be singletons
(containing a single elementary event), empty (“nothing happens”), or
contain more elements (“either this or that outcome”; e.g., “throwing an
even number”). Ω is also an event (“something happens”).

3. Probability distribution P is defined as a measure on Ω that is normed
to 1. For details, refer to maths books. In a nutshell, that means:

4. For each even A (each subset of Ω), P (A) is a real number between 0 and
1, both endpoints of the interval included. That is, P : P(Ω)→ [0, 1].

5. The measure (probability) of Ω (as a subset of itself) is 1 (that is, P (Ω) = 1).
This fact is referred to as the probability must be normed to 1.

6. The measure of the empty set is P (∅) = 0. (“The probability of nothing
happening when something happens in an experiment is 0”.) Note however
that other events might also have zero probability, such as impossible
events. In a continuous set, even possible events may have zero probability.
Similarly, proper subsets of Ω may also have a probability of 1.

7. Events A and B are disjoint if their intersection is empty (A∩B = ∅): they
cannot occur simultaneously, no “outcome of the experiment” (element
of Ω) can belong to both. In such a case, P (A∪B) = P (A) + P (B) must
hold. (Writing A∪B corresponds to the set theoretic approach to events.
But events can also be viewed as propositions, and so I could have used
logical disjunction, A∨B, to refer to the complex proposition of either A
or B happening. The latter notation is used more often.)

8. It follows that for any two events, P (A∪B) = P (A) +P (B)−P (A∩B).

9. Two events are independent if P (A ∩B) = P (A) · P (B).

2

10. Conditional probability P (A|B) is the probability of event A given that

event B has occurred. It is defined as P (A|B) = P (A∩B)
P (B) . If A and B are

independent events, as defined above, then the probability of A remains
the same even if we are told that event B has occurred: P (A|B) = P (A).

11. It also follows that P (A ∩ B) = P (B) · P (A|B). This means that the
probability of events A and B occurring simultaneously can be calculated
as the probability of B occurring multiplied with the probability of ‘A
given B’. This idea will help understand Markov Models and their friends.

12. Since both P (A ∩ B) = P (B) · P (A|B) and P (A ∩ B) = P (A) · P (B|A)
hold, it follows that

P (A|B) =
P (B|A) · P (A)

P (B)

This fact, known as Bayes’ theorem, plays a central role in contemporary
computational linguistics.

The last few items have been added to this list so that you have a relatively
complete summary (or refresher) of the basics of probability theory. Familiarity
with them is essential for the rest of the course. In order to understand how
this measure-theoretic approach defines the probability of obtaining a 6 with a
dice, we return to the earlier part of the list:

When rolling a dice, there are six elementary outcomes. Therefore, let
Ω = {1, 2, 3, 4, 5, 6}. The dice being fair (not loaded) means that P ({x}) =
P ({y}) for any two elements x, y ∈ Ω. In words: any two sides of the dice
are associated with the same probability. If x 6= y, then {x} ∩ {y} = ∅,
and so by the axioms above P ({x, y}) = P ({x}) + P ({y}). Similarly,∑6

x=1 P ({x}) = P (Ω). Since the axioms also require that P (Ω) = 1, it
follows that P ({x}) = 1/6 for any elementary outcome x = 1, 2, . . . 6.

Please compare this train of thought to the earlier, frequentist argument at
the beginning of this subsection. How do they relate to each other?

We can ask how often we expect to obtain a 6 if we repeat the experiment
(throw the dice) n times. In order to answer this question, we suppose that
experiments are independent of each other, as defined above: the probability of
throwing a 6 in experiment k is unaffected by the outcome of experiment j. We
also have to define in mathematical terms what the “expected number of” 6s
is. Having done so, we can show that out of n independent experiments, the
expected number of experiments with an outcome of 6 is n/6. This is the point
where the measure-theoretic approach finally meets the frequentist approach.

2.2 What about computational linguistics?

Why is this digression relevant to computational linguistics? Because the
two approaches to the notion of probability are very often confounded.

Since Noam Chomsky in the late 1950s, many (theoretical) linguists have
criticized the probabilistic approach to language: for instance, in what sense

3

do we speak about the ‘probability’ of a sentence or of a document? Certain
sentences (I was born in New York) might be more frequently uttered than
other sequences (I was born in New Haven), and yet, they do not differ in
grammaticality. Moreover, what is the “experiment” in which we consider the
probability of that sentence? What is the “corpus” in which we consider the
frequency of that sentence?

And yet, contemporary computational linguistics could not be imagined
without the notion of probability. In my interpretation, this notion is not used
by computational linguists with a frequentist interpretation, but as a mathe-
matical construct (as defined by the measure-theoretic approach). The abstract
mathematical tool assigns different scores to different possible parses, sentences,
documents, etc. The goal being to choose the best parse, etc., this score drives
our choice. In a moment, our task will be to choose between language tags for
a given document, and so we shall choose the tag that results in the highest
score. But since the score is based on probability theory, we happen to call that
score probability—maybe a misnomer. In fact, the score thus obtained is often
referred to as likelihood instead, to avoid frequentist interpretations.

However, the story is more complicated than that. Even when we argue that
the scores thus calculated must not be understood as ‘probability’, possibly
with a frequentist connotation, the calculation will be based on a frequentist
approach: the data entering the computation are corpus frequencies, and the
way we combine them into a score is again based on such a perspective.

Let us now turn to an example.

4

3 Text classification with word frequencies

3.1 Machine learning: recap with some new remarks

To recapitulate, the task of text categorization, as an example of machine
learning, can be summarized as follows:

X is the set of possible documents, Y is the set of possible tags
(henceforth, languages, but it could also be genres, authors, topics,
etc.). We are given a training set of n documents (xi ∈ X), each
coming with its correct label (yi ∈ Y). Our task is to develop a
method that will assign a label to any (possibly unseen) document
(in X). This method should be as correct as possible, as compared to
the golden standard (e.g., human judgement) on a test set (usually
disjunct from the training set).

Note two features of this summary, which will be gradually given up in
techniques we shall learn about later in the course. First, now we suppose that
the labels provided for the training set are correct, that is, they correspond to
the golden standard. In fact, data may also be noisy, and more advanced
techniques in machine learning take into account the fact that some of the yis
may be erroneous, different from what we expect the system to return.

Second, now we focus on supervised learning, that is, each xi comes with
some yi. In unsupervised learning, however, learning data are unlabeled. As
we shall soon see it in the case of Hidden Markov Models, the learner will not
only have to assign labels to unseen data, but it also will have to find the most
probable yi for each xi among the learning data (based, for instance, on the
statistical patterns observable in the representative learning data).

Very often, the solution will be iterative: given some hypothesis, the learner
assigns labels to the learning data, and then, these (data, label) pairs serve
as learning data to revise the hypothesis. Such a so-called bootstrapping
technique is also very often conjectured to drive child language acquisition.
Children, in fact, face several chicken-or-egg problems, such as: how to learn
syntactic structures without reference to the meaning of the learning data, and
how to derive meaning without being able to recover syntactic structures?

3.2 Scores for comparing documents

Suppose that the set X contains documents in English, French and Spanish.
The training set is a subset of X, also containing texts in all three languages.
One possible solution to the text classification problem is to use the training set
for creating a language model for each of the three languages. In this context,
I shall keep referring to the “language L section of the training corpus”.

We should pose ourselves the following three questions:

1. Each “language model” should contain relevant features of that language.
What features should we consider? Given that both French and Spanish
use special characters not used in the other languages, relevant features for

5

the current task may be character frequencies. Other feature, maybe more
useful for other tasks, include word frequency, character bigram frequency,
word trigram frequency, etc. By the way, why not consider punctuation
mark frequencies? (Remember Spanish ¿ and French � guillemets �.)

2. How do we want to compare an (unseen) document to a language model
learned from the training set? What “scores” should be introduced to
“measure” the similarity or distance of the document to be classified to
each of the language models?

3. How can we guarantee that language models do not reflect the training
set, but the languages they ought to represent? A recurrent topic in
machine learning literature is how to avoid what is known as overfitting
or overtraining: a model that is too accurate in fitting the learning data
in the training set may prove much less accurate in predicting new data.
One may wish to reduce the system’s performance on the training set, if
that change may improve performance on the test set. (More on that in
the context of smoothing).

For instance, a simple solution may be this: the features considered are
the presence (not even the frequencies) of “funny” characters. If a document
contains ¿ or ~n, then it is in Spanish. If it contains vowels with acute accents,
grave accents, circumflexes and tremas, as well as the ç character, then it is in
French. Otherwise, it is in English. Such a solution is called a decision tree in
machine learning.

Yet, this proposed solution poses several problems: what if a text, for what-
ever reason, contains both an ~n and a ç? What if a Spanish or French text (e.g.,
a few keywords in the search field of a search engine) is too short to contain any
special character? What if the languages to be compared do not contain so clear
characteristics? And, finally, observe that this solution is based on a human’s
intuition observing a specific case. It is an ad hoc handcrafted solution, while
the success of language technology in the last decade is due to, and motivates the
automatic processing of large amount of data, and the portability of solutions
to new situations (e.g., text categorization with many different languages).

So let us return to our favorite counting of n-grams (possibly unigrams;
either of characters, or of words). A model of the language y (where y ∈ Y) will
be a frequency table. Note that the most efficient way of implementing such a
table is using a hash table (a dictionary in Pythonese), mapping each observed
n-gram onto its count or frequency, and not requiring memory for unobserved
n-grams. An alternative would be to define an n-dimensional array, for instance
a 26 × 26 × 26 matrix for English letter trigrams. While such an array can
easily be handled by 21st century computers, one can easily imagine what its
size would be for 5-grams of words. However, most of the cells in this huge table
would be zero anyway, either because a combination is impossible (word n-gram
prohibited by syntax, character n-gram prohibited by phonotactics), or because
this combination simply happens not to occur in our corpus with restricted
length. At this point emerges what is called the sparse data problem: how
do we know whether an n-gram combination has 0 observed frequency because

6

it is impossible, or because of coincidence? In the former case, the language
model should maintain the 0 value. In the latter case, however, the language
model, which is meant to generalize beyond the training corpus, should allow
for a low frequency.

Depending on what we use the frequencies for, such a divergence between the
ideal language model and the language model derived from our specific training
set may have or not have serious consequences. Earlier in class we discussed the
cosine measure for similarity, an approach that is not very sensitive to having
a 0 instead of a low frequency for some words in the reference language models.
In this case, the models of the languages were unit vectors created from the
frequencies observed in the training corpus. The document to be classified is
also transformed into a unit vector. By taking the dot product of the document
vector with each reference vector, we obtain a measure of similarity. This score
being a value between 0 and 1 looks as if it were a probability value: if it
is 1 or close to it, “it is very probable” that the document is written in the
language modelled by the reference vector, and if the score is 0 or close to it, then
the same is “extremely improbable”. And yet, nothing (to my knowledge) in
the mathematical construct of the cosine measure warrants such a probabilistic
interpretation: the probability of what experiment should it be?

3.3 A new measure (to be called likelihood later)

Now, let me suggest a different similarity measure, replacing the cosine mea-
sure. Let ci denote the count (absolute frequency) of the word (n-gram) wi in the
training corpus (that is, in the language L section of the training corpus). Here
wi is a type, with ci tokens in the corpus. Then, we calculate P (wi|L) = ci/NL,
where NL is the length of the language L section of the corpus (number of to-
kens). Please forget for a moment that the letter P is also used for probability.
P (wi|L) simply stands for the relative frequency of type wi in corpus L, a value
that was already employed to build the vectors for the cosine measure. Now
take the document to be classified, and replace each of its words (tokens) with
the corresponding P (wi), and multiply these numbers. The product is a number
between 0 and 1, because it is the product of numbers between 0 and 1.

Why would this product give us another measure of similarity between the
language L section of the training corpus and our new document? A “real”
measure of similarity would return a value close to 1 for high similarity, and close
to 0 for low similarity; while this is clearly not the case for our new measure.
The score thus obtained will be extremely low. The longer the document to be
classified (that is, the more P (wi|L) to be multiplied), the lower the product.
If you copy-paste your document twice, the measure of this doubled document
will be the square of the original document, while you probably do not want to
change its similarity to the language model.

It is however true that a given document will receive its highest score for
the language L it resembles the most. When you calculate this score for your
document D, you have one factor in the product for each word (token) of D. If
you perform this computation for different languages, the P (wi|L) values will

7

change, but not the number of factors in the product. In order to get a higher
score, you have to multiply higher numbers. Consequently, the score is higher
if document D contains words that are frequent in the corpus of language L.

Is the value returned by this second measure more informative than the value
of the cosine metric? We have just seen it is not. Does text classification works
better with this second metric than with the cosine metric? Maybe, I have not
tried it out. Why have I introduced this second metric, then? Because, unlike
the cosine metric, it can be interpreted as probability.

3.4 Creating a document from a bag of words

As you might have guessed, P (wi|L) = ci/NL is a probability. Imagine we
cut out the words in the language L section of the training corpus and we throw
them into a bag. There will be ci copies of the word wi in this bag, and the total
number of words will be

∑
i ci = N , the total number of words in the corpus.

Drawing a word from the bag at random, the probability of word wi is ci/N .
Now take a document D of length n, a sequence of words d1, d2, . . . dn. Here

dks are tokens, and maybe dk and dl belong to the same type wi. Document
D can be the original corpus out of which the content of the bag was created,
or it can also be the document to be classified. Then, imagine the following
experiment: we draw a word from this bag, write down that word, return it to
the bag, and we repeat this procedure n times. What is the probability that
the text thus obtained is D? The answer is the product of the P (wi)’s:

P (D|L) =

n∏
k=1

P (t[dk]|L) (1)

where t[dk] is the type of the token dk. If dk is the word token apple (or the
character trigram abc), then t[dk] is the type apple (or the trigram abc), one of
the possible wis, and P (wi|L) provides its relative frequency in the language L
section of the training corpus.

Notation P (D|L) sounds like “the probability of document D, provided we
employ language L”. To be more precise: the probability of producing D using
the random procedure described above, if the bag-of-words has been created
with the language L section of the corpus. It must never be interpreted as “the
probability that document D is written in language L”. And yet, this is the
interpretation we have intuitively in mind 2 when we suggest a text classifier

2. A Baysian approach, to be discussed later in the course, can clarify our intuition. Our
question is: which language is the most probable guess for document D? In other words, our
aim is to maximize P (L|D), the probability of language L, given document D. Bayes’ theorem,
introduced earlier in this note, suggests that P (L|D) = P (L) · P (D|L)/P (D). Obviously, we
do not know what the probability of a language and the probability of a document are. Yet, D
is given, and so P (D) cannot be varied in order to maximize P (L|D). Moreover, we suppose
that the so-called prior probabilities P (L) are equal for all languages: we have no reason to
suppose a priori that a document is more likely to be written in a certain language than in
another language. Consequently, maximizing P (L|D) is equivalent to maximizing P (D|L).
Yet, the latter is easier to compute, and so we aim to maximize the latter, not the former.

8

based on this measure (“classify D as L1, if P (D|L1) is greater than P (D|L)
for any other L” 3).

Focusing on a single language L, the values P (wi) can be seen as a probability
distribution on vocabulary V. Vocabulary V is a set of words (word types)
that contains all the words in the training set, and possibly also further ones
(unseen words, which might show up in the test set). Indeed, ci ≤ NL, and so
0 ≤ P (wi) ≤ 1. Moreover—and this is the real test for anything being claimed
to be some sort of probability!—they sum up to 1:∑

w∈V
P (w) =

∑
w∈V

of tokens of w in training corpus

total # of tokens in traing corups
= 1

That is, the vocabulary V plays here the role of Ω in the general definition of a
probability distribution. That is the set on which probabilities sum up to 1.

As a mathematical concept, P (w) works as any probability should. Its fre-
quentist interpretation, however, is problematic. The P (w) values originate in
“frequency”, namely, in corpus frequency. It is certainly not the frequency of
w in the language. The imaginary “drawing from a bag of words” experiment
makes it comparable to the probabilities in the not so imaginary “throwing the
dice” experiment. One might also speculate that the training corpus is repre-
sentative for the entire language, and so P (w) is a good approximation of the
frequency of w in the entire language. But what is “the entire language”?

And in what sense is P (D|L) a probability? It is the probability of producing
D in this imaginary experiment. Summing up P (D|L) for all the outcomes D
of this imaginary experiment—all texts of length n—will result in 1. But this
is quite an artificial story. The sum of P (D|L) for all texts (of any length) in
language L is the sum for the texts of length 1 plus the sum for the texts of
length 2, and so on, resulting in infinity. On a different note, summing up the
P (D|L) of a specific D for all possible languages will give an arbitrary number,
depending on how many languages are included.

To sum up, the score P (D|L) is very useful for determining how a language
model derived from the language L section of the training corpus fits document
D. It is also “probability-like”: derived from frequencies, it can be understood
as the probability of an outcome in an imaginary and artificial experiment. It
fits into a mathematical framework built of concepts in probability theory. It
is, however, not the probability of document D in any realistic sense. That is
the reason why this measure is often called likelihood, and not probability.

3.5 The likelihood of a text

We now tackle the topic from a different angle. Let V be a vocabulary. (It
could also be an alphabet, if the units are characters and not words. But forget
about (n > 1)-grams for a while.) We introduce a probability P on V (that is,
V plays the role of Ω). We can use any probability distribution, as long as

3. It is extremely unlikely that two different languages return the same score for D.

9

∑
w∈V

P (w) = 1 (2)

Let D be a text, a series of tokens of words from the vocabulary. Let ci
denote the count (number of tokens) of the word wi ∈ V. The value ci = 0
corresponds to a word in the vocabulary that does not occur in D. The length
of D is N =

∑
i ci. If we denote the size of V as V (vocabulary size), then the

indices i are the integer elements of the [1, V] interval. Note that we do not
need any reference to the tokens (denoted as di earlier), nor to their order in D.

Then, the likelihood of text D for the probability distribution P is defined
as the product of the P s of all tokens in D. By grouping the ci tokens of the
same type wi together, we turn eq. (1) into

L(D,P) =

V∏
i=1

P (wi)
ci (3)

Different probability distributions over V will result in different likelihood
values for the same text D. Which is the distribution that maximizes the like-
lihood? As I shall demonstrate it in the next subsection, L(D,P) is maximal if
the probability distribution P reflects the frequencies in D. This is why the fol-
lowing probability distribution is called the maximum likelihood estimate:

PMLE(wi) =
ci
N

(4)

This fact can be interpreted as follows: notwithstanding how low L(D,P)
is, the highest likelihood for a given text D is given by having P correspond to
the frequencies in D.

Turning back to our text classification problem: the highest score (now called
likelihood) for a given D is obtained when the language L section of the training
corpus has exactly the same word frequencies as the text D to be classified. (As
the absolute counts are irrelevant, the training corpus may be n times longer
than D, and the order of the words do not matter either.) Interestingly, this is
exactly the case when the cosine measure would return a similarity value of 1.
If P originates in a text with a similar, though not equal frequency distribution
to D, then the likelihood score will still be high, though not maximal. And if P
originates in a training set representing a different language, then it will contain
very different word frequencies, resulting in a much lower likelihood score.

To summarize, likelihood is a useful score to gauge how well P and D fit.
It is derived from a probability distribution on a vocabulary—this probability
distribution being a mathematical concept (measure-theoretic approach). 4 But
likelihood is not the probability of D in any (frequentist) sense corresponding
to anything in the “real world”. Nor is likelihood a measure of similarity in the
sense that full identity would result in a fix value (usually 1).

4. So far, this probability distribution on V corresponds to corpus frequencies in the Max-
imum Likelihood Estimate. In this sense, the connection to the frequentist approach is still
there. Yet, this will not be true anymore for the smoothened probability distributions.

10

3.6 Appendix: Proving the Maximum Likelihood Estimate

Now we demonstrate that it is the probability distribution P (wi) = ci/N that
maximizes the likelihood L(D,P) for a given D. The following proof will help some of
you better understand the concepts, while other people can safely skip this subsection.

In this subsection, pi will be used as a shorthand for P (wi). The likelihood of D
given P becomes

L(c1, . . . , cV ; p1, . . . , pV) =

V∏
i=1

pcii (5)

Maximizing this function is equivalent to maximizing its logarithm. Log-likelihood
is in fact very frequently used in computational linguistics:

LL(c1, . . . , cV ; p1, . . . , pV) = logL(c1, . . . , cV ; p1, . . . , pV) =

V∑
i=1

ci log pi (6)

Our aim is to maximize LL, for a given combination of c1, . . . , cV , and varying
p1, . . . , pV , subject to the following constraint:

V∑
i=1

pi = 1 (7)

In order to find the (local) maximum of the function LL subject to equality con-
straint (7), we employ the method of Lagrange multipliers. The Lagrangian is

Λ(c1, . . . , cV ; p1, . . . , pV ;λ) =

V∑
i=1

ci log pi + λ ·

(
V∑

i=1

pi − 1

)
(8)

While parameters ci are fixed for a given text D, and the partial derivative in
respect to the Lagrange multiplier λ returns the constraint, we have to make the
partial derivatives in respect to each pi equal to zero (suppose natural logarithm for
the sake of simplicity):

∂

∂pi
Λ(c1, . . . , cV ; p1, . . . , pV ;λ) =

ci
pi

+ λ = 0 (9)

Hence, pi = −ci/λ for each i. In order to satisfy constraint (7),

V∑
i=1

pi = −
V∑

i=1

ci
λ

= 1

we must have λ = −
∑

i ci = −N , with N being the length of document D. Conse-
quently,

pi =
ci
N

holds in the local optimum of the log-likelihood function. One should now check that
this is indeed a local maximum, and this function has no other local optima. Since
logarithm is a monotonic function, the likelihood function also has its maximum at
the same place.

11

4 Smoothing

To summarize, the Maximum Likelihood Estimate is the relative fre-
quency of each word type in text D:

PMLE(wi) =
ci
N

(10)

Given our training corpus (a language L section of the training corpus),
these PMLE(wi) values can be used as a model of language L—either as the
vector components in a vector space model with the cosine measure, or as the
probability distribution for a likelihood measure. In order to categorize any
document, we only have to calculate its cosine measure or likelihood measure to
the reference language models, and the language that maximizes the measure
will determine how to classify that document.

But we have not checked yet whether the maximum likelihood estimate
indeed defines a probability measure on V. In order to do so, we have to check
that

∑
i PMLE(wi) = 1. However, remembering that

∑
i ci = N , the proof is

straightforward.
Using the Maximum Likelihood Estimate, the likelihood of the training set

itself will be maximal. However, our goal is not necessarily to maximize the
“likelihood” of the training corpus being correctly categorized, but the “likeli-
hood” (in an informal sense) of the test set. The language model derived from
the training corpus should be a generizable model of the language, and not a
model of the training corpus.

If a word in the vocabulary does not occur in the training corpus (ci = 0 for
some wi ∈ V), its MLE will be 0. It might, however, be a word in the language,
and occur in the test set, even if very rarely. In the case of the cosine measure,
if two vectors are “quite similar”, but one has a zero component where the other
has a small positive value, then their similarity may still be quite high. However,
if likelihood is used, then a single word unseen in the training corpus will reduce
the likelihood of the document to be classified to zero. 5 A zero likelihood score
will be interpreted as the document not belonging to that language, resulting
in a Type II error, a false negative.

In order to avoid such a Type II error, various smoothing techniques have
been introduced. They slightly increase the P (wi) of the words not observed
in the corpus, taking away this probability mass from other words, and using
different strategies for doing so. Therefore, these smoothing techniques slightly
reduce the likelihood of the training corpus with respect to the Maximum Likeli-
hood Estimate (hereby possibly slightly increasing the chances of Type I errors),
but they much more radically decrease the chances of Type II errors.

5. The MLE calculated from the training corpus gives P (wi) = 0. The word count of wi

in the document to be classified gives a ci > 0. Therefore, the product defining the likelihood
will contain a factor P (wi)

ci = 0. Observe, however, that if the word does not occur in the
document either (ci = 0), then the corresponding factor will be 00 = 1.

12

4.1 Laplace Smoothing

Laplace smoothing is introduced in section 4.5.1 of JM. The basic idea is
to increase the count of each word in V by one, as if we appended the vocabulary
to the training corpus. This way, unseen words become hapaxes, hapaxes turn
into twice-occurring words, and so forth. For details, refer to the textbook.

The new probability distribution, replacing MLE, eq. (10) is:

PLaplace(wi) =
ci + 1

N + V
(11)

In order to have a better grasp of this distribution, let us show that it indeed
sums up to 1:

V∑
i=1

PLaplace(wi) =

V∑
i=1

ci + 1

N + V

=

V∑
i=1

ci
N + V

+

V∑
i=1

1

N + V
(12)

Remembering that
∑V

i=1 ci = N and
∑V

i=1 1 = V , we indeed get what we
have hoped for:

V∑
i=1

PLaplace(wi) =

∑V
i=1 ci +

∑V
i=1 1

N + V
(13)

=
N + V

N + V
= 1 (14)

4.2 Good-Turing Smoothing

Introduced in section 4.5.2 of your textbook, Good-Turing Smoothing
uses the following probability distribution:

PGT(w) = (c+ 1)
Nc+1

NNc
(15)

where c is the count (absolute frequency) of the word w, N is the corpus size
and Nc is the frequency of frequency c (refer to JM for details).

Regarding the frequency of frequencies, observe that∑
c

c ·Nc = N (16)

This is true because of the following: c is the number of tokens of a word with
frequency c, and there are Nc such words. Therefore, c · Nc is the count of all
word tokens in the corpus that correspond to the types with frequency c. When
summing up c ·Nc for all possible frequencies c in (16), we count all word tokens

13

in the corpus: first the hapaxes, then the tokens of the types with count 2, then
the tokens of the types with count 3, and so forth.

Why does (15) make sense? JM proposes a background “philosophy”. But
in order to really understand that formula, and to understand why the basic
idea has not led to a slightly different formula, we would like to show that this
is the approach that sums up to 1:∑

w∈V
PGT(w) = 1 (17)

In order to do so, let us first sum up the probability of the words that occur
c times in the corpus. There are Nc such words, and so the probability mass
they represent is Nc(c+ 1)Nc+1

NNc
= (c+ 1)Nc+1

N .

Now, let us sum up (c+ 1)Nc+1

N for all c, from c = 0 to c = the frequency of
the most frequent word in the corpus If c = the frequency of the most frequent
word in the corpus, then Nc+1 = 0. Therefore, this sum equals to the sum of
cNc

N for all c, from c = 1 to c = the frequency of the most frequent word in the
corpus. But remember (16), and so the sum will be equal to 1:

max∑
c=0

(c+ 1)
Nc+1

N
=

max−1∑
c=0

(c+ 1)
Nc+1

N
=

max∑
c=1

c
Nc

N
=
N

N
= 1

4.3 Summary

Given a training corpus in some language, we create a model of that lan-
guage. While other types of models will be discussed later in the course, our
current approach is a bag-of-words model : a probability distribution P (w) over
all words in the vocabulary V. (An analogous approach is a probability distribu-
tion P (σ) over an alphabet of characters Σ.) This approach is extremely naive
from a linguistic perspective, but it reflects many lay people’s understanding of
what a language consists of: a language is characterized by its words (and by
their frequencies).

In a first approximation, V is the set of words (types) in the training corpus.
In a second approximation, we allow some words of the language (included in V)
not to appear in the corpus by coincidence. These words will have a zero count
in the corpus, but should not be excluded from the language. In other words, we
estimate P (w) using word frequencies in the corpus, as a first approximation;
but then, we would like to revise it (“smoothen” it), so that it reflects the
language, in general, and not the corpus only. Our goal is to avoid overtraining
(a.k.a. overfitting), and we have seen two different ways of smoothing the P (w)
distribution. 6

6. In a third approximation, we could include all words in all languages in V. A word w
is assigned P (w) = 0 even after smoothing, if it does not belong to that language. But can
we differentiate between words belonging to the language but missing from the corpus, and
words not belonging to the language, in an automatized, corpus-driven process? Moreover,
foreign words—most frequently proper nouns, and occasionally code switching—are likely to
appear in texts of many genres.

14

The various smoothened P (w) distributions are probability distributions in
the measure-theoretic sense: they are functions on some set (the role of Ω being
played by V) that take their values in the [0, 1] interval and satisfy further
criteria. The most important such criterion is that

∑
w∈V P (w) = 1. However,

the various versions of P (w) have not much to do with a frequentist view of
probability.

We could prove, using the toolkit of advanced mathematics, that the Max-
imum Likelihood Estimate happens to be the corpus frequencies. Smoothened
probabilities are more remotely related to frequencies. True, among many oth-
ers, we also use corpus frequencies when calculating them. And true, they are
interpreted as better estimates for the frequency of the word in the language,
in general. However, what does “in the language, in general” mean? Is GT or
Laplace smoothing closer to the frequencies “in the language, in general”? I
suggest that you view them as abstract mathematical constructs that are useful
in various applications.

In this case, which smoothing technique should one use? There is no simple
answer. At this point, your task is to understand the concepts, the challenges
being raised and to know what kind of answers are available (and where to look
them up). Whenever you face a specific problem (for instance, text classifica-
tion), you will have to keep these challenges in mind and look for a solution
using these concepts. In practice, you will either use the smoothing technique
employed by most of your peers (as discussed in the literature that you will have
been able to look up), or you will experiment with some alternatives and end
up using the one producing the best results.

15

5 From n-grams to Markov Models

5.1 Intro to Markov Models—approach 1

Probably one of the major aims of computational linguistics can be sum-
marized as creating a computational (formal, mathematical) model of natural
language (a.k.a. human language). Such a model is able to characterize each
language in some sense, for instance by telling us how to generate a sentence or
text.

If you arrive from linguistics, then characterizing languages is the goal of your
life, and so computational linguistics should provide further tools for you. If you
arrive from cognitive science, then you view the brain/mind as an information
processing system, and so a computational characterization of language(s) will
contribute to your understanding of the “software” in the human brain. If you
are interested in developing new software, then computationally characterizing
a language is a means toward solving some task. Please keep in mind all these
three different approaches, when reading about any issue in CL.

A finite-state automaton was such a model, because it told us how to accept
or generate a string belonging to the language it described. It was also able to
characterize (to define) a class of formal languages. But the problem was that
natural languages did not fall in this class.

The bag-of-words model is also certainly such a model. Each language is
characterized by a probability distribution over a vocabulary. It also tells us
how to generate a sentence: you randomly pick words from the bag, with the
probabilities assigned to the words. Aside from probability, this procedure also
defines a regular language, simply V∗. The problem is that we know human
languages are way more complicated than that.

A bag-of-words model is superior to an FSA model in that the former also
takes probabilities into account. An FSA is, however, superior to a bag-of-words
model in that an FSA can take into account the “interaction” between neighbor-
ing elements: what character (and what word) can follow what other character
(or word)? An FSA has many limitations, though, and many of these will be
overcome by CFGs (context-free grammars) in a week or two. 7 Now we turn to
Markov Models, which combine the advantage of using probabilistic techniques
with the advantage of being able to refer to local interactions. Markov Models
can be seen as probabilistic extensions of FSAs, 8 and similarly, CFGs will later
also be extended to probabilistic context-free grammars (PCFG).

7. It has been argued that natural languages should be characterized as belonging to a class
broader than context-free languages, although narrower than the class of context-sensitive
languages. For an introduction to these mildly context-sensitive languages, you are referred
to the Formal Foundations of Linguistic Theories course (LING 224a/624a) by Robert Frank.

8. In fact, Probabilistic Finite-State Automata are defined slightly differently from Markov
Models. But the difference is not significant.

16

5.2 Intro to Markov Models—approach 2

An important detail of the bag-of-words model was that each word is re-
placed to the bag before we pick a subsequent word. Consequently, each draw is
supposed to be independent from the rest. The result of the first draw does not
influence the probabilities in the second draw, etc. That is why we multiplied
the probabilities of each word in a text D composed of the tokens d1, d2, . . . , dk:

P (D) = P (d1, d2, . . . , dk) = P (d1) · P (d2) · . . . · P (dk) (18)

Suppose event A is that the first draw returns d1, and event B is that
the second draw returns d2. The independence assumption, as introduced at
the beginning of this note, is that P (A ∧ B) = P (A) · P (B). Conditional
probabilities are equal to the unconditional ones: P (B|A) = P (B). Similarly,
if Aj represents the event that we pick word dj in draw j, then the complex
event A1 ∧A2 ∧ . . .∧Ak is the event that the experiment including k draws will
return text D. The probability of this complex event can, in turn, be calculated
as done in eq. (18), provided the independence assumption is true.

But let us be realistic! If there were a competition for the most absurd
hypotheses ever taken seriously in the history of science, then this independence
assumption would have a good chance to win.

So let us go to the other extreme. The event A1∧A2∧. . .∧Ak is a conjunction
of A1 ∧ A2 ∧ . . . ∧ Ak−1 and Ak. Therefore, by the definition of conditional
probabilities,

P (D) = P (d1, d2, . . . , dk) = P (A1 ∧A2 ∧ . . .∧Ak−1) · (Ak|A1 ∧A2 ∧ . . .∧Ak−1)

or, simply

P (D) = P (d1, d2, . . . , dk) = P (d1, d2, . . . , dk−1) · (dk|d1, d2, . . . , dk−1)

To calculate the probability of the text (whatever that means!), we first
calculate the probability of the text without its last word, and then we multiply
it with the conditional probability of appending the last word to this chunk.
The probability of the last word dk may be influenced by all previous words.
This formulation allows for zero influence, as well as for a combined effect of
syntactic, semantic, pragmatic and non-linguistic influences.

We can continue this train of thought: 9

P (d1, d2, . . . , dk−1) = P (d1, d2, . . . , dk−2) · (dk−1|d1, d2, . . . , dk−2)

P (d1, d2, . . . , dk−2) = P (d1, d2, . . . , dk−3) · (dk−2|d1, d2, . . . , dk−3)

etc.

P (d1, d2) = P (d1) · P (d2|d1)

9. In fact, we should have added a “beginning-of-text” symbol before d1. So P (d1) might
not be the “probability” of d1 in isolation, but the probability that a text begins with d1. But
let me ignore this detail here.

17

It follows that the probability of the text can be computed as a series or
chain of conditional probabilities:

P (D) = P (d1, . . . , dk) = P (d1) · P (d2|d1) · P (d3|d1, d2) · P (d4|d1, d2, d3) ·
· . . . · P (dk|d1, . . . , dk−1) (19)

This is certainly a language model that is free of absurd assumptions. And
yet, two problems still should be mentioned. The first question is what we mean
by the probability of a document: e.g., how frequently it can be found in public
libraries?? My answer to this question is that I do not know, but it is still a
useful score in many applications. By trying to maximize the “probability” of
the solution, we can develop solutions to tasks that will satisfy the users. Let
us not call it probability, but rather likelihood. We are developing a mathemat-
ical framework that is based on probability theory (with a measure-theoretic
foundation), and we ignore possible frequentist interpretations.

The second question is how to compute the conditional probabilities in
eq. (19). I stop philosophizing about the meaning of these conditional prob-
abilities, and I rather raise a pragmatic question: even if I do not know what
they mean, I would like to compute them. One can think of two solutions. We
either develop a theoretical framework providing those conditional probabilities,
or we empirically rely on corpora.

The first solution is what people hoped for for decades in the second half of
the twentieth century, but it turned out to be an unsolvable problem. We simply
cannot include all syntactic and semantic constraints into a model providing
those conditional probabilities, not to speak about pragmatic constraints, facts
in the outside world, etc. Moreover, even if we were able to do so for a language,
we still would need to handcraft solutions for other languages. These two reasons
jointly motivated the field’s move toward using large corpora in the last two
decades, when such large corpora became available and computers became able
to handle them.

So the second solution is to turn to large corpora, and use them to estimate
these probabilities. First, by definition of the conditional probabilities, 10

P (dj |d1, . . . , dj−1) =
P (d1, . . . , dj−1, dj)

P (d1, . . . , dj−1)

And, second, we can use j-gram frequencies in the training corpus to estimate
P (d1, . . . , dj) of all j-grams for all j = 1, . . . , k. Consequently, we can easily cal-
culate all necessary conditional probabilities. In fact, j-gram frequencies provide
the Maximum Likelihood Estimates of P (d1, . . . , dj), whereas smoothing might
be necessary to refine these estimates. [We will not enter details of smoothing n-
gram frequencies. By now, you should understand the problem, and you should

10. Let event A be dj in position j of D. Let event B be d1 in position 1, d2 in position
2,. . . , and dj−1 in position j − 1 of D. Then, event A ∩ B is the event d1, d2, . . . , dj−1, dj .
Remembering that P (A|B) = P (A ∩B)/P (B), you obtain the above equation.

18

also possess the skills to understand by yourself a train-of-thought similar to
the one we have discussed earlier with respect to word frequencies.]

But wait a moment! We need an estimate of P (d1, . . . , dj−1, dk) in order
to calculate P (dk|d1, . . . , dj−1, dk−1), which in turn will be used to calculate
P (D) = P (d1, . . . , dj−1, dk). But then, why on earth do we need all of this
hocus-pocus to finally get P (d1, . . . , dj−1, dk)? Second, our corpus is extremely
unlikely to contain a significant amount of tokens of these n-grams with very
large n. Unless document D is part of the training corpus, it is actually im-
probable that the training corpus will contain any instances of these n-grams.
It follows that we very quickly run into the sparse data problem as n grows.

Therefore, we need a different approach. Markov Models offer an assump-
tion (the Markov assumption) that represents a compromise between the absurd
independence assumption of the bag-of-words model and the absurd assumption-
lessness of this latter approach. In an nth order Markov Model, we suppose that
the probability of the next draw only depends on the outcome of the previous
n draws:

P (dj |d1, . . . , dj−1) = P (dj |dj−n, . . . , dj−1)

In the simplest case (first order Markov Model), only the outcome of the last
draw influences the next draw:

P (dj |d1, . . . , dj−1) = P (dj |dj−1)

In a second order Markov Model, the last two draws may influence the
outcome:

P (dj |d1, . . . , dj−1) = P (dj |dj−2, dj−1)

Whereas our old good bag-of-words model is a zeroth order Markov Model:

P (dj |d1, . . . , dj−1) = P (dj)

In a Markov Model, the chain equation (19) is simplified due to these last
equations. The factors in the chain are simpler, and hence, simpler to calculate
using n-grams with a small n-value. For instance, in a first order Markov Chain,

P (D) = P (d1, . . . , dk) = P (d1) · P (d2|d1) · P (d3|d2) · P (d4|d3) · . . . · P (dk|dk−1)

Using either the Maximum Likelihood Estimates or some kind of smoothing,
unigram and bigram frequencies will provide some estimates for P (dj) (including
P (d1)), and for P (dj , dl). Subsequently, we obtain the conditional frequencies
by the formula

P (dj |dj−1) =
P (dj , dj−1)

P (dj−1)

19

Simple, isn’t it? Two questions are raised, though: (1) is this an adequate
model of natural language, and (2) can we nevertheless make use of it in NLP?
The answers will be a definite no (cf. Chomsky 1957) and a definite yes, respec-
tively.

This is the point where the course continues next week.

20

