Language and Computation week 6, Thursday, February 20, 2014

Tamás Biró Yale University tamas.biro@yale.edu http://www.birot.hu/courses/2014-LC/

Practical matters

- **Post-reading:** Chapter 5: 5.5. Chapter 6: intro and 6.1-6.5
- **Pre-reading:** Chapter 12 (intro to syntax and comput. syntax)
- **Python:** H 6-10, especially re in Chapt. 10.
- Sections: Python NLTK Bird, Klein, Loper: Natural Language Processing with Python, Ch 1, http://www.nltk.org/book/ch01.html
- Homework 3 posted by the weekend, due 03/04.

Today

Hidden Markov models and Ferguson's three problems:

- The Viterbi Algorithm
- The Forward Algorithm
- The Forward-Backward Algorithm

Recap: two examples of Markov Models

Markov Models

• A: model of underlying series of "causes" (states)

• B: model of observable series of "effects" (emitted signs)

• Given observations, we are interested in their causes.

Part-of-Speech Tagging

Speech recognition

Speech recognition

Bayesian inference

- Given observation B, most likely cause A: arg max_A P(A|B) = ?
- Bayes' theorem: $P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$

Hence,

$$\arg\max_{A} P(A|B) = \arg\max_{A} (P(B|A) \cdot P(A))$$

• P(A) = prior probabilities. P(B|A) = likelihood.

Markov Chains and Markov Models

Markov Chain: "First-order observable Markov Model"

- No characters read/emitted! That is, characters = states.
- Set of states $Q = \{q_1, \ldots q_n\}$. The state at time t is q[t].
- a_{ij} : probability transitioning $q_i \rightarrow q_j$. Transition matrix $A = (a_{ij})$. Normed to 1: $\sum_{i=1}^n a_{ij} = 1$
- Current state depends **only** on previous state: $P(q[t_i] \mid q[t_1] \dots q[t_{i-1}]) = P(q[t_i] \mid q[t_{i-1}]) = a_{q[t_{i-1}],q[t_i]}$

Markov Chain: "First-order observable Markov Model"

- Given Markov Chain, generate a string: trivial.
- Given string, learn a Markov Model:
 - Q = observation types.
 - $a_{i,j} = P(q_j|q_i) = ?$
 - Maximum Likelihood Estimate:

$$a_{i,j} = P(q_j|q_i) = \frac{P(q_iq_j)}{P(q_i)} = \frac{\# \text{ of } q_iq_j \text{ bigrams}}{\# \text{ of } q_i \text{ unigrams}}$$

- Laplace Smoothing, Good-Turing Discounting, interpolation, backoff.

Markov Models

Tamás Biró, Yale U., Language and Computation

p. 13

Probabilistic/Weighted Finite State Automaton

Add probability to transitions:

- A quintuple $(Q, \Sigma, q_0, F, \delta(q, i)$
- $\delta(q,i)$ is
 - $\in Q$ for a deterministic FSA
 - $\subseteq Q$ for a **non-deterministic FSA**
 - a probability distribution over Q for a **probabilistic FSA**
- When in state q_j and read character i from input tape: move to state q_k with probability $\delta(q_k, i)[q_k]$, for all $q_k \in Q$.

Markov Models: sextuple $(Q, \Sigma, q_0, Q_F, A, B)$

Slightly different terminology, slightly different idea.

- Q finite set of states q₁, q₂, ..., q_N.
 Σ set of possible observations (finite? not finite?)
- q_0 start state (or probability distribution π over Q) q_F end (final) state (or $F \subseteq Q$?)
- A transition probability matrix: $\forall i : \sum_{j=1}^{N} a_{ij} = 1$
- B emission probabilities: $\forall i : \sum_{o \in \Sigma} b_i(o) = 1$

(Hidden) Markov Models

$Q = q_1 q_2 \dots q_N$	a set of states
$A = a_{01}a_{02}\ldots a_{n1}\ldots a_{nn}$	a transition probability matrix <i>A</i> , each a_{ij} representing the probability of moving from state <i>i</i> to state <i>j</i> , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_N$	a set of observations , each one drawn from a vo- cabulary $V = v_1, v_2,, v_V$.
$B = b_i(o_t)$	a set of observation likelihoods , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state <i>i</i>
q0,qend	special start and end states that are not associ- ated with observations

(Hidden) Markov Models

Markov assumption: $P(q[t_i])$ only depends on $q[t_{i-1}]$, and not on previous states or previous outputs.

Output independence: $P(o[t_i])$ only depends on $q[t_i]$ and not on previous states or previous outputs.

(Hidden) Markov Models

- Given MM $\lambda = (A, B)$, generate series of observation: trivial.
- Given MM $\lambda = (A, B)$, given observation sequence O determine:
 - likelihood $P(O|\lambda)$: forward algorithm
 - find most probable sequence of states: Viterbi algorithm
- Given an observation sequence *O*, learn *A* and *B*: forward-backward algorithm (aka Baum-Welch algorithm, special case of Expectation-Maximization/EM algorithm).

Viterbi algorithm

Tamás Biró, Yale U., Language and Computation

p. 19

Viterbi algorithm

Problem: Decoding

Given as input an HMM $\lambda = (A, B)$ and a sequence of observations $O = o_1, o_2, \ldots, o_T$, find the most probable sequence of states $Q = q_1, q_2, \ldots, q_T$.

Solution:

Viterbi algorithm: dynamic programming, similar to the minimum edit distance algorithm, using a trellis.

Viterbi algorithm

 $v_{t-1}(i)$ the previous Viterbi path probability from the previous time step a_{ij} the transition probability from previous state q_i to current state q_j $b_j(o_t)$ the state observation likelihood of the observation symbol o_t given the current state j

$$\forall j : v_t(j) = \max_{i=1}^n \left(v_{t-1}(i) \cdot a_{ij} \cdot b_j(o_t) \right)$$

Viterbi algorithm

function VITERBI(*observations* of len *T*,*state-graph* of len *N*) returns *best-path* create a path probability matrix *viterbi*[N+2,T]for each state s from 1 to N do ; initialization step *viterbi*[s,1] $\leftarrow a_{0,s} * b_s(o_1)$ *backpointer*[s,1] $\leftarrow 0$ for each time step t from 2 to T do ; recursion step for each state s from 1 to N do *viterbi*[s,t] $\leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)$ *backpointer*[s,t] $\leftarrow \operatorname{argmax}^{N} viterbi[s', t-1] * a_{s'.s}$ $viterbi[q_F,T] \leftarrow \max_{s=1}^{N} viterbi[s,T] * a_{s,q_F}$; termination step $backpointer[q_F,T] \leftarrow \operatorname{argmax}^N viterbi[s,T] * a_{s,q_F}$; termination step return the backtrace path by following backpointers to states back in time from backpointer $[q_F, T]$

The Forward Algorithm

Tamás Biró, Yale U., Language and Computation

p. 24

Problem: Likelihood

Given as input an HMM $\lambda = (A, B)$ and a sequence of observations $O = o_1, o_2, \ldots, o_T$, determine the **likelihood** $P(O|\lambda)$, the probability that HMM λ emits series O.

$$P(O|\lambda) = \sum_{q[t_1],...,q[t_T]} P(o_1,...,o_T \mid q[t_1],...,q[t_T],\lambda)$$

Solution:

Forward algorithm: dynamic programming, similar to the minimum edit distance algorithm, using a trellis.

 $\begin{array}{ll} \alpha_{t-1}(i) & \text{the previous forward path probability from the previous time step} \\ a_{ij} & \text{the transition probability from previous state } q_i \text{ to current state } q_j \\ b_j(o_t) & \text{the state observation likelihood of the observation symbol } o_t \text{ given} \\ \text{the current state } j \end{array}$

$$\forall j : \alpha_t(j) = \sum_{i=1}^n \alpha_{t-1}(i) \cdot a_{ij} \cdot b_j(o_t)$$

The Forward-Backward Algorithm

Forward-Backward algorithm

Problem:

Given as input an observation sequence $O = o_1, o_2, \ldots, o_T$ and the set of possible states in the HMM, **learn** the HMM parameters A and B.

Solution: Forward-Backward algorithm:

a.k.a. **Baum-Welch Algorithm**, a special case of the **Expectation-Maximization** (EM) algorithm.

an example of **unsupervised learning**!

Forward-Backward algorithm

- Forward probability $\alpha_t(i)$: probability of seeing the observations from time beginning to t, given that we are in state i at time t, and given HMM.
- **Backward probability** $\beta_t(i)$: probability of seeing the observations from time t + 1 to the end, given that we are in state i at time t, and given HMM.

$$\alpha_t(i) \cdot a_{ij} \cdot b_j(o_{t+1}) \cdot \beta_{t+1}(j)$$

Forward-Backward algorithm

- 1. Initialize A and B
- 2. Iterate until convergence
 - (a) **E-step:** given current A and B, compute
 - i. expected state occupancy count $\gamma_t(j)$: probability of being in state j at time t, given O and HMM
 - ii. expected state transition count $\xi_t(i, j)$: probability of being in state i at time t and state j at time t + 1, given O and HMM
 - (b) **M-step:** recompute A and B probabilities, given current ξ and γ .
- 3. Return A and B.

function FORWARD-BACKWARD(*observations* of len *T*, *output vocabulary V*, *hidden state* set *Q*) **returns** HMM=(A,B)

initialize A and B iterate until convergence

E-step

$$\begin{aligned} \gamma_t(j) &= \frac{\alpha_t(j)\beta_t(j)}{P(O|\lambda)} \ \forall t \text{ and } j \\ \xi_t(i,j) &= \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{\alpha_T(N)} \ \forall t, i, \text{ and } j \end{aligned}$$

M-step

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i, j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \xi_t(i, j)}$$
$$\hat{b}_j(v_k) = \frac{\sum_{t=1s.t. O_t = v_k}^{T} \gamma_t(j)}{\sum_{t=1}^{T} \gamma_t(j)}$$

See you next week!

Tamás Biró, Yale U., Language and Computation

p. 34