
Language and Computation

week 8, Thursday, March 06, 2014

Tamás Biró
Yale University

tamas.biro@yale.edu

http://www.birot.hu/courses/2014-LC/

Tamás Biró, Yale U., Language and Computation p. 1

http://www.birot.hu/courses/2014-LC/


Practical matters

• Post-reading: Chapters 12, 16 and 14.1

• Pre-reading: Sections 13.1-3

• Homework 3 returned after the break.

• Midterm: will be posted tomorrow.

• Proof of HW 2, part 3 posted.

• To come: Viterbi and Forward-Backward – an example

Tamás Biró, Yale U., Language and Computation p. 2



Today

• Formal definition of Formal Grammars

• Chomsky Hierarchy

• The Pumping Lemma

• Beyond regular languages: Context-Free Grammars

• Probabilistic Context Free Grammars

(Parsing to come after the break)

Tamás Biró, Yale U., Language and Computation p. 3



Formal Grammars: an example

Tamás Biró, Yale U., Language and Computation p. 4



Formal Grammars

A toy grammar for English:

Phrase Structure Rules:

S → NP V P

V P → V

V P → V NP

NP → N

NP → Det N

Lexical Insertion Rules:

V → { eat, love, walk, sleep }

V → {eats, loves, walks sleeps}

N → { John, Marry. . . }

N → { apple, pear. . . }

N → { apples, pears. . . }

Det→ { the, a, an, ∅ }

Tamás Biró, Yale U., Language and Computation p. 5



Formal Grammars

A toy grammar for English:

S ⇒ NP V P ⇒ Det N V P ⇒

⇒ Det N V NP ⇒ Det N V N ⇒

⇒ The N V N ⇒ The John V N ⇒

⇒ The John sleep N ⇒ The John sleep apple

This is a sentence derived from this grammar.

Tamás Biró, Yale U., Language and Computation p. 6



Formal Grammars

A toy grammar for English – lessons:

• Introduce additional categories:
Vtransitive vs. Vintransitive.

• Proper names as NP s.

• Agreement

→ more general formalism needed (feature structures: Ch. 15)

Tamás Biró, Yale U., Language and Computation p. 7



Formal Grammars: an example

V → V and. . . what?

Subcategorization frames for a set of example verbs:

Tamás Biró, Yale U., Language and Computation p. 8



Formal Grammars

Tamás Biró, Yale U., Language and Computation p. 9



Formal Grammars

Tamás Biró, Yale U., Language and Computation p. 10



Formal Grammars

Given formal grammar G = (N,Σ, R, S):

Def: Given strings a and b ∈ (Σ ∪N)∗, a⇒G b iff
there exist p, q, r, s ∈ (Σ ∪N)∗ such that

• a = p+ q + s,

• b = p+ r + s, and

• (q → r) ∈ R

Def: A string a ∈ Σ∗ is grammatical in grammar G iff S ⇒∗ a.

Tamás Biró, Yale U., Language and Computation p. 11



The Chomsky Hierarchy

Tamás Biró, Yale U., Language and Computation p. 12



Generative power of a formalism

What is the set of languages generated by a formalism?

• Overgeneration: too powerful a formalism,
also generating languages that we don’t want.

• Undergeneration: too weak a formalism,
not generating the languages we would like to.

Tamás Biró, Yale U., Language and Computation p. 13



Generative power of a formalism

What is the set of languages generated by a formalism?

Goal: generate exactly the attested human languages.

If reached: our formalism accounts for human languages.

Making happy

• the theoretical linguist wishing to characterize the possible languages of

the world, who is now offered a mathematical tool to do so.

• the cognitive scientist

wishing to decipher the “mental software” run by our brain.

Tamás Biró, Yale U., Language and Computation p. 14



Regular languages

But this is too weak a formalism for natural languages!

What can we do with formal grammars?

Tamás Biró, Yale U., Language and Computation p. 15



Chomsky hierarchy

NB:

0: Turing machine

1: Linear bounded automaton

2: Non-deterministic push-down automaton

3: Finite-state automaton

Tamás Biró, Yale U., Language and Computation p. 16



The Chomsky Hierarchy

Tamás Biró, Yale U., Language and Computation p. 17



Weak and strong equivalence

{anbm|n,m ∈ N+}

• Regular expression: /a+ b+/

• Finite State Automaton: initial state q0, state q1, end state q2, arc

q0 → q0 with label a, arc q1 → q1 with label b,

arc loop q0 → q1 with label a, arc loop q1 → q2 with label b.

• Regular grammar: S → a S, S → a A, A→ b A, A→ b

• Context Free Grammar: S → A B, A→ A A,
B → B B, A→ a, B → b

Tamás Biró, Yale U., Language and Computation p. 18



The Pumping Lemma

For all L infinite regular languages,

there are strings x, y and z such that

y 6= ε and

xynz ∈ L for all N ≥ 0.

Example: {anbn} is not regular.

Tamás Biró, Yale U., Language and Computation p. 19



The Pumping Lemma

Example: L = {xxrev|x ∈ {a, b}∗ } is not regular.

where xrev is the string x reversed. The strings in L are symmetrical.

Proof:

1. Intersect L with regular language aa∗bbaa∗.
If L were regular, then intersection would also be regular,
because regular languages are closed for intersection
(J&M 2.3).

2. Resulting language is anb2an, which is not regular, due to
the pumping lemma. Therefore L cannot be regular, either.

Tamás Biró, Yale U., Language and Computation p. 20



Probabilistic Context Free Grammars

Tamás Biró, Yale U., Language and Computation p. 21



Probabilistic Context Free Grammars

∑
β∈(N∪Σ)∗

P (A→ β) = 1

Tamás Biró, Yale U., Language and Computation p. 22



Probabilistic Context Free Grammars

Probability of tree T (which yields sentence S):

P (T, S) =
n∏
i=1

P (RHSi|LHSi)

the product of the probabilities of the n rules used to expand
each of the n non-terminal nodes in parse tree T
(J&M 14.1.1).

Tamás Biró, Yale U., Language and Computation p. 23



Probabilistic CFG: an example

Tamás Biró, Yale U., Language and Computation p. 24



Probabilistic Context Free Grammars

An example:

(booking a flight serving dinner vs. booking a flight on behalf of ‘dinner’.)

Tamás Biró, Yale U., Language and Computation p. 25



Parsing and grammar learning

• Parsing: Given (probabilistic) CFG G, given sentence s,
find (possible/most probable) parse tree for s in G.

• Learning: Given set of sentences,
build a (probabilistic) context free grammar.

Tamás Biró, Yale U., Language and Computation p. 26



Have a nice break, and

see you after the spring recess!

Tamás Biró, Yale U., Language and Computation p. 27


