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Practical matters

• Pre/post-reading: JM 12, JM 13, 14.1.

• To come / background JM 14.

• http://birot.hu/courses/2014-LC/readings.txt

• Midterm due Thursday.

• (To come: Viterbi and Forward-Backward – an example)
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Today

• Context-free grammars

• Parsing CFGs

• Probabilistic CFGs

Next time: More (non-prob) parsers, as well as
probabilistic CFGs, parsing PCFGs, learning PCFGs.
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Formal languages (recap)

Given finite alphabet Σ, for instance

• Σ = letters of the alphabet (orthographic)

• Σ = segments in a phonological system
(phonemes and/or allophones?)

• Σ = words in a finite vocabulary

• Σ = atoms in the formalism of some logic (first order, modal,
etc.) employed to describe natural language semantics.

A language is L ⊆ Σ∗.
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Formal languages (recap)

Given finite alphabet Σ, a language is L ⊆ Σ∗.

• Given formalism F , such as
regular expressions, finite state automata, regular grammars,
context free grammars, tree adjoining grammars, etc.

• let F ∈ F be an instance of such a formalism.

• L(F ) : language accepted / generated by F .

• What is language class L(F) = {L(F )|F ∈ F}?
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Chomsky hierarchy

NB:

0: Turing machine

1: Linear bounded automaton

2: Non-deterministic push-down automaton

3: Finite-state automaton
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The Chomsky Hierarchy
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Chomsky hierarchy: examples

Σ = {a, b, c} (or larger)

• anbm is not a �nite language, but a regular language.
RE, FSA and regular grammar provided during lecture 03/06.

• anbn is a context free language, but not a regular language.
Not a regular language: proof based on the Pumping Lemma.

It is a context free language: S → a S b, S → a b.

• anbncn is a context sensitive language, but not context free.
Not a context free: proof based on the Bar-Hillel Lemma.

• {an|n is a prime number} is not context sensitive.
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Context free languages
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Context Free Grammars

A formal grammar is G = (N,Σ, R, S).

Specifically, a CFG has a rewrite rule skeleton: A→ γ,
where A ∈ N (non-terminal), and γ ∈ (N ∪ Σ)∗ (any string).

Two perspectives:

• Generating a string: S ⇒∗ s ∈ Σ∗.

• Generating a tree: for each application of rule A→ γ,
have a subtree with root A and daughters in γ.
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Context Free Grammars

Two grammars, G1 and G2, are

• weakly equivalent if they generate the same language:
L(G1) = L(G2).

• strongly equivalent if they do so by generating the same
trees. They assign same phrase structure to each sentence
(allowing for renaming non-terminals).

Example from previous week {anbm|n,m ∈ N+}:

• Regular grammar G1: S → a S, S → a A, A→ b A, A→ b

• CFG G2: S → A B, A→ A A, B → B B, A→ a, B → b
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Phrase structure: what is in a CFG rule?

John eats soup with noodles with a friend.

John eats soup with a friend.

John eats with a friend.

John eats.

Eat!

(John ( ( eats (soup (with noodles) ) ) (with a friend) ) )
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Phrase structure: what is in a CFG rule?

[S John [V P [V eats ] [NP soup [PP with noodles ]] [PPwith a friend ] ] ]

• A phrase: unit larger than word and smaller than sentence:
[soup with noodles] (but not soup with a friend).

• The application of the rewrite rule:
V P → V NP (PP ), NP → NP PP , PP → P NP .

• A subtree in the sentence tree.

• Tree representation = bracketing representation.
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Chomsky Normal Form

Binary branching trees down to the prelexical nodes.

Rewrite rule skeletons:

• A→ B C (non-terminals only)

• A→ a (lexical insertion of terminal symbols)

Theorem: Any context-free grammar can be converted
into a weakly equivalent Chomsky Normal Form grammar.
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Parsing context-free grammars
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Parsing

Parsing: (1) recognizing an input string, as well as
(2) assigning some structure to it.

Context-free parsing: Given a CFG G and a string s,
(1) decide whether s ∈ L(G), and
(2) identify the phrases and their categories in s.

Applications:

• Grammar checking

• Intermediate step toward semantic analysis, machine translation,

question answering, information extraction, etc.
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Parsing

Due to inherent ambiguity in language,

• Usually more than one parse is possible.

• The wider the coverage of a grammar, the more parses.

ALPINO (wide-coverage dependency parser, Dutch): 521,472 parses for

Aan Charles Masterman, een collega uit de eerste ministeriele

jaren, was die neiging al eerder opgevallen (Mullen, 2002).

• Most of the parses are non-sense to the human judges.

• Solutions: filters; probabilistic CFGs.
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Parsing

Shallow parsing (a.k.a. partial parsing, or chunking):

• Fast heuristic techniques useful for various NLP tasks
(information extraction, statistical MT, etc.)

• that do not really need full parses.

• Less ambiguity.

• E.g., cascades of finite-state, rule-based transducers.

• E.g., various machine learning approaches.
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Parsing

Full parsing as a search

• Bottom-up search strategy:

– CKY (Cocke-Kasami-Younger) Algorithm

• Top-down search strategy:

– Earley’s Parser

• Chart parsing
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CKY (Cocke-Kasami-Younger) Algorithm
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CKY (Cocke-Kasami-Younger) Algorithm
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CKY (Cocke-Kasami-Younger) Algorithm
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CKY (Cocke-Kasami-Younger) Algorithm

• CKY requires using CNF!

• CKY recognition: is there an S in cell [0, N ]?

• CKY parsing: backpointers in order to recover the path
leading to S.
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Probabilistic Context Free Grammars
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Probabilistic Context Free Grammars

∑
β∈(N∪Σ)∗

P (A→ β) = 1
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Probabilistic Context Free Grammars

Probability of tree T (which yields sentence S):

P (T, S) =
n∏
i=1

P (RHSi|LHSi)

the product of the probabilities of the n rules used to expand
each of the n non-terminal nodes in parse tree T
(J&M 14.1.1).
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Probabilistic CFG: an example
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Probabilistic Context Free Grammars

An example:

(booking a flight serving dinner vs. booking a flight on behalf of ‘dinner’.)
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Parsing and grammar learning

• Parsing: Given (probabilistic) CFG G, given sentence s,
find (possible/most probable) parse(s) tree for s in G.

• Learning: Given set of (parsed/unparsed) sentences,
build a (probabilistic) context free grammar.
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See you on Thursday!
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