Language and Computation

week 9, Tuesday, March 25

Tamás Biró Yale University tamas.biro@yale.edu http://www.birot.hu/courses/2014-LC/

Practical matters

- **Pre/post-reading:** JM 12, JM 13, 14.1.
- To come / background JM 14.
- http://birot.hu/courses/2014-LC/readings.txt
- Midterm due Thursday.
- (To come: Viterbi and Forward-Backward an example)

Today

- Context-free grammars
- Parsing CFGs
- Probabilistic CFGs

Next time: More (non-prob) parsers, as well as probabilistic CFGs, parsing PCFGs, learning PCFGs.

Formal languages (recap)

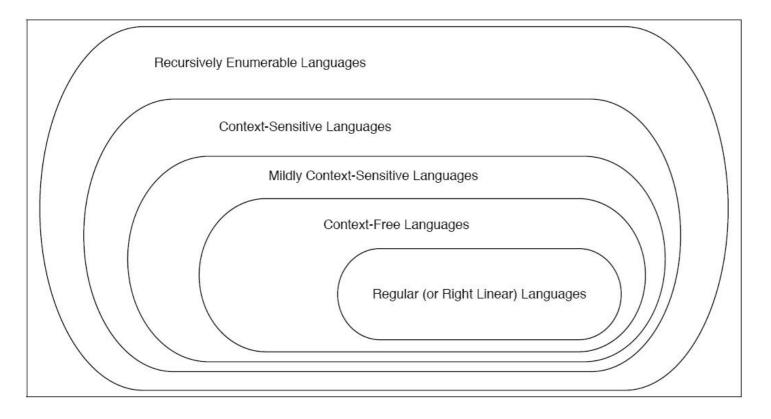
Given finite alphabet $\boldsymbol{\Sigma}\text{, for instance}$

- $\Sigma =$ letters of the alphabet (orthographic)
- $\Sigma =$ segments in a phonological system (phonemes and/or allophones?)
- $\Sigma =$ words in a finite vocabulary
- $\Sigma = \text{atoms in the formalism of some logic (first order, modal, etc.) employed to describe natural language semantics.$
 - A language is $L \subseteq \Sigma^*$.

Formal languages (recap)

Given finite alphabet Σ , a language is $L \subseteq \Sigma^*$.

- Given formalism *F*, such as regular expressions, finite state automata, regular grammars, context free grammars, tree adjoining grammars, etc.
- let $F \in \mathcal{F}$ be an instance of such a formalism.
- L(F) : language accepted / generated by F.
- What is language class $\mathcal{L}(\mathcal{F}) = \{L(F) | F \in \mathcal{F}\}$?


Chomsky hierarchy

Туре	Common Name	Rule Skeleton	Linguistic Example
0	Turing Equivalent	$\alpha \rightarrow \beta$, s.t. $\alpha \neq \epsilon$	HPSG, LFG, Minimalism
1	Context Sensitive	$\alpha A\beta \rightarrow \alpha\gamma\beta$, s.t. $\gamma \neq \epsilon$	
-	Mildly Context Sensitive		TAG, CCG
2	Context Free	$A ightarrow \gamma$	Phrase-Structure Grammars
3	Regular	$A \rightarrow xB$ or $A \rightarrow x$	Finite-State Automata

NB:

- 0: Turing machine
- 1: Linear bounded automaton
- 2: Non-deterministic push-down automaton
- 3: Finite-state automaton

The Chomsky Hierarchy

Chomsky hierarchy: examples

 $\Sigma = \{a, b, c\} \quad (\text{or larger})$

- $a^n b^m$ is not a finite language, but a regular language. RE, FSA and regular grammar provided during lecture 03/06.
- aⁿbⁿ is a context free language, but not a regular language.
 Not a regular language: proof based on the Pumping Lemma.
 It is a context free language: S → a S b, S → a b.
- aⁿbⁿcⁿ is a context sensitive language, but not context free.
 Not a context free: proof based on the Bar-Hillel Lemma.
- $\{a^n | n \text{ is a prime number}\}$ is not context sensitive.

Context free languages

Context Free Grammars

A formal grammar is $G = (N, \Sigma, R, S)$.

Specifically, a CFG has a rewrite rule skeleton: $A \to \gamma$, where $A \in N$ (non-terminal), and $\gamma \in (N \cup \Sigma)^*$ (any string).

Two perspectives:

- Generating a string: $S \Rightarrow^* s \in \Sigma^*$.
- Generating a tree: for each application of rule $A \rightarrow \gamma$, have a subtree with root A and daughters in γ .

Context Free Grammars

Two grammars, G_1 and G_2 , are

- weakly equivalent if they generate the same language: $L(G_1) = L(G_2).$
- **strongly equivalent** if they do so by generating the same trees. They assign same *phrase structure* to each sentence (allowing for renaming non-terminals).

Example from previous week $\{a^n b^m | n, m \in \mathbb{N}^+\}$:

- Regular grammar $G_1: S \to a S, S \to a A, A \to b A, A \to b$
- CFG G_2 : $S \to A B$, $A \to A A$, $B \to B B$, $A \to a$, $B \to b$

Phrase structure: what is in a CFG rule?

eats	soup	with noodles	with a friend.
eats	soup		with a friend.
eats			with a friend.
eats.			
Eat!			
	eats eats eats.	eats soup eats eats.	eats soup eats eats.

(John ((eats (soup (with noodles))) (with a friend)))

Phrase structure: what is in a CFG rule?

[S John [VP [V eats]] [NP soup [PP with noodles]] [PP with a friend]]]

- A phrase: unit larger than word and smaller than sentence: [soup with noodles] (but not soup with a friend).
- The application of the rewrite rule: $VP \rightarrow V \ NP \ (PP)$, $NP \rightarrow NP \ PP$, $PP \rightarrow P \ NP$.
- A subtree in the sentence tree.
- Tree representation = bracketing representation.

Chomsky Normal Form

Binary branching trees down to the prelexical nodes.

Rewrite rule skeletons:

- $A \rightarrow B$ C (non-terminals only)
- $A \rightarrow a$ (lexical insertion of terminal symbols)

Theorem: Any context-free grammar can be converted into a weakly equivalent Chomsky Normal Form grammar.

Parsing context-free grammars

Parsing: (1) recognizing an input string, as well as (2) assigning some **structure** to it.

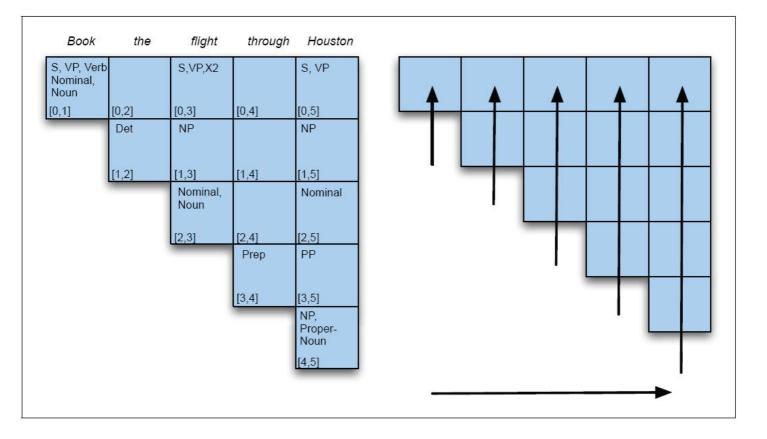
Context-free parsing: Given a CFG G and a string s, (1) decide whether $s \in L(G)$, and (2) identify the **phrases** and their categories in s.

Applications:

- Grammar checking
- Intermediate step toward semantic analysis, machine translation, question answering, information extraction, etc.

Due to inherent ambiguity in language,

- Usually more than one parse is possible.
- The wider the coverage of a grammar, the more parses.
- ALPINO (wide-coverage dependency parser, Dutch): 521,472 parses for Aan Charles Masterman, een collega uit de eerste ministeriele jaren, was die neiging al eerder opgevallen (Mullen, 2002).
- Most of the parses are non-sense to the human judges.
- Solutions: filters; probabilistic CFGs.


Shallow parsing (a.k.a. partial parsing, or chunking):

- Fast heuristic techniques useful for various NLP tasks (information extraction, statistical MT, etc.)
- that do not really need full parses.
- Less ambiguity.
- E.g., cascades of finite-state, rule-based transducers.
- E.g., various machine learning approaches.

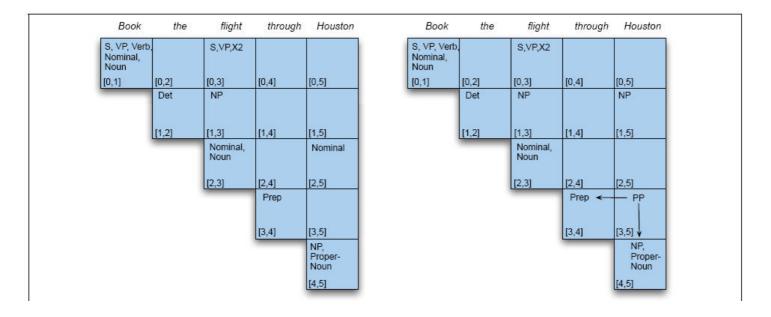
Full parsing as a search

- Bottom-up search strategy:
 - CKY (Cocke-Kasami-Younger) Algorithm
- Top-down search strategy:
 - Earley's Parser
- Chart parsing


```
function CKY-PARSE(words, grammar) returns table

for j \leftarrow from 1 to LENGTH(words) do

table[j-1, j] \leftarrow \{A \mid A \rightarrow words[j] \in grammar\}


for i \leftarrow from j-2 downto 0 do

for k \leftarrow i+1 to j-1 do

table[i,j] \leftarrow table[i,j] \cup

\{A \mid A \rightarrow BC \in grammar, B \in table[i,k], C \in table[k, j]\}
```


Nominal, Noun	1	3, VI , XZ				Nominal, Noun	1	5,11,72		
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]		[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det	NP		NP			Det ←	NP		- NP
	[1,2]	[1,3]	[1,4]	[1,5]	4		[1,2]	[1,3]	[1,4]	[1,5]
		Nominal, « Noun		Nominal				Nominal, Noun		Nominal
		[2,3]	[2,4] Prep	[2,5] PP	-			[2,3]	[2,4] Prep	[2,5] PP
			TICP						Thep	
			[3,4]	[3,5] NP,	-				[3,4]	[3,5] NP,
				Proper- Noun						Proper- Noun
				[4,5]	1					[4,5]
					Book	the	flight	through	Houston	
					S, VP, Verb Nominal,	<	S,		-S ₁ , VP	
					Noun [0,1]	[0,2]	S, VP, ≺ X2 ∢ [0,3]	[0,4]	S2, VP	
						Det	NP		NP	
					ļ	[1,2]	[1,3]	[1,4]	[1,5]	
							Nominal, Noun		Nominal	
							[2,3]	[2,4] Prep	[2,5]	
							8	[3,4]	[3,5] NP, Proper-	
									Noun	
									[4,5]	

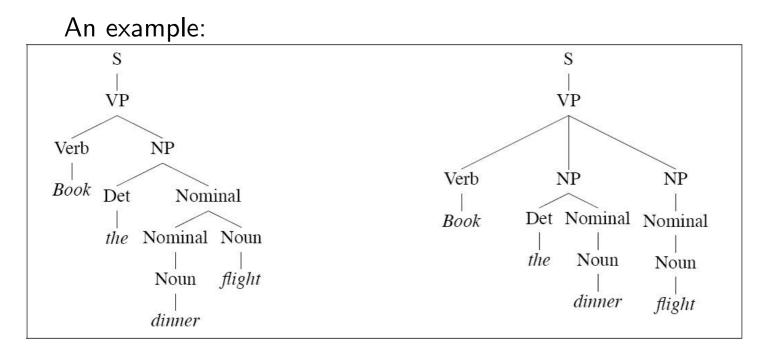
- CKY requires using CNF!
- CKY recognition: is there an S in cell [0, N]?
- CKY parsing: backpointers in order to recover the path leading to S.

- N a set of non-terminal symbols (or variables)
- Σ a set of **terminal symbols** (disjoint from *N*)
- *R* a set of **rules** or productions, each of the form $A \rightarrow \beta$ [*p*], where *A* is a non-terminal,

 β is a string of symbols from the infinite set of strings $(\Sigma \cup N)*$, and *p* is a number between 0 and 1 expressing $P(\beta|A)$

S a designated start symbol

$$\sum_{\beta \in (N \cup \Sigma)^*} P(A \to \beta) = 1$$


Probability of tree T (which yields sentence S):

$$P(T,S) = \prod_{i=1}^{n} P(RHS_i | LHS_i)$$

the product of the probabilities of the n rules used to expand each of the n non-terminal nodes in parse tree T (J&M 14.1.1).

Probabilistic CFG: an example					
Grammar		Lexicon			
$S \rightarrow NP VP$	[.80]	$Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$			
$S \rightarrow Aux NP VP$	[.15]	Noun \rightarrow book [.10] flight [.30]			
$S \rightarrow VP$	[.05]	<i>meal</i> [.15] <i>money</i> [.05]			
$NP \rightarrow Pronoun$	[.35]	<i>flights</i> [.40] <i>dinner</i> [.10]			
$NP \rightarrow Proper-Noun$	[.30]	$Verb \rightarrow book [.30] \mid include [.30]$			
$NP \rightarrow Det Nominal$	[.20]	<i>prefer</i> ;[.40]			
$NP \rightarrow Nominal$	[.15]	$Pronoun \rightarrow I[.40] \mid she[.05]$			
$Nominal \rightarrow Noun$	[.75]	me[.15] you [.40]			
$Nominal \rightarrow Nominal Noun$	[.20]	<i>Proper-Noun</i> \rightarrow <i>Houston</i> [.60]			
Nominal \rightarrow Nominal PP	[.05]	NWA [.40]			
$VP \rightarrow Verb$	[.35]	$Aux \rightarrow does [.60] \mid can [40]$			
$VP \rightarrow Verb NP$	[.20]	Preposition \rightarrow from [.30] to [.30]			
$VP \rightarrow Verb NP PP$	[.10]	<i>on</i> [.20] <i>near</i> [.15]			
$VP \rightarrow Verb PP$	[.15]	through [.05]			
$VP \rightarrow Verb NP NP$	[.05]				
$VP \rightarrow VP PP$	[.15]				
$PP \rightarrow Preposition NP$	[1.0]				

(booking a flight serving dinner vs. booking a flight on behalf of 'dinner'.)

Parsing and grammar learning

- **Parsing:** Given (probabilistic) CFG G, given sentence s, find (possible/most probable) parse(s) tree for s in G.
- Learning: Given set of (parsed/unparsed) sentences, build a (probabilistic) context free grammar.

See you on Thursday!

Tamás Biró, Yale U., Language and Computation

p. 31