
Language and Computation

week 11, Tuesday, April 08

Tamás Biró
Yale University

tamas.biro@yale.edu

http://www.birot.hu/courses/2014-LC/

Tamás Biró, Yale U., Language and Computation p. 1

http://www.birot.hu/courses/2014-LC/

Practical matters

• Post-reading: JM 11

• Pre-reading: JM 17.1-2, 18.1, 19.1, 20.1

• http://birot.hu/courses/2014-LC/readings.txt

• Assignment 4 posted, due: 04/10.

• (To come(?): Viterbi and Forward-Backward – an example)

• Midterm returned.

Tamás Biró, Yale U., Language and Computation p. 2

http://birot.hu/courses/2014-LC/readings.txt

Today

• Optimality Theory: general definition

• Implementations of OT

• Learning OT

Next time: computational semantics.

Tamás Biró, Yale U., Language and Computation p. 3

Phonology as a (regular?) relation (U,SF(U))

(While alternative approaches to phonology also exist,)

Lexicon + morphology → underlying form U
Phonology: U 7→ SF. Phonetics: SF to sound wave.

• Early generative phonology (SPE):
cascade of context-sensitive rewrite rules.
Procedural perspective

• Two-level phonology and morphology:
declarative constraints.

• Optimality Theory: soft constraints.
Teleological perspective

Tamás Biró, Yale U., Language and Computation p. 4

Optimality Theory: the basic idea

Tamás Biró, Yale U., Language and Computation p. 5

Optimality Theory

Simplified language typology:

• Stress on first syllable

• Stress on last syllable

• Stress on penultimate syllable

• No language with stress on second syllable as a rule

Tamás Biró, Yale U., Language and Computation p. 6

Optimality Theory

An OT model to account for this simplified language typology:

• Early: stress as early as possible
syllables intervening between left edge of word and stress.

• Late: stress as late as possible
syllables intervening between stress and right edge.

• NonFinal: stress not on last syllable.
of stresses on last syllable of the word.

Tamás Biró, Yale U., Language and Computation p. 7

Optimality Theory

Gen(σσσσ) = {[suuu], [usuu], [uusu], [uuus]}.

/σσσσ/ Early Late NonFinal

+ [s u u u] 0 3 0
[u s u u] 1! 2 0
[u u s u] 2! 1 0
[u u u s] 3! 0 1

SF(σσσσ) =[suuu]

Tamás Biró, Yale U., Language and Computation p. 8

Optimality Theory

Gen(σσσσ) = {[suuu], [usuu], [uusu], [uuus]}.

/σσσσ/ NonFinal Late Early

[s u u u] 0 3! 0
[u s u u] 0 2! 1

+ [u u s u] 0 1 2
[u u u s] 1! 0 3

SF(σσσσ) =[uusu]

Tamás Biró, Yale U., Language and Computation p. 9

Optimality Theory

OT accounts for this simplified language typology:

• Stress on first syllable: Early � Late, NonFinal,
as well as NonFinal � Early � Late

• Stress on last syllable Late � Early, NonFinal

• Stress on penultimate syllable
NonFinal � Late � Early

• No language with stress on second syllable as a rule:
No such hierarchy.

Tamás Biró, Yale U., Language and Computation p. 10

Basic ideas of Optimality Theory

• Gen and Eval

• Gen and constraints are universal.

• Constraints ranked into strict domination hierarchy

• Language typology due to differences in hierarchy
→ learning: find the correct hierarchy.

Tamás Biró, Yale U., Language and Computation p. 11

Basic ideas of Optimality Theory

Two views of Optimality Theory:

• Constraints as filters:
“Clever” filters: filters out “worse ones”, not “bad ones”.

• Constraints as elementary functions:
Find candidate that violates the “least” constraints.

Tamás Biró, Yale U., Language and Computation p. 12

Optimality Theory at a disciplinary crossroads

Theoretical linguistics → constraints

Computer science
→ optimization

Cognitive science

OT: optimize some target function,
motivated by linguistic research.

Tamás Biró, Yale U., Language and Computation p. 13

Optimization in linguistics

SF(u) = arg opt
c∈Gen(u)

H(c)

Harmony Grammar: H(c) =
∑n

i=1wi · Ci(c)
opt: min for < on R.

Optimality Theory: H(c) = (C1(c), C2(c), . . . , Cn(c))
opt: lexicographical order on Rn.

Principles and Parameters: H(c) =
∧n

i=1(wi ∨ Ci(c))
opt: false “more optimal” than true.

Tamás Biró, Yale U., Language and Computation p. 14

Implementing Optimality Theory

Tamás Biró, Yale U., Language and Computation p. 15

Implementations of Optimality Theory

How to find the most harmonic element of Gen(u)?

• Exhaustive search

• Finite state representations

• Dynamic programming / chart parsing

• Genetic algorithms

• Simulated annealing

Tamás Biró, Yale U., Language and Computation p. 16

Errors of the mental computation

static knowledge processing in the brain
Optimality Theory Simulated Annealing for OT

Tamás Biró, Yale U., Language and Computation p. 17

Errors of the mental computation

Tamás Biró, Yale U., Language and Computation p. 18

Basic idea of Simulated Annealing

Step 1 – introducing landscape:

• Horizontal: universal neighbourhood structure (a.k.a.
topology) on the universal candidate set.

• Vertical: grammar-dependent harmony (violation profile of
the constraints).

• Random walk in this landscape.

Tamás Biró, Yale U., Language and Computation p. 19

Basic idea of Simulated Annealing

Step 2 – walking in this landscape:

• Pick a random neighbour of your position.

• If neighbour is more optimal: move.

• If less optimal: move in the beginning, don’t move later.
(Exponential expression applied to vector-valued target function.)

Tamás Biró, Yale U., Language and Computation p. 20

Basic idea of Simulated Annealing

Step 3 – performing a random walk on this landscape:

• Start random walk from some initial position.

• End position returned as output of algorithm: form produced

• Hopefully, global optimum (grammatical form) found. Yet,

• Neighbourhood structure → local optima, where random
walker can get stuck. Performance errors.

Tamás Biró, Yale U., Language and Computation p. 21

Basic idea of Simulated Annealing

Step 4 – Precision of the algorithm

• Precision of the algorithm: chance of ending up in global
optimum, and hence returning grammatical form.

• Precision of the algorithm depends on its speed.

• Trade precision for speed – just like human mind!

Tamás Biró, Yale U., Language and Computation p. 22

Basic idea of Simulated Annealing

Level its product its model the product

in the model

Competence in narrow standard globally

sense: static knowledge grammatical form OT optimal

of the language grammar candidate

Dynamic language acceptable or SA-OT local

production process attested forms algorithm optima

Performance in its acoustic (phonetics,

outmost sense signal, etc. pragmatics) ??

Tamás Biró, Yale U., Language and Computation p. 23

Variation in Optimality Theory

Often more than one grammatical form: SF1 ∼ SF2.
Some possible approaches:
• More element in Gen(U), with same violation profile.

• Also generate other elements than Gen(U).

• 1 mental grammar = combination of more “elementary grammars”.

E.g, Paul Boersma’s Stochastic OT :

Tamás Biró, Yale U., Language and Computation p. 24

Learning Optimality Theory

Tamás Biró, Yale U., Language and Computation p. 25

Language acquisition

Tamás Biró, Yale U., Language and Computation p. 26

Language acquisition

Tamás Biró, Yale U., Language and Computation p. 27

Language acquisition

Tamás Biró, Yale U., Language and Computation p. 28

Learning in Optimality Theory

General idea:

• Speaker-teacher wants to say underlying form uf.

• Speaker-teacher’s grammar produces surface form sf.

• Listener-learner hears surface form sf = winner form w.

• Listener-learner’s grammar would produce uf as loser form l.

• Listener-learner updates her grammar, in order to produce w, and not l:

Winner-preferring constraints are promoted and loser-preferring

constraints are demoted in hierarchy hypothesized by the learner.

Tamás Biró, Yale U., Language and Computation p. 29

Learning in Optimality Theory

General idea:

• Winner preferring constraints vs. Loser preferring constraints

• All L must be dominated by at least one W.

• Demote L, possibly promote W.

Tamás Biró, Yale U., Language and Computation p. 30

Learning in Optimality Theory

General idea:

• Recursive Constraint Demotion: off-line (batch learning)

• Error Driven Constraint Demotion: on-line

• Gradual Learning Algorithm

Tamás Biró, Yale U., Language and Computation p. 31

See you on Thursday!

Tamás Biró, Yale U., Language and Computation p. 32

