Language and Computation

week 12, Tuesday, April 15

Tamás Biró Yale University tamas.biro@yale.edu http://www.birot.hu/courses/2014-LC/

Today

- Discourse and dialogue systems
- Selected topics in computational semantics

Semantics

Semantics: the study of 'meaning'

F. de Saussure (1916): linguistic sign

signifier:phonetics, phonology,morphology,syntaxsignified:-semantics

What is meaning?

- Lexical semantics: "atomic units"
- Compositional semantics: from atomic units to the meaning of phrases and sentences.

What is meaning?

• WE DO NOT KNOW IT!

- But let us handle it. . .
- How to do it?

Why handle meaning?

Seemingly,

most "ultimate" NLP tasks require access to meaning:

machine translation, question answering, information extraction, dialogue systems, spell checking, etc.

at least, when we think of the way humans solve these tasks.

• To improve quality of "lower level" NLP tasks:

speech synthesis and recognition, part-of-speech tagging, morphological and syntactic parsing, etc.

How to handle meaning?

I made her duck. Secretariat is expected to race tomorrow. He ate soup with a spoon / with a friend / with noodles.

- By tackling the problem: Create a computational model of the mental representation of the world. . . Hope to do so in the 60s, but then given up.
- By circumventing the problem:
 E.g., Probabilistic Grammars with corpus based frequencies.
- Intermediate solutions: computational semantics.

Topics in computational semantics

- Create a computational model of the mental representation of the world. . . Hope to do so in the 60s, but then given up.
- Word usage: contexts in which the word appears.
 For instance, using a feature vector \$\vec{a}(w)\$ for word \$w\$:
 \$a_i(w)\$= whether/how often the word appears in context \$c_i\$.
- Heuristic: similar meaning if appearing in similar contexts.

Tasks related to word sense:

- WDS: Word Sense Disambiguation, a classic example of Machine Learning.
- WordNet: Lexical Relations

Bank: (1) financial institution; (2) river shore.
One lemma — two senses.
But also: (3) repository; (4) building.

- Homonymy: two signs (same form, different meaning).
- **Polysemy:** one sign with several, though related meanings.
- **Metonymy:** systematic relations between different aspects of a concept (e.g., building vs. organization).

- Synonymy: same meaning
- Antonymy: opposite meaning
- Hyper[o]nymy: superordinate meaning
- Hyponymy: is-a relation
- Meronymy: part-whole relation

WordNet:(http://wordnet.princeton.edu/)Task:automatic detection of semantic relations from corpus.

Hamburger

- Hamburger (an inhabitant of Hamburg)
 - direct hypernym:
 - German (a person of German nationality)
 - sister term
 - German (a person of German nationality)
 - East German (a native/inhabitant of the former GDR)
 - Bavarian (a native/inhabitant of Bavaria)
 - derivationally related form
 - Hamburg (a port city in northern Germany on the Elbe River that was founded by Chalemagne in the...)

dog, domestic dog, Canis familiaris

- => canine, canid
 - => carnivore
 - => placental, placental mammal, eutherian, euther

=> mammal

- => vertebrate, craniate
 - => chordate
 - => animal, animate being, beast, brute,
 => ...

http://en.wikipedia.org/wiki/WordNet

Computational discourse

Dialogue and Conversational Agents

Challenges for computational discourse

Among many others. . .

- Reference phenomena and anaphora (pronoun) resolution
- Turn-taking
- Error detection
- Detecting speech acts

Kevin must be here. His car is parked outside

John_i is a good friend of Kevin_j. $He_{i/j?}$ loves Mary.

Anaphora resolution

Speech acts

Locutionary act:	the utterance of a sentence with a particular meaning
Illocutionary act:	the act of asking, answering, promising, etc., in uttering a
	sentence
Perlocutionary act:	the (often intentional) production of certain effects upon
	the feelings, thoughts, or actions of the addressee in utter-
	ing a sentence

Performative sentences.

Illocutionary force: You can't do that.

Assertives:	committing the speaker to something's being the case (suggesting,
	putting forward, swearing, boasting, concluding)
Directives:	attempts by the speaker to get the addressee to do something (asking,
	ordering, requesting, inviting, advising, begging)
Commissives:	committing the speaker to some future course of action (promising,
	planning, vowing, betting, opposing)
Expressives:	expressing the psychological state of the speaker about a state of af-
	fairs (thanking, apologizing, welcoming, deploring)
Declarations:	bringing about a different state of the world by the utterance (includ-
	ing many of the performative examples above; <i>I resign</i> , <i>You're fired</i>)

See you on Thursday!

Tamás Biró, Yale U., Language and Computation

p. 23