

Errors in language production, language learning and language change

Some computational experiments with Optimality Theory

Tamás Biró

ACLC, University of Amsterdam (UvA)

OAP dag, December 16, 2011

Conclusions

Example: sentential negation (Jespersen's cycle)

	pre-verbal	discontinuous	post-verbal
French	Jeo ne dis	Je ne dis pas	Je dis pas
English	Ic ne secge	lc ne seye not	I say not
	1. <i>SN V</i>	2. SN V SN	3. <i>V SN</i>

- Typology: pre-verbal, discontinuous, post-verbal,
- ... as well as mixed types.
- Diachronic change (a.k.a. language evolution).

Conclusions

Example: sentential negation (Jespersen's cycle)

	pre-verbal	discontinuous	post-verbal
French	Jeo ne dis	Je ne dis pas	Je dis pas
English	Ic ne secge	lc ne seye not	I say not
	1. <i>SN V</i>	2. SN V SN	3. <i>V SN</i>

- Typology: pre-verbal, discontinuous, post-verbal,
- ... as well as mixed types.
- Diachronic change (a.k.a. language evolution).

Conclusions

Example: sentential negation (Jespersen's cycle)

	pre-verbal	discontinuous	post-verbal
French	Jeo ne dis	Je ne dis pas	Je dis pas
English	Ic ne secge	lc ne seye not	I say not
	1. <i>SN V</i>	2. SN V SN	3. <i>V SN</i>

- Typology: pre-verbal, discontinuous, post-verbal,
- ... as well as mixed types.
- Diachronic change (a.k.a. language evolution).

Conclusions

Example: sentential negation (Jespersen's cycle)

	pre-verbal	discontinuous	post-verbal
French	Jeo ne dis	Je ne dis pas	Je dis pas
English	Ic ne secge	lc ne seye not	I say not
	1. <i>SN V</i>	2. SN V SN	3. <i>V SN</i>

- Typology: pre-verbal, discontinuous, post-verbal,
- ... as well as mixed types.
- Diachronic change (a.k.a. language evolution).

The role of errors = the results of imperfect mental computation.

- "Performance errors": ungrammatical but produced.
- Learning in the presence of "performance errors".
- "Performance errors" as a driving force behind language change.
- Another reason for making errors during learning.

- A. Lopopolo and T. Biró. 'Language Evolution and SA-OT: The case of sentential negation'. *Computational Linguistics in the Netherlands Journal* 1(2011):21–40.
- T. Biró. 'Towards a Robuster Interpretive Parsing: Learning from overt forms in Optimality Theory'. Submitted to *Journal of Logic, Language and Information*.

The role of *errors* = the results of imperfect mental computation.

- "Performance errors": ungrammatical but produced.
- Learning in the presence of "performance errors".
- "Performance errors" as a driving force behind language change.
- Another reason for making errors during learning.

- A. Lopopolo and T. Biró. 'Language Evolution and SA-OT: The case of sentential negation'. *Computational Linguistics in the Netherlands Journal* 1(2011):21–40.
- T. Biró. 'Towards a Robuster Interpretive Parsing: Learning from overt forms in Optimality Theory'. Submitted to *Journal of Logic, Language and Information*.

The role of *errors* = the results of imperfect mental computation.

- "Performance errors": ungrammatical but produced.
- Learning in the presence of "performance errors".
- "Performance errors" as a driving force behind language change.
- Another reason for making errors during learning.

- A. Lopopolo and T. Biró. 'Language Evolution and SA-OT: The case of sentential negation'. *Computational Linguistics in the Netherlands Journal* 1(2011):21–40.
- T. Biró. 'Towards a Robuster Interpretive Parsing: Learning from overt forms in Optimality Theory'. Submitted to *Journal of Logic, Language and Information*.

The role of *errors* = the results of imperfect mental computation.

- "Performance errors": ungrammatical but produced.
- Learning in the presence of "performance errors".
- "Performance errors" as a driving force behind language change.
- Another reason for making errors during learning.

- A. Lopopolo and T. Biró. 'Language Evolution and SA-OT: The case of sentential negation'. *Computational Linguistics in the Netherlands Journal* 1(2011):21–40.
- T. Biró. 'Towards a Robuster Interpretive Parsing: Learning from overt forms in Optimality Theory'. Submitted to *Journal of Logic, Language and Information*.

Conclusions

Errors of the mental computation

static knowledge

processes in the brain

Tamás Biró

Errors in language production, language learning and language change

Conclusions

Errors of the mental computation

static knowledge

processes in the brain

Overt forms

Conclusions

The language acquisition problem

Conclusions

Learning from competence?

Conclusions

Learning from performance!

Learning

Overt forms

Conclusions

Overview

Modelling performance

Modelling linguistic performance

Issues in learning and iterated learning

Learning

Overt forms

Overview

Modelling performance

Modelling linguistic performance

- 2 Issues in learning and iterated learning
- 3 The problem of the overt forms

4 Conclusions

Conclusions

Errors of the mental computation

static knowledge

processes in the brain Simulated Annealing for OT

Conclusions

Errors of the mental computation

static knowledge Optimality Theory processes in the brain Simulated Annealing for OT

Tamás Biró

Overt forms

Conclusions

Errors of the mental computation

Optimality Theory grammar

competence model

grammatical form = 🖙 (globally) optimal candidate

produced forms = globally or locally optimal candidates

SA-OT implementation

performance model

Overt forms

Modelling linguistic competence

FAITH[NEG] \gg *Negation \gg NegationFirst \gg NegationLast

Learning

	/pol = neg/	Faith[Neg]	*Neg	NegFirst	NegLast
	[V]	*		*	*
ß	[SN V]		*		*
	[V SN]		*	*	
	[SN V SN]		**		
	[V SN SN]		**	*	
	[SN SN V]		**		*
	[SN V SN SN]		***		

Lopopolo and Biró (2011), based on Henriëtte de Swart (2010).

Tamás Biró

Errors in language production, language learning and language change

ot

Modelling linguistic competence

FAITH[NEG] \gg NEGATIONFIRST \gg *NEGATION \gg NEGATIONLAST

	/pol = neg/	Faith[Neg]	NegFirst	*Neg	NegLast
	[V]	*	*		*
R3	[SN V]			*	*
	[V SN]		*	*	
	[SN V SN]			**	
	[V SN SN]		*	**	
	[SN SN V]			**	*
	[SN V SN SN]			***	

Lopopolo and Biró (2011), based on Henriëtte de Swart (2010).

Tamás Biró

Errors in language production, language learning and language change

Overt forms

Conclusions

Errors of the mental computation

Optimality Theory grammar

competence model

grammatical form = \mathbb{R} (globally) optimal candidate

produced forms = globally or locally optimal candidates

SA-OT implementation

performance model

Modelling linguistic performance

A topology (neighborhood structure) on the candidate set:

Locally optimal forms: are predicted to be the produced forms.

Modelling linguistic performance

 $Faith[Neg] \gg *Negation \gg NegationFirst \gg NegationLast$

Hierarchy 1: *Neg >> NegFirst >> NegLast

Locally optimal forms: I [SN V].

Tamás Biró

Modelling linguistic performance

FAITH[NEG] \gg NEGATIONFIRST \gg *NEGATION \gg NEGATIONLAST

Locally optimal forms: \square [SN V] and \sim [SN [V SN]].

Tamás Biró

Errors in language production, language learning and language change

1.1

 porformanco	

	Hierarchy	competence	performance
1.	*Neg \gg NegFirst \gg NegLast	pre-verbal	pre-verbal
2.	NegFirst \gg *Neg \gg NegLast	pre-verbal	pre-V and discont.
3.	NegFirst \gg NegLast \gg *Neg	discontinuous	discontinuous
4.	NegLast \gg NegFirst \gg *Neg	discontinuous	discontinuous
5.	NegLast \gg *Neg \gg NegFirst	post-verbal	discont. and post-V
6.	*Neg \gg NegLast \gg NegFirst	post-verbal	post-verbal

Observerd typology: 3 pure types and 2 mixed types. **Predicted typology:**

- Traditional OT (H. de Swart): 3 pure types.
- Stochastic OT (H. de Swart): 3 pure types and 3 mixed types.
- SA-OT (Lopopolo and Biró): 3 pure types and 2 mixed types.

 norformonoo	

	Hierarchy	competence	performance
1.	*Neg \gg NegFirst \gg NegLast	pre-verbal	pre-verbal
2.	NegFirst \gg *Neg \gg NegLast	pre-verbal	pre-V and discont.
3.	NegFirst \gg NegLast \gg *Neg	discontinuous	discontinuous
4.	NegLast \gg NegFirst \gg *Neg	discontinuous	discontinuous
5.	NegLast \gg *Neg \gg NegFirst	post-verbal	discont. and post-V
6.	*Neg \gg NegLast \gg NegFirst	post-verbal	post-verbal

Observerd typology: 3 pure types and 2 mixed types. **Predicted typology:**

- Traditional OT (H. de Swart): 3 pure types.
- Stochastic OT (H. de Swart): 3 pure types and 3 mixed types.
- SA-OT (Lopopolo and Biró): 3 pure types and 2 mixed types.

ce	performance

	Hierarchy	competence	performance
1.	*Neg \gg NegFirst \gg NegLast	pre-verbal	pre-verbal
2.	NegFirst \gg *Neg \gg NegLast	pre-verbal	pre-V and discont.
3.	NegFirst \gg NegLast \gg *Neg	discontinuous	discontinuous
4.	NegLast \gg NegFirst \gg *Neg	discontinuous	discontinuous
5.	NegLast \gg *Neg \gg NegFirst	post-verbal	discont. and post-V
6.	*Neg >> NegLast >> NegFirst	post-verbal	post-verbal

Observerd typology: 3 pure types and 2 mixed types. **Predicted typology:**

- Traditional OT (H. de Swart): 3 pure types.
- Stochastic OT (H. de Swart): 3 pure types and 3 mixed types.
- SA-OT (Lopopolo and Biró): 3 pure types and 2 mixed types.

Learning

Overt forms

Conclusions

Overview

Modelling performance

Modelling linguistic performance

Conclusions

Iterated learning: reproducing language change (?)

Five agents in each generation. Generations 0 to 100. Each agent learns from every agent in the previous generation. Negation types in the "simulated historical corpus":

A. Lopopolo and T. Biró. 'Language Evolution and SA-OT: The case of sentential negation'.

Computational Linguistics in the Netherlands Journal 1(2011):21-40.

Tamás Biró

Conclusions

Learning from performance!

STERDAM CENTER

Conclusions

Language acquisition with online learning algorithms

Online learning algorithms

- Constraint C_i has rank r_i .
 - In each learning cycle: learning data (*winner*) produced by teacher compared to form produced by learner (loser).

Update rule: update the rank r_i of every constraint C_i , depending on whether C_i prefers the winner or the loser.

Learning

$$JSD(P||Q) = \frac{D(P||M) + D(Q||M)}{2}$$

Online learning algorithms

Constraint C_i has rank r_i .

In each learning cycle: learning data (*winner*) produced by teacher compared to form produced by learner (*loser*).

Update rule: update the rank r_i of every constraint C_i , depending on whether C_i prefers the winner or the loser.

- Run until convergence of performance, and not of competence.
- Distance of teacher sample vs. learner sample measured by JSD:

Jensen-Shannon divergence: measures the "distance" of two distributions

$$JSD(P||Q) = \frac{D(P||M) + D(Q||M)}{2}$$

where $D(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$ (relative entropy, Kullback-Leibler divergence), $M(x) = \frac{P(x)+Q(x)}{2}$.

Results: number of learning steps until convergence

- Measure the number of learning steps until convergence.
- 2000 times learning (rnd target, rnd underlying form) per grammar type × production method × learning method.
- Long-tail distribution of number of learning steps:

production	update rule	OT	10-HG	4-HG
grammatical	Magri	13 ; 27 ; 45 ; 67	13; 28 ;46;70	12; 27 ;48;69
	GLA	<i>23</i> ; 43 ; <i>65</i> ; 102	22 ; 41 ; 64 ; 107	<i>22</i> ; 42 ; <i>64</i> ; 107
SA-OT,	Magri	53 ; 109 ; 233 ; 497	<i>63</i> ; 140 ; <i>328</i> ; 1681	60;148;366;1517
$t_{\rm step} = 0.1$	GLA	<i>80</i> ; 171 ; <i>462</i> ; 1543	<i>92</i> ; 240 ; <i>772</i> ; 7512	<i>92</i> ; 239 ; <i>785</i> ; 8633
SA-OT,	Magri	64 ; 131 ; <i>305</i> ; 1022	62 ; 134 ; 304 ; 1127	63 ; 137 ; <i>329</i> ; 1278
$t_{\rm step} = 1$	GLA	<i>90</i> ; 212 ; <i>560</i> ; 1966	<i>92</i> ; 233 ; <i>572</i> ; 3116	84;212;646;3005

(1st quartile;median;3rd quartile;90th percentile)

Tamás Biró

Learning

Overt forms

Overview

Modelling performance

Modelling linguistic performance

Conclusions

The problem of the overt forms

- Generation *n* produces [SN [V SN]] and utters "SN V SN".
- Generation n + 1 hears "SN V SN".
 Is it [SN [V SN]] or [[SN V] SN]?
- In general, huge amount of crucial information for the reconstruction of a grammar is covert.
 - Co-indexation: Hei looks like himi/i.
 - Foot structure: banána proof for ba[nána] or [baná]na?
 - Basic word order: John loves Mary proof for SVO or OVS?

• Does it mislead learning?

The problem of the overt forms

- Generation *n* produces [SN [V SN]] and utters "SN V SN".
- Generation n + 1 hears "SN V SN".
 Is it [SN [V SN]] or [[SN V] SN]?
- In general, huge amount of crucial information for the reconstruction of a grammar is covert.
 - Co-indexation: *He_i looks like him_{i/i}*.
 - Foot structure: banána proof for ba[nána] or [baná]na?
 - Basic word order: John loves Mary proof for SVO or OVS?
- Does it mislead learning?

The problem of the overt forms

	Learner \rightarrow \leftarrow Teacher			
		*Neg	V-right	V-left
LB	[SN V]	*		*
L's target	[[SN V] SN]	**		*
Ţĸ®	[SN [V SN]]	**	*	

- Learner: *Neg \gg V-right \gg V-left. Produces [SN V].
- Teacher: V-left ≫ V-right ≫ *Neg. Produces [SN [V SN]].
- Learner hears "SN V SN". Would like to change her grammar to produce ... [[SN V] SN] or [SN [V SN]]?
- Form [[SN V] SN] is still better than [SN [V SN]] in her grammar, so she takes it as the target for learning,
- ... and fails to learn the target language.

The problem of the overt forms

	Learner \rightarrow \leftarrow Teacher			
		*Neg	V-right	V-left
L B	[SN V]	*		*
L's target	[[SN V] SN]	**		*
T ¤₹	[SN [V SN]]	**	*	

- Learner: *Neg \gg V-right \gg V-left. Produces [SN V].
- Teacher: V-left \gg V-right \gg *Neg. Produces [SN [V SN]].
- Learner hears "SN V SN". Would like to change her grammar to produce ... [[SN V] SN] or [SN [V SN]]?
- Form [[SN V] SN] is still better than [SN [V SN]] in her grammar, so she takes it as the target for learning,
- ... and fails to learn the target language.

Overt forms

The problem of the overt forms

A (partial) solution:

Learner hears "SN V SN". Is it [[SN V] SN] or [SN [V SN]]?

Learning

- Since the learner really cannot know,
- Teacher produces [SN [V SN]]. Learner produces [SN V].

		Learner	$\rightarrow \leftarrow \mathbf{I}$	eacher
		*Neg	V-right	V-left
LB	[SN V]	*		*
	[[SN V] SN]	**		*
ޤ≩	[SN [V SN]]	**	*	
L's target	"average"	2	0.5	0.5

earner \rightarrow	\leftarrow Teacher

The improved learning algorithm performs significantly better:

Biró. 'Towards a Robuster Interpretive Parsing: Learning from overt forms in Optimality Theory'. Submitted to Journal of Logic, Language and Information.

Tamás Biró

Conclusions

The problem of the overt forms

A (partial) solution:

- Learner hears "SN V SN". Is it [[SN V] SN] or [SN [V SN]]?
- Since the learner really cannot know, she takes the (weighted) average of the violations by these forms,
- Teacher produces [SN [V SN]]. Learner produces [SN V]. and updates the grammar in order to approach this average.

		*Neg	V-right	V-left
LB	[SN V]	*		*
	[[SN V] SN]	**		*
T™®	[SN [V SN]]	**	*	
L's target	"average"	2	0.5	0.5

Learner $\rightarrow \leftarrow$ Teacher

The improved learning algorithm performs significantly better:

Biró. 'Towards a Robuster Interpretive Parsing: Learning from overt forms in Optimality Theory'. Submitted to *Journal of Logic, Language and Information*.

Tamás Biró

- OT as a model of competence (static knowledge).
- "Performance errors" as driving force behind language change.
- Language learning until convergence on performance patterns
- Different learning methods need different numbers of learning
- Learning despite hidden (covert) information.

- OT as a model of competence (static knowledge), Simulated Annealing for OT as a model of the (eventually erroneous) computation in the brain (performance).
- "Performance errors" as driving force behind language change.
- Language learning until convergence on performance patterns (measured using Jensen-Shannon Divergence).
- Different learning methods need different numbers of learning step until convergence.
- Learning despite hidden (covert) information.

- OT as a model of competence (static knowledge), Simulated Annealing for OT as a model of the (eventually erroneous) computation in the brain (performance).
- "Performance errors" as driving force behind language change.
- Language learning until convergence on performance patterns (measured using Jensen-Shannon Divergence).
- Different learning methods need different numbers of learning step until convergence.
- Learning despite hidden (covert) information.

- OT as a model of competence (static knowledge), Simulated Annealing for OT as a model of the (eventually erroneous) computation in the brain (performance).
- "Performance errors" as driving force behind language change.
- Language learning until convergence on performance patterns (measured using Jensen-Shannon Divergence).
- Different learning methods need different numbers of learning step until convergence.
- Learning despite hidden (covert) information.

- OT as a model of competence (static knowledge), Simulated Annealing for OT as a model of the (eventually erroneous) computation in the brain (performance).
- "Performance errors" as driving force behind language change.
- Language learning until convergence on performance patterns (measured using Jensen-Shannon Divergence).
- Different learning methods need different numbers of learning step until convergence.
- Learning despite hidden (covert) information.

- OT as a model of competence (static knowledge), Simulated Annealing for OT as a model of the (eventually erroneous) computation in the brain (performance).
- "Performance errors" as driving force behind language change.
- Language learning until convergence on performance patterns (measured using Jensen-Shannon Divergence).
- Different learning methods need different numbers of learning step until convergence.
- Learning despite hidden (covert) information.

Conclusions

Thank you for your attention!

Tamás Biró: t.s.biro@uva.nl

Work supported by:

