

Being stressed by stress

Competence, performance and learning of metrical stress in Optimality Theory

Tamás Biró

ACLC, University of Amsterdam (UvA)

BGU, March 13, 2012

How to observe stress pattern in (Dutch) fast speech?

Quiz item:

Q4 President Bush is een typische 'President Bush is a typical'

A1 intellectueel A2 amerikaan A3 taalkundige 'intellectual' 'American' 'linguist'

Maartje Schreuder and Dicky Gilbers (2004). 'The Influence of Speech Rate on Rhythm Patterns'. In: *On the Boundaries of Phonology and Phonetics*. Groningen.

How to observe stress pattern in (Dutch) fast speech?

Quiz item:

- Q4 President Bush is een typische 'President Bush is a typical'
- A1 intellectueel A2 amerikaan A3 taalkundige

'intellectual' 'American' 'linguist'

Maartje Schreuder and Dicky Gilbers (2004). 'The Influence of Speech Rate on Rhythm Patterns'. In: *On the Boundaries of Phonology and Phonetics*. Groningen.

How to observe stress pattern in (Dutch) fast speech?

Forms and frequencies observed by Schreuder and Gilbers:

fo.to.toe.stel	uit.ge.ve.rij	stu.die.toe.la.ge	per.fec.tio.nist
'camera'	'publisher'	'study grant'	'perfectionist'
susu	ssus	susuu	usus
fó.to.tòe.stel	ùit.gè.ve.ríj	stú.die.tòe.la.ge	per.fèc.tio.níst
fast:	fast: 0.67	fast: 0.38	fast: 0.13
slow:	slow: 0.96	slow: 0.81	slow: 0.20
fó.to.toe.stèl	ùit.ge.ve.ríj	stú.die.toe.là.ge	pèr.fec.tio.níst
fast:	fast: 0.33	fast: 0.62	fast: 0.87
slow:	slow: 0.04	slow: 0.19	slow: 0.80
shift to right	beat reduction	shift to right	shift to left

• Account for stress patterns within some linguistic framework.

Conclusions

- Account for changing patterns: normal vs. fast speech.
 - Account for fast speech forms. Account for their frequencies.
 - Both forms present. Different word types have different frequencies.
 - Gradual change between 'normal' and 'fast'.

- Account for language acquisition:
 - Despite difficulties caused by framework (viz. feet).
 - (Despite difficulties caused by speech errors.)
- (Account for language change: iterated learning.)

• Account for stress patterns within some linguistic framework.

Conclusions

- Account for changing patterns: normal vs. fast speech.
 - Account for fast speech forms. Account for their frequencies.
 - Both forms present. Different word types have different frequencies.
 - Gradual change between 'normal' and 'fast'.

- Account for language acquisition:
 - Despite difficulties caused by framework (viz. feet).
 - (Despite difficulties caused by speech errors.)
- (Account for language change: iterated learning.)

• Account for stress patterns within some linguistic framework.

Conclusions

- Account for changing patterns: normal vs. fast speech.
 - Account for fast speech forms. Account for their frequencies.
 - Both forms present. Different word types have different frequencies.
 - Gradual change between 'normal' and 'fast'.

Learning

- Account for language acquisition:
 - Despite difficulties caused by framework (viz. feet).
 - (Despite difficulties caused by speech errors.)

• (Account for language change: iterated learning.)

• Account for stress patterns within some linguistic framework.

Conclusions

- Account for changing patterns: normal vs. fast speech.
 - Account for fast speech forms. Account for their frequencies.
 - Both forms present. Different word types have different frequencies.
 - Gradual change between 'normal' and 'fast'.

- Account for language acquisition:
 - Despite difficulties caused by framework (viz. feet).
 - (Despite difficulties caused by speech errors.)
- (Account for language change: iterated learning.)

Overview

Optimality Theory: competence

Simulated Annealing for Optimality Theory: performance

Learning

Conclusions

Overview

Optimality Theory: competence

Simulated Annealing for Optimality Theory: performance

Learning

Learning in Optimality Theory: problems

OT: competence

Traditional Optimality Theory

Learning

SA-OT: performance

• Underlying form \mapsto a set of candidates (potential surface forms).

Conclusions

- Constraints: elementary functions defined on the candidate set.
- Grammatical form predicted by this grammar: candidate that violates the highest ranked constraints the least.
- Serial evaluation approach:

OT: competence SA-OT: performance

Traditional Optimality Theory

Learning

• Underlying form \mapsto a set of candidates (potential surface forms).

Conclusions

- Constraints: elementary functions defined on the candidate set.
- Grammatical form predicted by this grammar: candidate that violates the highest ranked constraints the least.

Grammar = constraint hierarchy

- Optimality Theory is a P&P-style model of competence.
- Constraints are universal "principles".
- Constraint ranking is language-dependent "parameter".

Traditional Optimality Theory

Prosodic phonology:

- Intonational Phrase \rightarrow Prosodic Word \rightarrow Foot \rightarrow Syllable $\rightarrow ...$
- Stressed syllable: head ('strong') syllable of a word.
- Main stress: head syllable of head ('strong') foot.

Traditional Optimality Theory

Proposal of Schreuder and Gilbers:

Andante speech:

	/foto+toestel/	OUTPUT-OUTPUT	Foot	Parse
		CORRESPONDENCE	REPULSION	SYLLABLE
RF	(fóto)(tòestel)		*	
	(fóto)toe(stel)	*!		*

NB: Further output forms in the language: fóto and tóestel.

Traditional Optimality Theory

Proposal of Schreuder and Gilbers:

Allegro speech:

	/foto+toestel/	Foot	OUTPUT-OUTPUT	Parse
		REPULSION	CORRESPONDENCE	SYLLABLE
	(fóto)(tòestel)	*!		
ß	(fóto)toe(stel)		*	*

NB: Further output forms in the language: fóto and tóestel.

Traditional Optimality Theory

Grammar = constraint hierarchy

Different grammar for fast speech. Hence, different competence in fast speech?

- How to account for both forms produced?
 - frequencies depending on speech rate, and
 - frequencies depending on word.

- Ad hoc re-ranking, motivated by analogy in music.
- Principled framework: Boersma's *Stochastic Optimality Theory*.

Traditional Optimality Theory

Grammar = constraint hierarchy

- Different grammar for fast speech.
 Hence, different competence in fast speech?
- How to account for both forms produced?
 - frequencies depending on speech rate, and
 - frequencies depending on word.

- Ad hoc re-ranking, motivated by analogy in music.
- Principled framework: Boersma's *Stochastic Optimality Theory*.

Traditional Optimality Theory

Grammar = constraint hierarchy

- Different grammar for fast speech.
 Hence, different competence in fast speech?
- How to account for both forms produced?
 - frequencies depending on speech rate, and
 - frequencies depending on word.

- Ad hoc re-ranking, motivated by analogy in music.
- Principled framework: Boersma's *Stochastic Optimality Theory*.

Traditional Optimality Theory

Grammar = constraint hierarchy

- Different grammar for fast speech.
 Hence, different competence in fast speech?
- How to account for both forms produced?
 - frequencies depending on speech rate, and
 - frequencies depending on word.

- Ad hoc re-ranking, motivated by analogy in music.
- Principled framework: Boersma's Stochastic Optimality Theory.

Overview

Optimality Theory: competence

Simulated Annealing for Optimality Theory: performance

Learning

Learning in Optimality Theory: problems

OT: competence SA-OT: performance Learning

Conclusions

Errors of the mental computation

OT: competence SA-OT: performance Learning

Conclusions

Errors of the mental computation

static knowledge

processing in the brain

OT: competence SA-OT: performance Learning

Conclusions

Errors of the mental computation

static knowledge **Optimality Theory**

processing in the brain Simulated Annealing for OT

SA-OT: performance Learning OT: competence

Conclusions

Errors of the mental computation

Optimality Theory grammar

competence model

grammatical form = ISF (globally) optimal candidate

produced forms = globally or locally optimal candidates

Tamás Biró

SA-OT implementation

performance model

Basic idea of Simulated Annealing

Step 1 – introducing landscape:

- Horizontal: universal *neighbourhood structure* (a.k.a. *topology*) on the universal candidate set.
- Vertical: grammar-dependent harmony (violation profile of the constraints).
- Random walk in this landscape.

Basic idea of Simulated Annealing

Step 2 – walking in this landscape:

- Pick a random neighbour of your position.
- If neighbour is more optimal: move.
- If less optimal: move in the beginning, don't move later. (Exponential expression applied to vector-valued target function.)

Basic idea of Simulated Annealing

Step 3 – performing a random walk on this landscape:

- Start random walk from some initial position.
- End position returned as output of the algorithm: produced form.
- Hopefully, global optimum (grammatical form) is found. Yet...
- Neighbourhood structure → local optima, where random walker can get stuck. Performance errors.

Basic idea of Simulated Annealing

Step 4 – Precision of the algorithm

- **Precision** of the algorithm: chance of ending up in global optimum, and hence returning grammatical form.
- Precision of the algorithm depends on its speed.
- Trade precision for speed just like human mind!

OT: competence SA-OT: performance

Learning Conclusions

Basic idea of Simulated Annealing

Level	its product	its model	the product
			in the model
Competence in narrow		standard	globally
sense: static knowledge	grammatical form	OT	optimal
of the language		grammar	candidate
Dynamic language	acceptable or	SA-OT	local
production process	attested forms	algorithm	optima
Performance in its	acoustic	(phonetics,	
outmost sense	signal, etc.	pragmatics)	??

How to predict stress pattern in (Dutch) fast speech?

Basic steps that connect neighbours:

- Move foot boundary: $[s] \Leftrightarrow [su]; [s] \Leftrightarrow [us].$
- Change head of foot: $[su] \Leftrightarrow [us]$.
- Insert/delete monosyllabic foot: [s] \Leftrightarrow u

How to predict stress pattern in (Dutch) fast speech?

Hierarchy:

 $Align-Left \gg OOC_{z=2} \gg FootRepulsion \gg ParseSyll \gg Trochaic$

- Global optimum: [s]u[su].
- Local optima: [s]u[su] and [su]u[s].
- Local optimum [su]u[s] has less harmonic neighbours: [su]uu, [su][s][s], [us]u[s], [s]uu[s], [su][us].

How to predict stress pattern in (Dutch) fast speech?

Conclusions

Local optimum [su]u[s] has less harmonic neighbours: [su]uu, [su][s][s], [us]u[s], [s]uu[s], [su][us].

/fototoestel/	ALIGN-LEFT	00C _{z=2}	FTREPULS	ParseS	TROCHAIC
\sim [su]u[s]	0	2	0	1	0
[su]uu	0	3	0	2	0
[su][s][s]	0	3	2	0	0
[us]u[s]	0	4	0	1	1
[s]uu[s]	0	2	0	2	0
[su][us]	0	2	1	0	1

How to predict stress pattern in (Dutch) fast speech?

http://www.birot.hu/sa-ot/

http://www.birot.hu/OTKit/

How to predict stress pattern in (Dutch) fast speech?

fo.to.toe.stel	uit.ge.ve.rij	stu.die.toe.la.ge	per.fec.tio.nist
'camera'	'publisher'	'study grant'	'perfectionist'
susu	ssus	susuu	usus
fó.to.tòe.stel	ùit.gè.ve.ríj	stú.die.tòe.la.ge	per.fèc.tio.níst
fast: 0.82	fast: <i>0.65</i> / 0.67	fast: <i>0.55</i> / 0.38	fast: 0.49 / 0.13
slow: 1.00	slow: 0.97 / 0.96	slow: <i>0.96</i> / 0.81	slow: 0.91 / 0.20
fó.to.toe.stèl	ùit.ge.ve.ríj	stú.die.toe.là.ge	pèr.fec.tio.níst
fast: 0.18	fast: <i>0.35</i> / 0.33	fast: 0.45 / 0.62	fast: <i>0.39</i> / 0.87
slow: 0.00	slow: 0.03 / 0.04	slow: 0.04 / 0.19	slow: 0.07 / 0.80

Simulated / observed (Schreuder) frequencies.

In the simulations, $T_{step} = 3$ used for fast speech and $T_{step} = 0.1$ for slow speech.

Overview

Optimality Theory: competence

Simulated Annealing for Optimality Theory: performance

The language acquisition problem

Learning in Optimality Theory

General idea:

Speaker-teacher wants to say underlying form uf.

Learning

- Speaker-teacher's grammar produces surface form sf.
- Listener-learner hears surface form sf = winner form w.
- Listener-learner's grammar would produce uf as loser form I.
- Listener-learner updates her grammar, in order to produce w, and not I:

Winner-preferring constraints are promoted and loser-preferring constraints are demoted in hierarchy hypothesized by the learner.

Learning hidden structures (e.g., metrical feet)

But foot boundaries are not pronounced:

- Speaker-teacher wants to say: *ab.ra.ka.dab.ra* (underlying form).
- Speaker-teacher's grammar produces: [*àb.ra*].*ka*.[*dáb.ra*] (surface form).
- Speaker-teacher utters: *àb.ra.ka.dáb.ra* (overt form).
- Listener-learner hears: *àb.ra.ka.dáb.ra* (overt form).
- Listener-learner hesitates: what is the grammatical surface form in the target languages

[àb].ra.ka.[dáb].ra, [àb.ra].ka.[dáb].ra [àb].ra.[ka.dáb].ra, [àb].ra.ka.[dáb.ra], etc.?

Learning hidden structures (e.g., metrical feet)

Learning

But foot boundaries are not pronounced:

- Speaker-teacher wants to say: *ab.ra.ka.dab.ra* (underlying form).
- Speaker-teacher's grammar produces: [*àb.ra*].*ka*.[*dáb.ra*] (surface form).
- Speaker-teacher utters: *àb.ra.ka.dáb.ra* (overt form).
- Listener-learner hears: *àb.ra.ka.dáb.ra* (overt form).
- Listener-learner hesitates: what is the grammatical surface form in the target language

[àb].ra.ka.[dáb].ra, [àb.ra].ka.[dáb].ra [àb].ra.[ka.dáb].ra, [àb].ra.ka.[dáb.ra], etc.?

Learning hidden structures (e.g., metrical feet)

Learning

But foot boundaries are not pronounced:

- Speaker-teacher wants to say: *ab.ra.ka.dab.ra* (underlying form).
- Speaker-teacher's grammar produces: [àb.ra].ka.[dáb.ra] (surface form).
- Speaker-teacher utters: *àb.ra.ka.dáb.ra* (overt form).
- Listener-learner hears: *àb.ra.ka.dáb.ra* (overt form).
- Listener-learner hesitates: what is the grammatical surface form in the target languages?

[àb].ra.ka.[dáb].ra, [àb.ra].ka.[dáb].ra [àb].ra.[ka.dáb].ra, [àb].ra.ka.[dáb.ra], etc.?

		/ab.ra.ka.dab.ra/	NonFinal	TROCHAIC	FOOTREPULSION
	1.	ab.ra.[ka.dáb].ra		*	
W	2.	[àb.ra].[ka.dáb].ra		*	*
r\$	3.	[àb.ra].ka.[dáb.ra]	*		

- Teacher: FOOTREPULSION ≫ TROCHAIC ≫ NONFINAL, producing grammatical form IS: [àb.ra].ka.[dáb.ra].
- Learner: NONFINAL >> TROCHAIC >> FOOTREPULSION, producing loser: *ab.ra.[ka.dáb].ra*.
- Learner hears *àb.ra.ka.dáb.ra*. Two possible candidates. The winner must have been, the best one, [*àb.ra*].[*ka.dáb*].*ra*.
- Compare w and I. Promote w-preferring constraints: none.
 Demote I-preferring constraints: FOOTREPULSION → deadlock!

		/ab.ra.ka.dab.ra/	NonFinal	TROCHAIC	FOOTREPULSION
Ι	1.	ab.ra.[ka.dáb].ra		*	
W	2.	[àb.ra].[ka.dáb].ra		*	*
r\$	3.	[àb.ra].ka.[dáb.ra]	*		

- Teacher: FOOTREPULSION ≫ TROCHAIC ≫ NONFINAL, producing grammatical form IS: [àb.ra].ka.[dáb.ra].
- Learner: NONFINAL >> TROCHAIC >> FOOTREPULSION, producing loser: *ab.ra.[ka.dáb].ra*.
- Learner hears *àb.ra.ka.dáb.ra*. Two possible candidates. The winner must have been, the best one, *[àb.ra].[ka.dáb].ra*.
- Compare w and I. Promote w-preferring constraints: none.
 Demote I-preferring constraints: FOOTREPULSION → deadlock!

		/ab.ra.ka.dab.ra/	NonFinal	TROCHAIC	FOOTREPULSION
Ι	1.	ab.ra.[ka.dáb].ra		*	
W	2.	[àb.ra].[ka.dáb].ra		*	*
r\$	3.	[àb.ra].ka.[dáb.ra]	*		

- Teacher: FOOTREPULSION ≫ TROCHAIC ≫ NONFINAL, producing grammatical form IS: [àb.ra].ka.[dáb.ra].
- Learner: NONFINAL >> TROCHAIC >> FOOTREPULSION, producing loser: *ab.ra.[ka.dáb].ra*.
- Learner hears àb.ra.ka.dáb.ra. Two possible candidates. The winner must have been, the best one, [àb.ra].[ka.dáb].ra
- Compare w and I. Promote w-preferring constraints: none.
 Demote I-preferring constraints: FOOTREPULSION → deadlock!

		/ab.ra.ka.dab.ra/	NonFinal	TROCHAIC	FOOTREPULSION
Ι	1.	ab.ra.[ka.dáb].ra		*	
W	2.	[àb.ra].[ka.dáb].ra		*	*
r\$	3.	[àb.ra].ka.[dáb.ra]	*		

- Teacher: FOOTREPULSION ≫ TROCHAIC ≫ NONFINAL, producing grammatical form IS: [àb.ra].ka.[dáb.ra].
- Learner: NONFINAL >> TROCHAIC >> FOOTREPULSION, producing loser: *ab.ra.[ka.dáb].ra*.
- Learner hears *àb.ra.ka.dáb.ra*. Two possible candidates. The winner must have been, the best one, [*àb.ra*].[*ka.dáb*].*ra*.
- Compare w and I. Promote w-preferring constraints: none.
 Demote I-preferring constraints: FOOTREPULSION → deadlock!

		/ab.ra.ka.dab.ra/	NonFinal	TROCHAIC	FOOTREPULSION
	1.	ab.ra.[ka.dáb].ra		*	
W	2.	[àb.ra].[ka.dáb].ra		*	*
ß	3.	[àb.ra].ka.[dáb.ra]	*		

- Teacher: FOOTREPULSION ≫ TROCHAIC ≫ NONFINAL, producing grammatical form IS: [àb.ra].ka.[dáb.ra].
- Learner: NONFINAL >> TROCHAIC >> FOOTREPULSION, producing loser: ab.ra.[ka.dáb].ra.
- Learner hears *àb.ra.ka.dáb.ra*. Two possible candidates. The winner must have been, the best one, [*àb.ra*].[*ka.dáb*].*ra*.
- Compare w and I. Promote w-preferring constraints: none.
 Demote I-preferring constraints: FOOTREPULSION → deadlock!

Revised Robust Interpretive Parsing (Biró, under review)

		/ab.ra.ka.dab.ra/	NonFinal	TROCHAIC	FOOTREPULSION
	1.	ab.ra.[ka.dáb].ra		*	
	2.	[àb.ra].[ka.dáb].ra		*	*
R	3.	[àb.ra].ka.[dáb.ra]	*		
W			0.5	0.5	0.5

Teacher: FOOTREPULSION ≫ TROCHAIC ≫ NONFINAL, → ^{IS}[àb.ra].ka.[dáb.ra].

- Learner: NonFinal \gg TROCHAIC \gg FOOTREPULSION, \rightarrow I *ab.ra.[ka.dáb].ra.*
- Learner: w is either [àb.ra].[ka.dáb].ra or [àb.ra].ka.[dáb.ra].
- Calculate (weighted) average, as *winner violation profile*.
 Compare it to loser. Promote w-preferring constraints: TROCHAIC.
 Demote I-preferring constraints: FOOTREPULSION and NONFINAL.
- → solution: TROCHAIC ≫ NONFINAL ≫ FOOTREPULSION. Learner's new grammar different from, but equivalent to teacher's!

Revised Robust Interpretive Parsing (Biró, under review)

		/ab.ra.ka.dab.ra/	NonFinal	TROCHAIC	FOOTREPULSION
	1.	ab.ra.[ka.dáb].ra		*	
	2.	[àb.ra].[ka.dáb].ra		*	*
R	3.	[àb.ra].ka.[dáb.ra]	*		
W			0.5	0.5	0.5

● Teacher: FOOTREPULSION ≫ TROCHAIC ≫ NONFINAL, → ^{II}/_a[àb.ra].ka.[dáb.ra].

- Learner: NonFinal \gg TROCHAIC \gg FOOTREPULSION, \rightarrow I *ab.ra.[ka.dáb].ra.*
- Learner: w is either [àb.ra].[ka.dáb].ra or [àb.ra].ka.[dáb.ra].
- Calculate (weighted) average, as *winner violation profile*.
 Compare it to loser. Promote w-preferring constraints: TROCHAIC.
 Demote I-preferring constraints: FOOTREPULSION and NONFINAL.
- → solution: TROCHAIC ≫ NONFINAL ≫ FOOTREPULSION. Learner's new grammar different from, but equivalent to teacher's!

Revised Robust Interpretive Parsing (Biró, under review)

		/ab.ra.ka.dab.ra/	NonFinal	TROCHAIC	FOOTREPULSION
	1.	ab.ra.[ka.dáb].ra		*	
	2.	[àb.ra].[ka.dáb].ra		*	*
R	3.	[àb.ra].ka.[dáb.ra]	*		
W			0.5	0.5	0.5

• Teacher: FOOTREPULSION ≫ TROCHAIC ≫ NONFINAL, → ^{II}/(*àb.ra*].*ka.[dáb.ra*].

- Learner: NonFinal \gg TROCHAIC \gg FOOTREPULSION, \rightarrow I *ab.ra.[ka.dáb].ra.*
- Learner: w is either [àb.ra].[ka.dáb].ra or [àb.ra].ka.[dáb.ra].
- Calculate (weighted) average, as *winner violation profile*. Compare it to loser. Promote w-preferring constraints: TROCHAIC. Demote I-preferring constraints: FOOTREPULSION and NONFINAL.
- \rightarrow solution: TROCHAIC \gg NONFINAL \gg FOOTREPULSION. Learner's new grammar different from, but equivalent to teacher's!

Revised Robust Interpretive Parsing (Biró, under review)

		/ab.ra.ka.dab.ra/	NonFinal	TROCHAIC	FOOTREPULSION
	1.	ab.ra.[ka.dáb].ra		*	
	2.	[àb.ra].[ka.dáb].ra		*	*
R	3.	[àb.ra].ka.[dáb.ra]	*		
W			0.5	0.5	0.5

• Teacher: FOOTREPULSION ≫ TROCHAIC ≫ NONFINAL, → ^{II}/(*àb.ra*].*ka.[dáb.ra*].

- Learner: NonFinal \gg TROCHAIC \gg FOOTREPULSION, \rightarrow I *ab.ra.[ka.dáb].ra.*
- Learner: w is either [àb.ra].[ka.dáb].ra or [àb.ra].ka.[dáb.ra].
- Calculate (weighted) average, as winner violation profile.
 Compare it to loser. Promote w-preferring constraints: TROCHAIC.
 Demote I-preferring constraints: FOOTREPULSION and NONFINAL.
- \rightarrow solution: TROCHAIC \gg NONFINAL \gg FOOTREPULSION. Learner's new grammar different from, but equivalent to teacher's!

Revised Robust Interpretive Parsing (Biró, under review)

		/ab.ra.ka.dab.ra/	NonFinal	TROCHAIC	FOOTREPULSION
	1.	ab.ra.[ka.dáb].ra		*	
	2.	[àb.ra].[ka.dáb].ra		*	*
R	3.	[àb.ra].ka.[dáb.ra]	*		
W			0.5	0.5	0.5

• Teacher: FOOTREPULSION ≫ TROCHAIC ≫ NONFINAL, → ^{II}/(*àb.ra*].*ka.[dáb.ra*].

- Learner: NonFinal \gg TROCHAIC \gg FOOTREPULSION, \rightarrow I *ab.ra.[ka.dáb].ra.*
- Learner: w is either [àb.ra].[ka.dáb].ra or [àb.ra].ka.[dáb.ra].
- Calculate (weighted) average, as winner violation profile.
 Compare it to loser. Promote w-preferring constraints: TROCHAIC.
 Demote I-preferring constraints: FOOTREPULSION and NONFINAL.
- → solution: TROCHAIC ≫ NONFINAL ≫ FOOTREPULSION.
 Learner's new grammar different from, but equivalent to teacher's!

Revised Robust Interpretive Parsing (Biró, under review)

		/ab.ra.ka.dab.ra/	NonFinal	TROCHAIC	FOOTREPULSION
	1.	ab.ra.[ka.dáb].ra		*	
	2.	[àb.ra].[ka.dáb].ra		*	*
R	3.	[àb.ra].ka.[dáb.ra]	*		
W			0.5	0.5	0.5

- Teacher: FOOTREPULSION ≫ TROCHAIC ≫ NONFINAL, → ^{II}/(*àb.ra*].*ka.[dáb.ra*].
- Learner: NonFinal \gg TROCHAIC \gg FOOTREPULSION, \rightarrow I *ab.ra.[ka.dáb].ra*.
- Learner: w is either [àb.ra].[ka.dáb].ra or [àb.ra].ka.[dáb.ra].
- Calculate (weighted) average, as winner violation profile.
 Compare it to loser. Promote w-preferring constraints: TROCHAIC.
 Demote I-preferring constraints: FOOTREPULSION and NONFINAL.
- → solution: TROCHAIC ≫ NONFINAL ≫ FOOTREPULSION. Learner's new grammar different from, but equivalent to teacher's!

Revised Robust Interpretive Parsing (Biró, under review)

Success rate of learning a random target grammar, as a function of parameter K_{max} , for different update rules. Random initial grammar and random target grammar, with twelve constraints.

Overview

- **Optimality Theory: competence**
- Simulated Annealing for Optimality Theory: performance

Learning

Learning in Optimality Theory: problems

Conclusions

Conclusions

 Optimality Theory: model of linguistic competence. Grammatical form = (globally) optimal candidate.

- Simulated Annealing for Optimality Theory: model of performance.
- Learning an OT grammar poses challenges.
- (Omitted from this talk: OT in other domains (e.g., syntax),

Conclusions

• *Optimality Theory:* model of linguistic competence. Grammatical form = (globally) optimal candidate.

- Simulated Annealing for Optimality Theory: model of performance.
 Produced form = locally optimal candidate.
 Predicting frequencies. More error, if SA-OT is run faster.
- Learning an OT grammar poses challenges, e.g., due to hidden structures. But solutions exists!
- (Omitted from this talk: OT in other domains (e.g., syntax), learning in presence of performance errors, iterated learning.)

Conclusions

• *Optimality Theory:* model of linguistic competence. Grammatical form = (globally) optimal candidate.

- Simulated Annealing for Optimality Theory: model of performance.
 Produced form = locally optimal candidate.
 Predicting frequencies. More error, if SA-OT is run faster.
- Learning an OT grammar poses challenges, e.g., due to hidden structures. But solutions exists!
- (Omitted from this talk: OT in other domains (e.g., syntax), learning in presence of performance errors, iterated learning.)

Conclusions

• *Optimality Theory:* model of linguistic competence. Grammatical form = (globally) optimal candidate.

- Simulated Annealing for Optimality Theory: model of performance.
 Produced form = locally optimal candidate.
 Predicting frequencies. More error, if SA-OT is run faster.
- Learning an OT grammar poses challenges, e.g., due to hidden structures. But solutions exists!
- (Omitted from this talk: OT in other domains (e.g., syntax), learning in presence of performance errors, iterated learning.)

SA-OT: performance Conclusions OT: competence Learning

Thank you for your attention!

Tamás Biró: t.s.biro@uva.nl

Work supported by:

