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Abstract

We propose the application of a recent vector space technique for the analysis of DNA sequences.
In this approach the similarity of two series of symbols is measured by the dot products of
vectors corresponding to the given sequences. In this paper we demonstrate that this measure,
depending on the short-range properties of the sequences, may be used for identifying different
elements of the genome.

1. INTRODUCTION

The information necessary for the correct protein
synthesis of organisms is stored in the form of a se-
quence which can be considered as a long series of
four “letters” A, C, G and T corresponding to the four
bases in DNA molecules. This sequence is very long
and extremely complex. In recent years, sequence
data have been collected through the joint effort of
many research laboratories, and the amount of re-
lated information is expected to increase by several
orders of magnitude in the near future. Various

methods have been developed to uncover the un-
derlying structure of the sequences, but many of
the fundamental questions concerning the ways the
genetic information is coded are still open.

Several approaches have been used as models for
DNA sequences. Markov processes were proposed
in the 1980s.1 However, since the early 1990s it has
been demonstrated by methods taken from statisti-
cal physics2 or statistical linguistics3,4 that Markov
models cannot give an adequate description of
DNA, since they cannot explain long-range correla-
tions and Zipf-law-like behavior of DNA-sequences.
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Mantegna et al.4 showed that “higher order Marko-
vian processes can mimic with increasing accuracy
the observed statistical properties,” but “the non-
coding sequences cannot be described by a Marko-
vian stochastic process.”

Some nontrivial statistical properties of DNA se-
quences have been discovered by the investigation of
n-tuple Zipf-plots, i.e. by plotting the frequencies of
n-tuples in function of their range of occurrence.3–6

This idea was borrowed from G. K. Zipf’s early
works on universal distribution of words in written
texts.7,8

One of the promising approaches to the interpre-
tation of the organization of information in DNA
has been the investigation of the so called “DNA
walk”.2,9–13 In this recent method, DNA is mapped
onto a process which can be regarded as a walk:
each of the four “letters” of a DNA sequence is
identified with a step in a given direction. Then,
the specific features of this walk can be analyzed
using methods borrowed from statistical physics.

The idea is to look for correlations. Two series
of data (X and Y ) are correlated if the correspond-
ing elements of the series are not independent. In
other words: if the fact that Xi (the i− th element
of X) is larger than the average value of X is typi-
cally accompanied by the fact that Yi is also larger
than the average of Y , then the two sets of data are
positively correlated, and the corresponding corre-
lation coefficient is a number larger than zero. The
lack of correlation results in a coefficient equal to
zero. Correlations within a single sequence of data
can be defined similarly. In this case, one can ask
how the value Xi is related to the value Xi+j . By
comparing the two values with the average of X one
can get information about the question whether two
values in the data set separated by j elements are
correlated. An ordinary random walk has no long-
range correlations, thus, an analysis concentrating
on the nature of correlations may detect relevant
differences from random sequences.

In an alternative approach, the symbol sequence
corresponding to a DNA molecule can be regarded
as a written text composed of four letters. Natu-
rally, we do not know the “language” of the text,
thus, when we are trying to get information about
the sequence as a whole we are led to apply meth-
ods developed for analyzing written (natural) texts
of unknown origin.

Recently, Damashek applied a vector space
technique14 to a number of texts written in differ-
ent languages. Using his approach he has been able

to find correlations, for example, between texts of
different origin, but written in the same language.
The correlations of texts of similar content could
also be manifested. Here two sequences are corre-
lated if the scalar product of the two vectors asso-
ciated with them has a value different from that it
would have for two uncorrelated sequences. In the
first approximation his method is not sensitive to a
class of encodings and can be used to identify the
original language of encoded texts.

When applying the vector space technique to
DNA sequences we look at DNA as an encoded text
written in an unknown language. Still, we expect to
locate correlations between parts of the sequences
due to similarities in their underlying structure.

2. THE VECTOR-SPACE
TECHNIQUE

Let us move an n character long “window” along
our document, symbol by symbol. An n-gram or
n-tuple means a sequence (i.e., a string) of n con-
secutive characters, that is what can be “seen in the
window” at a particular position of the window. We
denote each possible n-tuple with an index i, and we
count the number mi of the occurrences of the i-th
n-tuple in our text, for each possible i. The doc-
ument can be characterized then by a “document”
vector x, whose components are the normalized oc-
currences as

xi =
mi∑
jmj

(1)

The similarity of two texts with document vec-
tors x and y can be measured by the dot product

S = cos θ =

∑
i xiyi

(
∑
i x

2
i

∑
i y

2
i )

1/2
(2)

The maximum of this measure of similarity is 1,
in the case of identical vectors, which occurs in prac-
tice only if the two documents are identical. The
minimum of the dot product is zero, in the case of
orthogonal vectors, i.e. if there is no n-tuple occur-
ring in both documents. This measure is obviously
symmetric, but 1− S is not a distance in its math-
ematical sense, as it does not satisfy the triangle-
inequality.

As an example for languages, let us mention the
26 letters of the English alphabet, space, dot and
comma. Sequences of spaces should be substituted
by a single space. As discussed by Damashek,14
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texts of the same language and topic result in a no-
ticeably higher similarity than documents of differ-
ent languages. Same language but different topics
result in a dot product which is still significantly
higher than the case of different languages, but
usually smaller than the case of texts with related
topics.

The procedure can be improved by introducing
centroid vectors, which are the averages of vectors
taken from a given set of documents (e.g., the set
of the documents in a given language). The cen-
troid vectors contain the common average features
of the document set (e.g., the grammatical words
in a language). By subtracting the centroid vec-
tor from the document vectors, we can increase the
sensitivity of the similarity measure. This method
gives an effective technique called Acquaintance for
sorting by language, topic and sub-topic.

The effectiveness of the procedure can be ex-
plained by three factors. The first one is the

Fig. 1 The similarity between the content of a box of length
m = 100 moving along the concatenation of texts in different
languages, and an arbitrary English text. The concatenation
consists of an about 8000 character long English text (E1),
a 2640 character long Hungarian text (H), another English
text (E2) that is 6450 characters long, and a 2860 charac-
ter long French text (Fr). The multiplying vector was con-
structed from a different English text. A deep “valley” can
be observed starting at the point where the end of the box is
penetrating into the non-English texts, i.e. m characters be-
fore the non-English texts. The x axis represents the place of
the beginning of the box, and the valley lasts until the box
contains any part of this text. These valleys differ signifi-
cantly enough to split the symbol sequence to sub-sequences
according to similarity, meaning the same language in our
case. (n = 3 for all vectors.)

effect of the frequent words. For example, in the
case of an English text, the most frequent 3-tuples
are “tth” and “the” (where t denotes the space)
due to the many grammatical words beginning with
“th”, especially with “the” (“the”, “they”, “their”,
“them”, “these”, “there”, etc.). The effectiveness
of the method in sorting documents by topic is due
to the nouns, adjectives and verbs characteristic to
the topic. The second factor is the phonotactical
features of the language considered, that are the
phonological rules licensing or forbidding sequences
of phonemes to appear at the beginning, middle or
end of a word. These rules introduce definite short-
range correlations into the text, hence influence the
frequencies of the n-tuples. The third reason is not
linguistical (neither semantical and syntactical as
the first one was, phonological as the second one)
but orthographical: one should think to the fact
that the same sound is represented in English texts
as “sh,” in German documents as “sch,” while in
the French tradition we find “ch.” Sequences of
“th” are characteristic to English documents, “aux”
to French ones, “sch” to German ones, while “qu”
and “tio” to every topic using many words of Latin
origin.

Let us suppose we have a multilingual document,
such as the concatenation of English, Hungarian
and French texts, as in the case of Fig. 1. We
can move a box of length m(m ≥ 100) along our
document, step-by-step. We consider the content
of this box as a “text” at each step, and plot the
dot product of the vector given by the content of
the box with a constant vector. Figure 1 shows our
results when we moved a box of length m = 100
along a multilingual document. The constant multi-
plier vector was made from a different English text,
and we used n = 3-tuples. The similarity mea-
sure drastically drops when the end of the box is
penetrating into a non-English part of the concate-
nated texts, i.e. m characters before it, as the po-
sition of the first character of the box is used as
the position of the box itself. This characteristic
“valley” lasts until the beginning (left end) of the
box leaves this non-English sequence. So we can
find a significant “foreign language valley,” which
is m characters longer than the length of the non-
English text, and it is shifted by m

2 characters to the
left.

This method turned out to be useful in differen-
tiating between different parts of a document. In
the following we will apply this method on DNA-
sequences.
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Table 1 Similarity among different regions of primary transcripts. E1-E5
denotes the concatenations of the exons of the five CDSs (coding regions)
of HUMHBB, while I1-I5 denotes the concatenation of the correspond-
ing non-coding sequences, i.e. heads, introns and tails. Our similarity
measure, the dot product of the vectors representing the “texts” to be
compared (n = 3-tuples were used), is symmetrical, and its range is be-
tween 0 and 1, where 0 means the lack of similarity, while 1 denotes
maximal similarity. The similarity measure is significantly higher in the
case of two coding or two non-coding sequences (0.94 ± 0.016 for exons,
0.92 ± 0.03 for non-coding “texts”) than in the case of a coding and a
non-coding sequence (0.75± 0.08).

E1 E2 E3 E4 E5 I1 I2 I3 I4 I5

E1 1.00 0.92 0.92 0.95 0.93 0.83 0.77 0.74 0.83 0.90

E2 1.00 0.97 0.93 0.95 0.73 0.66 0.62 0.73 0.85

E3 1.00 0.94 0.94 0.73 0.65 0.61 0.71 0.83

E4 1.00 0.95 0.78 0.71 0.67 0.79 0.87

E5 1.00 0.76 0.69 0.64 0.77 0.86

I1 1.00 0.92 0.90 0.94 0.93

I2 1.00 0.98 0.91 0.88

I3 1.00 0.90 0.86

I4 1.00 0.94

I5 1.00

3. APPLYING THE VECTOR
SPACE TECHNIQUE ON
DNA SEQUENCES

In the case of DNA-sequences, our alphabet con-
sists of four symbols, each representing one of the
four bases. One of the most exciting questions con-
cerning DNA sequences is the characteristic behav-
ior of coding and noncoding regions. Latter ones
have turned out to behave like written texts, show-
ing long-range correlations and power law-like Zipf-
plot, while previous ones showed no long-range cor-
relations and exponential Zipf-plot (similar to the
distribution of single letters of the alphabet in writ-
ten texts, and not like the distribution of words or
n-tuples).3,4

We chose five primary transcripts from the
human hemoglobin sequence HUMHBB, NCBI-
GenBank, Release 92.0 (Dec. 1995). Clay et al.15

state that − according to their results − coding re-
gions typically have higher GC levels than introns
of the same gene in human genome. (The GC level
is the molar fraction of guanine + cytosine.) This
statement predicts a difference in n-tuple frequen-
cies between coding and non-coding sequences, sim-
ilar to the effect of phonological rules and ortho-
graphical traditions on document vectors.

We produced two vectors from each primary
transcript (n = 3): the first one representing
the concatenation of the primary transcript’s exons
(E1–E5), the second one the concatenation of the
head, the introns and the tail (I1–I5). Table 1 shows
their dot products. The difference between the two
groups is obvious. The similarity of two E-vectors is
0.94±0.016, two I-vectors give 0.92±0.03, while an
E- and an I-vector produce 0.75±0.08. We obtained
the same result using the RATCRYG-sequence.

The difference between the two sets of vectors
can be demonstrated in another way as well. We
prepared an x(naive) “naive” (correlationless) vec-
tor from the RATCRYG-sequence (Rattus norvegi-
cus, NCBI-GenBank, Release 92.0), which means
that its ith component representing the n-tuple
σk1σk2 ...σkn (where σ1...σ4 are the symbols A, C, G
and T) is given by the product of its constituents’
relative frequencies:

x
(naive)
i := P (naive)(σk1σk2...σkn) :=

n∏
j=1

νkj

where νj denotes the relative frequency of the base
σj in the whole RATCRYG-sequence. Table 2
shows the dot products of this naive vector with
the vectors representing the concatenation of the
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Table 2 Similarity of coding and
non-coding regions of mammalian
CDSs to the naive (correlation-
less) vector made from the entire
RATCRYG-sequence. We prepared
the concatenation of the coding and
the one of the non-coding parts
for each of the five CDSs of the
HUMHBB and for the the five CDSs
of the RATCRYG sequence. We also
prepared a correlationless vector us-
ing the base frequencies in the whole
RATCRYG sequence. The simi-
larity measures, i.e. the dot prod-
ucts shows that the non-coding se-
quences resemble more the naive
vector (0.83± 0.03) than the coding
sequences of either species (0.69 ±
0.013 for Rattus norvegicus, 0.62 ±
0.04 for Homo sapiens). (n = 4)

coding non-coding

RATCRYG 1 0.68 0.79

RATCRYG 2 0.71 0.87

RATCRYG 3 0.70 0.84

RATCRYG 4 0.70 0.86

RATCRYG 5 0.68 0.80

HUMHBB 1 0.69 0.84

HUMHBB 2 0.59 0.83

HUMHBB 3 0.59 0.80

HUMHBB 4 0.63 0.85

HUMHBB 5 0.62 0.81

coding regions, as well as the concatenation of the
noncoding regions of different primary transcripts
of RATCRYG and of HUMHBB (n = 4). (The
gene concentration pattern of the human genome is
basically present in all vertebrates.15) In the case of
the coding parts the product is 0.66 ± 0.05, while
in the case of the noncoding parts it is significantly
higher: 0.83±0.03. This result means that the naive
vector (0th order Markov-chain) gives a much bet-
ter approximation of noncoding sequences’ vectors
than for that of the coding sequences.

This finding does not contradict the previous re-
sults proving the existence of long-range correla-
tions in intron-containing genes and their absence in
intronless genes and cDNAs, as our results demon-
strate stronger short-range correlations in exons
than in introns.

The results gave us the idea to use the “moving
box technique”10 for DNA-sequences, too. Figure 2
shows a primary transcript sequence of HUMHBB.

Fig. 2 The region of a primary transcript in the HUMHBB
sequence (positions 34496 . . . 36087), that contains a head,
three exons (E), two introns (I), and a tail. A box of length
m = 100 was moved along the sequence, and at each step we
plotted the dot product of the vector prepared from the ac-
tual content of the box, to the naive (correlationless) vector
calculated from the base frequencies in the entire HUMHBB
sequence. (n = 4 for both vectors.) Characteristic valleys
can be seen where the box contains exon sequences, and an-
other valley appears at about the two third of the primary
transcript.

The naive vector is calculated from the relative fre-
quencies of the bases in the whole HUMHBB se-
quence (n = 4). A box of length m = 100 is
moved along the primary transcript that contains
a head, three exons, two introns and a tail. The
pattern showed by the figure is characteristic of the
HUMHBB-sequence: each exon is represented by
a “valley” in the figure, shifted with m

2 positions
to the left (as explained in the case of natural lan-
guages), the first two of the three valleys overlap,
and there is a fourth valley, at about the two third
point of the primary transcript, before the last exon.
This valley shows the existence of a sequence inside
the second intron with statistical properties similar
to those of the exons (or at least: dissimilar from
the statistical properties of other intron sequences).

4. CONCLUSIONS

The idea of using Damashek’s vector space tech-
nique in defining a similarity measure of symbol se-
quences as the dot product of vectors of n-tuples’
frequencies turned out to be efficient in analyz-
ing DNA-sequences. We found that exons and
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non-exonic regions of primary transcripts are repre-
sented in our multi-dimensional vector space as two
distinct bundles of vectors, showing significantly
higher similarity values among each other than be-
tween the bundles. The correlationless “naive” vec-
tor of the whole gene turned out to be more sim-
ilar to the non-exonic regions than to the exons.
The reason and significance of these observations
remains to be clarified. But these results suggest
that the relatively easy vector space technique is
able to identify parts of DNA-sequences which are
likely to be exons.

ACKNOWLEDGMENTS

This work was supported by OTKA F019299 and
FKFP 0203/1997.

REFERENCES
1. Bruce S. Weir, Genetic Data Analysis, Methods for

Discrete Population Genetic Data (Sinauer Asso-
ciates Inc. Publishers, Sunderland, Massachusetts,
1990), pp. 237–240.

2. C.-K. Peng, S. V. Buldyrev, A. L. Goldberger,
S. Havlin, F. Sciortino, M. Simons and H. E. Stanley,
“Long-range Correlations in Nucleotide Sequences,”
Nature 356, 168–170 (1992).

3. R. N. Mantegna, S. V. Buldyrev, A. L. Goldberger,
S. Havlin, C.-K. Peng, M. Simons and H. E. Stan-
ley, “Linguistic Features of Noncoding Sequences,”
Phys. Rev. Lett. 73, 23, 3169–3172 (1994).

4. R. N. Mantegna, S. V. Buldyrev, A. L. Goldberger,
S. Havlin, C.-K. Peng, M. Simons and H. E. Stan-
ley, “Systematic Analysis of Coding and Noncoding
DNA Sequences Using Methods of Statistical Lin-
guistics,” Phys. Rev. E52, 3, 2939–2950 (1995).
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