

Harmonic Grammar growing into Optimality Theory Maturation as the strict domination limit (or vice-versa)

including joint work with Klaas Seinhorst (University of Amsterdam)

Tamás Biró

ELTE Eötvös Loránd University

BLINC @ ELTE, June 2, 2017

Learning and maturation

A standard idea in contemporary linguistics:

- Children learning a language: setting parameters or re-ranking constraints.
- Hence / because: children speak a typologically different language that resides in the typology of adult languages.

Is it really so?

<u>Goal of this talk:</u> to show how **maturation** (as opposed to *learning*) can be included into OT.

Learning and maturation

A standard idea in contemporary linguistics:

- Children learning a language: setting parameters or re-ranking constraints.
- Hence / because: children speak a typologically different language that resides in the typology of adult languages.

Is it really so?

<u>Goal of this talk:</u> to show how **maturation** (as opposed to *learning*) can be included into OT.

Overview

Optimality Theory and Harmonic Grammar

Summary: learning and maturation

Overview

Optimality Theory and Harmonic Grammar

- 2 From HG to OT: the strict domination limit
- 3 Consonant cluster simplification in Dutch

Optimality Theory in a broad sense

- Underlying representation \mapsto candidate set.
- Surface representation = optimal element of candidate set.
- Optimality: most harmonic. What is "harmony"?

Optimality Theory in a narrow sense

 $\operatorname{Gen}(\sigma\sigma\sigma\sigma) = \{[\operatorname{suuu}], [\operatorname{usuu}], [\operatorname{uusu}], [\operatorname{uuus}]\}.$

	ΙσσσσΙ	EARLY	LATE	NonFinal
RF	[suuu]	0	3	0
	[usuu]	1!	2	0
	[uusu]	2!	1	0
	[uuus]	3!	0	1

 $SF(\sigma\sigma\sigma\sigma\sigma) = [suuu].$

Optimality Theory in a narrow sense

 $\operatorname{Gen}(\sigma\sigma\sigma\sigma\sigma) = \{[\operatorname{suuu}], [\operatorname{usuu}], [\operatorname{uusu}], [\operatorname{uuus}]\}.$

ΙσσσσΙ	NonFinal	LATE	EARLY
[s u u u]	0	3!	0
[u s u u]	0	2!	1
🖙 [uusu]	0	1	2
[u u u s]	1!	0	3

 $SF(\sigma\sigma\sigma\sigma\sigma) = [uusu].$

Optimality Theory in a narrow sense

 $\operatorname{Gen}(\sigma\sigma\sigma\sigma) = \{[\operatorname{suuu}], [\operatorname{usuu}], [\operatorname{uusu}], [\operatorname{uuus}]\}.$

	ΙσσσσΙ	NonFinal	LATE	EARLY
ß	[u u s u]	0	1	2
	[u s u u]	0	2	1
	[s u u u]	0	3	0
	[u u u s]	1	0	3

Harmony in terms of **lexicographic order**: [uusu] \succ [usuu] \succ [suuu] \succ [uuus]. Hence, SF($\sigma\sigma\sigma\sigma$) =[uusu].

Harmonic Grammar, symbolic approach

Gen $(\sigma\sigma\sigma\sigma)$ = {[suuu], [usuu], [uusu], [uuus]}.

Constraint C_k is assigned weight w_k . Harmony H(A) of cand. A:

	ΙσσσσΙ	NONFINAL	LATE	EARLY	-H(A) =
	$W_k =$	9	3	1	$\sum_k w_k \cdot C_k[A]$
RF	[u u s u]	0	1	2	$9\cdot 0 + 3\cdot 1 + 1\cdot 2 = 5$
	[u s u u]	0	2	1	$9\cdot 0+3\cdot 2+1\cdot 1=7$
	[s u u u]	0	3	0	$9\cdot 0+3\cdot 3+1\cdot 0=9$
	[u u u s]	1	0	3	$9\cdot 1 + 3\cdot 0 + 1\cdot 3 = 12$

By comparing the integer/real numbers in *H*: [uusu] \succ [uusu] \succ [uuus]. Hence, SF($\sigma\sigma\sigma\sigma$) =[uusu].

Harmonic Grammar, connectionist approach

- *s_i*: activation of node *i*.
- *W*_{*i*,*j*}: connection strength between nodes *i* and *j*.

Boltzmann machine:

• The "energy" (negative harmony) of the network:

$$-H(A) = \sum_{i,j=1}^{N} s_i \cdot W_{i,j} \cdot s_j$$

- Input nodes clamped (fixed).
- Output nodes read after optimization of *H*(*A*).

Harmonic Grammar, connectionist approach

 Constraint C_k is a set of W^k_{i,j} partial connection strengths. • Constraint C_k has weight w_k :

$$W_{i,j} = \sum_{k=1}^{n} w_k \cdot W_{i,j}^k$$

• The "energy" (negative harmony) of the network:

$$-H(A) = \sum_{i,j=1}^{N} s_i \cdot W_{i,j} \cdot s_j =$$

 $=\sum_{i=1}^{m}s_{i}\cdot\sum_{i=1}^{m}w_{k}\cdot W_{i,j}^{k}\cdot s_{j}=\sum_{i=1}^{m}w_{k}\cdot\sum_{i=1}^{m}s_{i}\cdot W_{i,j}^{k}\cdot s_{j}=\sum_{i=1}^{m}w_{k}\cdot C_{k}[A].$

Harmonic Grammar, connectionist approach

 Constraint C_k is a set of W^k_{i,j} partial connection strengths. • Constraint C_k has weight w_k :

$$W_{i,j} = \sum_{k=1}^{n} w_k \cdot W_{i,j}^k$$

• The "energy" (negative harmony) of the network:

$$-H(A) = \sum_{i,j=1}^{N} s_i \cdot W_{i,j} \cdot s_j =$$

$$=\sum_{i,j=1}^N s_i \cdot \sum_{k=1}^n w_k \cdot W_{i,j}^k \cdot s_j = \sum_{k=1}^n w_k \cdot \sum_{i,j=1}^N s_i \cdot W_{i,j}^k \cdot s_j = \sum_{k=1}^n w_k \cdot C_k[A].$$

Summary thus far:

We have three approaches:

- Optimality Theory: symbolic, optimization w.r.t. lexicographic order.
- Symbolic Harmonic Grammar: optimization w.r.t. ≥ relation among real numbers.
- Connectionist Harmonic Grammar: optimization w.r.t. > relation among real numbers.

Typological predictions? Learnability? Cognitive plausibility?

Question: how to get OT in a "connectionist brain"? (A major issue for Smolensky's Integrated Connectionist/Symbolic Architecture

Summary thus far:

We have three approaches:

- Optimality Theory: symbolic, optimization w.r.t. lexicographic order.
- Symbolic Harmonic Grammar: optimization w.r.t. ≥ relation among real numbers.
- Connectionist Harmonic Grammar: optimization w.r.t. > relation among real numbers.

Typological predictions? Learnability? Cognitive plausibility?

Question: how to get OT in a "connectionist brain"? (A major issue for Smolensky's Integrated Connectionist/Symbolic Architecture.)

Summary thus far:

We have three approaches:

- Optimality Theory: symbolic, optimization w.r.t. lexicographic order.
- Symbolic Harmonic Grammar: optimization w.r.t. ≥ relation among real numbers.
- Connectionist Harmonic Grammar: optimization w.r.t. > relation among real numbers.

Typological predictions? Learnability? Cognitive plausibility?

<u>Question:</u> how to get OT in a "connectionist brain"? (A major issue for Smolensky's *Integrated Connectionist/Symbolic Architecture.*)

Overview

Optimality Theory and Harmonic Grammar

2 From HG to OT: the strict domination limit

3 Consonant cluster simplification in Dutch

	Cn	C_{n-1}	 C_i	 C_1
	$r_n(=n)$	<i>r</i> _{n-1}	r _i	$r_1(=1)$
H(A) =	$C_1[A]$	$C_2[A]$	 $C_i[A]$	 $C_n[A]$

- Harmonic Grammar minimizes a weighted sum of violations: $H(A) = \sum_{i=1}^{n} w_i \cdot C_i[A].$
- "Standard" HG: weights w_i = ranks r_i .
- Exponential HG: weights are ranks exponentiated, fixed base
 (e = 2.7182...) W_i = e^{r_i}.
- *q*-HG: weights are ranks exponentiated, with (variable) base q $w_i = q^{r_i}$.

	Cn	C_{n-1}	 C_i	 <i>C</i> ₁
	$r_n(=n)$	<i>r</i> _{n-1}	r _i	$r_1(=1)$
H(A) =	$C_1[A]$	$C_2[A]$	 $C_i[A]$	 $C_n[A]$

- Harmonic Grammar minimizes a weighted sum of violations: $H(A) = \sum_{i=1}^{n} w_i \cdot C_i[A].$
- "Standard" HG: weights w_i = ranks r_i .
- Exponential HG: weights are ranks exponentiated, fixed base
 (e = 2.7182...) W_i = e^{r_i}.
- *q*-HG: weights are ranks exponentiated, with (variable) base q $w_i = q^{r_i}$.

	Cn	C_{n-1}	 C_i	 <i>C</i> ₁
	$r_n(=n)$	<i>r</i> _{n-1}	r _i	$r_1(=1)$
H(A) =	$C_1[A]$	$C_2[A]$	 $C_i[A]$	 $C_n[A]$

- Harmonic Grammar minimizes a weighted sum of violations: $H(A) = \sum_{i=1}^{n} w_i \cdot C_i[A].$
- "Standard" HG: weights w_i = ranks r_i .
- **Exponential HG:** weights are ranks exponentiated, fixed base (e = 2.7182...) $W_i = e^{r_i}$.
- *q*-HG: weights are ranks exponentiated, with (variable) base q $w_i = q^{r_i}$.

	Cn	C_{n-1}	 C_i	 C_1
	$r_n(=n)$	<i>r</i> _{n-1}	r _i	$r_1(=1)$
H(A) =	$C_1[A]$	$C_2[A]$	 $C_i[A]$	 $C_n[A]$

- Harmonic Grammar minimizes a weighted sum of violations: $H(A) = \sum_{i=1}^{n} w_i \cdot C_i[A].$
- "Standard" HG: weights w_i = ranks r_i .
- **Exponential HG:** weights are ranks exponentiated, fixed base (e = 2.7182...) $W_i = e^{r_i}$.
- *q*-HG: weights are ranks exponentiated, with (variable) base q $w_i = q^{r_i}$.

• In q-HG:

$$H(\mathbf{A}) = q^{r_n} \cdot C_n[\mathbf{A}] + \ldots + q^{r_i} \cdot C_i[\mathbf{A}] + \ldots + q^{r_1} \cdot C_1[\mathbf{A}]$$

• Or simply (if
$$r_i = i - 1$$
):

$$\begin{array}{ll} H(A) &= q^{n-1} \cdot C_n[A] + \dots &+ q^2 \cdot C_i[A] + q^1 \cdot C_i[A] + q^0 \cdot C_1[A] \\ H(A) &= 2^{n-1} \cdot C_n[A] + \dots &+ 4 \cdot C_i[A] + 2 \cdot C_i[A] + 1 \cdot C_1[A] \\ H(A) &= 3^{n-1} \cdot C_n[A] + \dots &+ 9 \cdot C_i[A] + 3 \cdot C_i[A] + 1 \cdot C_1[A] \\ H(A) &= 10^{n-1} \cdot C_n[A] + \dots &+ 100 \cdot C_i[A] + 10 \cdot C_i[A] + 1 \cdot C_1[A] \end{array}$$

Main difference between OT and HG is strict domination.

• If q grows large, q-HG turns into OT, because...

• In q-HG:

$$H(\mathbf{A}) = q^{r_n} \cdot C_n[\mathbf{A}] + \ldots + q^{r_i} \cdot C_i[\mathbf{A}] + \ldots + q^{r_1} \cdot C_1[\mathbf{A}]$$

• Or simply (if
$$r_i = i - 1$$
):

$$\begin{array}{ll} H(A) &= q^{n-1} \cdot C_n[A] + \dots &+ q^2 \cdot C_i[A] + q^1 \cdot C_i[A] + q^0 \cdot C_1[A] \\ H(A) &= 2^{n-1} \cdot C_n[A] + \dots &+ 4 \cdot C_i[A] + 2 \cdot C_i[A] + 1 \cdot C_1[A] \\ H(A) &= 3^{n-1} \cdot C_n[A] + \dots &+ 9 \cdot C_i[A] + 3 \cdot C_i[A] + 1 \cdot C_1[A] \\ H(A) &= 10^{n-1} \cdot C_n[A] + \dots &+ 100 \cdot C_i[A] + 10 \cdot C_i[A] + 1 \cdot C_1[A] \end{array}$$

- Main difference between OT and HG is strict domination.
- If q grows large, q-HG turns into OT, because...

• 1.5-HG has *ganging-up cumulativity*:

	w =	C_3	C_2	C ₁	H
RF	A1	1	1.0	•	2.25
	A2		1	1	2.5

• 1.5-HG also has *counting cumulativity*:

		<i>C</i> ₃	<i>C</i> ₂	<i>C</i> ₁	Н
	$W_i =$	2.25	1.5	1	
RF	A1	1			2.25
	A3		2		3

(Cf. Jäger and Rosenbach 2006)

• But OT does not have ganging-up cumulativity:

• OT does not have *counting cumulativity* either:

		<i>C</i> ₃	<i>C</i> ₂	<i>C</i> ₁
	A1	*		
ß	A3		**	

(Regarding Stochastic OT, cf. Jäger and Rosenbach 2006)

• 3-HG does not have ganging-up cumulativity:

• 3-HG does not have *counting cumulativity*, either:

		<i>C</i> 3 9	C ₂ 3	C ₁ 1	Н
	A1	1			9
RF	A3		2		6

(Cf. Jäger and Rosenbach 2006)

As we have known it since Prince and Smolensky 1993,

strict domination in OT can be reproduced

using *q*-HG with sufficiently large *q*:

$$q-1 \ge C_k[A]$$
 for all k and A .

Overview

Optimality Theory and Harmonic Grammar

Word initial consonant cluster simplification in Dutch

Klaas Seinhorst collecting data from CHILDES (Laura):

Cf. Becker and Tessier (2011)

Word initial consonant cluster simplification in Dutch

Using logistic regression or probit regression:

cluster	simplifies	lower	upper
	to	boundary	boundary
		(age in days)	(age in days)
kl-	k-	894.32	1010.55
sl-	<i>I-</i>	943.82	1028.68
st-	t-	962.60	1076.23
ZW-	<i>Z</i> -	1344.24	1551.39

Table: 95% confidence intervals of the locations of the inflection points.

Differences among *kl*, *sl* and *st*: statistically not significant. But differences between *zw* and each of the three others: $p < 10^{-11}$!

Word initial consonant cluster simplification: OT

The traditional account in OT: learning = constraint re-ranking.

• Before learning: Markedness >> Faithfulness

	/klɛin/	NOCOMPLEX	Faithf	*[l]	*[k]
		ONSET			
	[klɛin]	*!		*	*
ß	[kɛin]		*		*
	[lɛin]		*	*!	

After learning: Faithfulness >> Markedness

	/klɛin/	Faithf	NOCOMPLEX	*[I]	*[k]
			Onset		
ß	[klɛin]		*	*	*
	[kɛin]	*!			*
	[lɛin]	*!		*	

Word initial consonant cluster simplification: OT

Questions to the traditional account:

- Child is exposed to huge amount of evidence way before correct production. Why no learning?
- If only *NoComplexOnset* and *Faithf* are involved, why significant difference for *zw* onset?
- If cluster-specific constraints: factorial typology predicted.

Word initial consonant cluster simplification: q-HG

An alternative approach:

- Child has acquired FAITHF >> NOCOMPLEXONSET much earlier, probably already at pre-linguistic age.
- Relative ranks *[w] ≫ *[s] ≫ *[l] ≫ *[z] ≫ *[k] ≫ *[t] motivated by *natural phonology* (? feedback appreciated!).
- No more ranking needed. For instance,

Ci	Faithf	NOCOMPL	*[w]	*[s]	*[l]	*[Z]	*[k]	*[t]
		Onset						
r _i	8	7	6	5	4	3	2	1
$(1.1)^{r_i}$	2.14	1.95	1.77	1.61	1.46	1.33	1.21	1.1
2 ^r i	256	128	64	32	16	8	4	2

Word initial consonant cluster simplification: q-HG

• Before maturation: small q, e.g., q = 1.1 (NB: Faithfulness \gg Markedness!)

	/klɛin/	Faithf	NoComplOns	*[l]	*[k]	H
	$w_i =$	2.14	1.95	1.46	1.21	
	[klɛin]		*	*	*	4.62
r\$°	[kɛin]	*!			*	3.35
	[lɛin]	*!		*		3.60

• After maturation: large q, e.g., q = 2

	/klɛin/	FAITHF	NoComplOns	*[l]	*[k]	Н
	$W_i =$	256	128	16	4	
RF	[klɛin]		*	*	*	148
	[kɛin]	*!			*	260
	[lɛin]	*!		*		272

Word initial consonant cluster simplification: q-HG

- *q* is a function of age, e.g. age $\propto \log(q)$.
- [xy] produced by q-HG, if q is s.t. $q^c + q^x + q^y = q^f + q^y$ or larger:

/xy/	Faithf	*ComplOns	*[x]	*[y]	H for
$r_i =$	f	С	X	У	given q
$W_i =$	q^{f}	q^c	q^{x}	q^y	
[xy]	0	1	1	1	$q^{c}+q^{x}+q^{y}$
[y]	1	0	0	1	$q^f + q^y$
[X]	1	0	1	0	$q^f + q^x$

- Critical age function of deleted segment [x], but not remaining [y].
- If f > c, x > y, then: step function predicted.
- To get S-shaped curve, use Stochastic OT.

Word initial consonant clusters: stochastic q-HG

Overview

Optimality Theory and Harmonic Grammar

- 2 From HG to OT: the strict domination limit
- 3 Consonant cluster simplification in Dutch

Learning:

- Knowledge acquired from surrounding linguistic data
- Source of cross-linguistic variation
- Features in the child's language shared by other adult languages

Maturation:

- Skills emerging due to general development
- Universal developmental paths
- Features in child's language not appearing in any adult language

Learning:

- Knowledge acquired from surrounding linguistic data
- Source of cross-linguistic variation
- Features in the child's language shared by other adult languages

Maturation:

- Skills emerging due to general development
- Universal developmental paths
- Features in child's language not appearing in any adult language

Learning from surrounding linguistic data:

- Features in the child's language shared by other adult languages
 - Child learning English produces "Italian-like" pro-drop → "Pro-drop" parameter not yet switched.
 - Child learning English deleting codas
 - \rightarrow *Coda markedness not yet demoted below FAITHFULNESS.

Maturation due to general development:

• Features in child's language not appearing in any adult language

- Long distance place agreement in consonant harmony?
- Erroneous pronoun resolution?

Learning from surrounding linguistic data:

- Features in the child's language shared by other adult languages
 - Child learning English produces "Italian-like" pro-drop → "Pro-drop" parameter not yet switched.
 - Child learning English deleting codas
 - \rightarrow *Coda markedness not yet demoted below FAITHFULNESS.

Maturation due to general development:

- Features in child's language not appearing in any adult language
 - Long distance place agreement in consonant harmony?
 - Erroneous pronoun resolution?

Modelling learning and modelling maturation: shouldn't they be different?

Learning from surrounding linguistic data:

- Setting parameters
- Re-ranking constraints

Maturation due to general development:

- Restrictions on working memory, speed of mental computation...
- Varying q in q-HG?

Modelling learning and modelling maturation: shouldn't they be different?

Learning from surrounding linguistic data:

- Setting parameters
- Re-ranking constraints

Maturation due to general development:

- Restrictions on working memory, speed of mental computation...
- Varying q in q-HG?

Thank you for your attention!

Tamás Biró: tamas[dot]biro[at]btk[dot]elte[dot]hu http://birot.web.elte.hu/

This research was supported by a *Veni Grant* (project number 275-89-004) offered by the Netherlands Organisation for Scientific Research (NWO), as well as by a *Marie Curie FP7 Integration Grant*

(no. PCIG14-GA-2013-631599, "MeMoLI"), 7th EU Framework Programme.

