

Learning

Results

Conclusions

Acquiring Competence from Performance Data Online learnability of OT and HG with simulated annealing

Tamás Biró

ACLC, University of Amsterdam (UvA)

Computational Linguistics in the Netherlands, February 5, 2010

Conclusions

The language acquisition problem

Conclusions

Learning from competence?

Conclusions

Learning from performance!

Results

Conclusions

Distance of teacher's and learner's performance

MSTERDAM CENTER

Results

Conclusions

Overview

Modelling performance

Results

Conclusions

Overview

Modelling performance

Conclusions

Errors and mental computations

Optimality Theory grammar

competence model

grammatical form = 🖙 (globally) optimal candidate

SA-OT

implementation

performance model

produced forms = globally or locally optimal candidates

Results

Conclusions

Competence and performance models

$$SF(U) = \underset{w \in Gen(U)}{\operatorname{arg opt}} H(w)$$

Competence models:

- $C_i(w)$ elementary functions on the candidates ("constraints" a misnomer).
- Optimality Theory: $H(w) = (C_n(w), ..., C_1(w))$ arg opt: lexicographic order.
- *q*-Harmony Grammar: $H(w) = C_n(w) \cdot q^n + ... + C_i(w) \cdot q$. Large q: OT-like strict domination.

Learning

Small q: ganging-up effects.

- Performance models:
 - Exhaustive search: returns global optimum.
 - Simulated annealing: returns some local optimum.
 - Run slowly: frequently the globally optimal one.
 - Run guickly: global opt. less frequent, more often performance errors.

Results

Conclusions

Overview

Modelling performance

Online learning algorithms

```
Constraint C_i has rank r_i.
```

In each learning cycle: learning data (*winner*) produced by teacher compared to form produced by learner (*loser*).

Update rule: update the rank r_i of every constraint C_i , depending on whether C_i prefers the winner or the loser.

- Boersma (1997): increase rank by ϵ if winner-preferring; decrease rank by ϵ if loser-preferring constraint.
- Magri (2009): increase rank of all winner-preferring constraints by *ε*; decrease rank of highest ranked loser-preferring constraint by *W* · *ε*, where *W* is the number of winner-preferring constraints.

Learn until performance converges

- Convergence of performance, and not of competence. Child may acquire different grammar.
- Sample of teacher vs. sample of learner (sample size = 100).
- Convergence criterion: JSD between sample produced by target grammar and sample produced by learner's current grammar ≤ average JSD of two samples produced by target grammar.

Jensen-Shannon divergence: measures the "distance" of two distributions

$$JSD(P||Q) = \frac{D(P||M) + D(Q||M)}{2}$$

where $D(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$ (relative entropy, Kullback-Leibler divergence), $M(x) = \frac{P(x)+Q(x)}{2}$.

Symmetric:
$$JSD(P||Q) = JSD(Q||P)$$
. Non-negative: $JSD(P||Q) \ge 0$. $JSD(P||Q) \le 1$.

- JSD(P || Q) = 0 if and only if P(x) = Q(x), $\forall x$. JSD(P || Q) = 1 if and only if $P(x) \cdot Q(x) = 0$, $\forall x$.
- Same language: $JSD(L_t || L_I) = 0$. Not a single overlap: $JSD(L_t || L_I) = 1$.

Results

Conclusions

Overview

Modelling performance

Results: number of learning steps until convergence

- 2000 times learning (rnd target, rnd underlying form) per grammar type × production method × learning method.
- Measure the number of learning steps until convergence.
- Distribution of the number of required learning steps:

		OT	10-HG	4-HG	1.5-HG
gramm.	М	13;27;45	13 ; 28 ; 46	12;27;48	15 ; 30 ; 47
	В	23 ; 43 ; 65	22;41;64	22;42;64	23;40;60
sa,	М	53 ; 109 ; 233	63 ; 140 ; <i>328</i>	60;148;366	83;199;508
$t_{\rm step} = 0.1$	В	80;171;462	92 ; 240 ; 772	92 ; 239 ; 785	117;290;694
sa,	М	64;131;305	62 ; 134 ; 304	63 ; 137 ; 329	72;163;437
$t_{\rm step} = 1$	В	90 ; 212 ; 560	92 ; 233 ; 572	84 ; 212 ; 646	101;242;616

1st quartile;median;3rd quartile)

Methodological notes

Paradigm:

- Measure number of learning steps until converging performance.
- Statistics on the distribution of the required learning step number.
- Under different learning conditions.
- Distributions have extremely long tails. Significance of differences: using non-parametric tests.

Does learning speed depend on initial grammar? On learning data? Run two learners learning the same target grammar:

- with same initial grammar: strong correlation in nr. of learning steps. Learning data not the same: slightly decreased correlation.
- with different initial grammars: correlation (almost) lost.

Long tail: children must start with same initial grammar, but need not receive same (correct or erroneous) data (if learning algorithm is correct).

Conclusions

Proposed paradigm for the learnability of a grammar framework:

- Competence = grammar framework (e.g., OT or HG).
- Performance = imperfect implementation of competence model.
- Learning from performance data, only partially reflecting competence.
- Learner does not have access to teacher's competence directly: converge on performance.
- Convergence measure using *Jensen-Shannon divergence*.
- Argument for same initial grammar in children?

Implemented on OTKit.

Results

Conclusions

Thank you for your attention!

Tamás Biró: t.s.biro@uva.nl

Work supported by:

