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COMPETENCE as linguistic optimization

Generative linguistics as an optimization problem: how to map underlying form U onto surface form SF(U)?

SF(U) = arg opt
w∈Gen(U)

H(w)

Target function (“Harmony”) H(w) derived from elementary functions Ci(w) (“constraints” – a misnomer):

1. Hard constraints: H(w) = C1(w) & C2(w) & ... & CN (w) → P&P

2. Weighted sum: H(w) = gN · CN (w) + gN−1 · CN−1(w) + ... + g1 · C1(w). → HG

3. Exponential weights: H(w) = −CN (w) · qN − CN−1(w) · qN−1 − ...− C1(w) · q → q-HG

4. OT tableau row: H(w) = CN (w) CN−1(w) ... C1(w) → OT

Rank ri for each constraint Ci. We focus on OT and q-HG.

Grammar = set of ranks.

Sort constraints by rank:

•OT hierarchy:
Ci� Cj iff ri > rj.

•HG weights: gi = qKi

such that
Ki > Kj iff ri > rj,
and Ki ∈ {1, ..., N}.

PERFORMANCE or production as implementation

1. Competence: the static knowledge grammatical forms (explained by) grammar

2. Mental computation in the brain produced forms implementation of grammar

3. Performance in its outmost sense produced forms phonetics, pragmatics, etc.

Cf. B́ıró (2006:43); Smolensky and Legendre (2006:vol. 1. p. 228). Ways to implement HG and OT:

•Grammatical: return the most harmonic candidate (exhaustive search; FS-OT, dynamic programming).

• Simulated annealing: return local optima, depending on cooling schedule (tstep: step by which temper-
ature is decreased in each iteration, “speed”).

– HG: sa converges to gr (frequency of global optimum converges to 1) if tstep→ 0 (more iterations).

– OT: grammatical forms, irregular forms and fast speech forms are returned (Biró 2007):
∗ Grammatical form: globally optimal.

∗ Fast speech form: globally not optimal; its frequency converges to 0 if tstep → 0.

∗ Irregular form: globally not optimal; its frequency converges to some positive value if tstep → 0.

Simulated Annealing

Originating in physics, simulated annealing (Boltzmann Machines or stochastic gradient ascent) is a widespread heuristic

technique for combinatorial optimization. A random walk is performed on the search space until being trapped in the

global or in another local optimum. If target function is real-valued, as in HG, then the slower the speed of the algorithm,

the closer to 1 the probability of finding the global optimum. B́ıró (2006) demonstrates how to apply simulated annealing

in the non-real-valued OT case. In this SA-OT, irregular forms also emerge, which persist even at slow speed.
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Gradual online LEARNING needs production (that is, performance)

Repeated error-driven updates of the constraint ranks ri, until convergence:

• Initially: fix random target grammar, fix underlying form, initial random grammar for learner.

•Error-driven: “winner” produced by target grammar vs. “loser” produced by learner’s current grammar.

•Update rule: update the rank ri of every constraint Ci, depending on whether Ci prefers the winner or the
loser. Two approaches (ε = 0.1, while ranks are initially random numbers between 0 and N = 15):

– Boersma (1997): increase rank by ε if winner-preferring; decrease rank by ε if loser-preferring constraint.

– Magri (2009): increase rank of all winner-preferring constraints by ε; decrease rank of highest ranked loser-
preferring constraint by W · ε, where W is the number of winner-preferring constraints.

Converging on performance: ∆ is Jensen-Shannon divergence

•Convergence criterion: JSD between sample produced by target grammar and sample produced by
learner’s current grammar ≤ average JSD of two samples produced by target grammar. (Sample size = 100).

A measure of the “distance” of two distributions: JSD(P‖Q) =
D(P‖M)+D(Q‖M)
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where D(P‖Q) =
∑
xP (x) log

P (x)
Q(x)

(relative entropy, Kullback-Leibler divergence), and M(x) =
P (x)+Q(x)

2 .

• Symmetric: JSD(P‖Q) = JSD(Q‖P ). Finite and non-negative: 0 ≤ JSD(P‖Q) ≤ 1.

• JSD(P‖Q) = 0 if and only if P (x) = Q(x), ∀x. JSD(P‖Q) = 1 if and only if P (x) ·Q(x) = 0, ∀x.

• Same language: JSD(Lt‖Ll) = 0. Not a single overlap: JSD(Lt‖Ll) = 1.

String Grammar: “toy grammar” imitating typical OT phonology:

• Candidates: Gen(U) = {0, 1, ..., P − 1}L. We have used L = P = 4: 0000, 0001, 0120, 0123,... 3333.

• Neighborhood structure on this candidate set: w and w′ neighbors iff one basic step transforms w to w′.
Basic step: change exactly one character ±1 (mod P ) (cyclicity). Each neighbor with equal probability.
Example: neighbors of 0123 are exactly 1123, 3123, 0023, 0223, 0113, 0133, 0122 and 0120.

• Constraints (for all n ∈ {0, 1, ..., P − 1}):
– No-n (number of character n in string): *n(w) :=

∑L−1
i=0 (wi = n).

– No-initial-n: *Initialn(w) := (w0 = n). No-final-n: *Finaln(w) := (wL−1 = n).

– Assimilation (number of different adjacent character pairs): Assim(w) :=
∑L−2

i=0 (wi 6= wi+1).

– Dissimilation (number of identical adjacent character pairs): Dissim(w) :=
∑L−2

i=0 (wi = wi+1).

– Faithfulness to underlying form U (using pointwise distance modulo P ):

Faith(w) =
∑L−1

i=0 d(Ui, wi) where d(a, b) = min(|(a− b) mod P |, |(b− a) mod P |).

Experiment: Measuring number of learning steps

2000 times learning (rnd target, rnd underlying form) per grammar type, production method and learning method.
Distribution of the number of learning steps until convergence: 1st quartile ; median ; 3rd quartile ; 90th percentile

OT 10-HG 4-HG 1.5-HG

gramm. M 13 ; 27 ; 45 ; 67 13 ; 28 ; 46 ; 70 12 ; 27 ; 48 ; 69 15 ; 30 ; 47 ; 67

B 23 ; 43 ; 65 ; 102 22 ; 41 ; 64 ; 107 22 ; 42 ; 64 ; 107 23 ; 40 ; 60 ; 90

sa, M 53 ; 109 ; 233 ; 497 63 ; 140 ; 328 ; 1681 60 ; 148 ; 366 ; 1517 83 ; 199 ; 508 ; 1702

tstep = 0.1 B 80 ; 171 ; 462 ; 1543 92 ; 240 ; 772 ; 7512 92 ; 239 ; 785 ; 8633 117 ; 290 ; 694 ; 1956

sa, M 64 ; 131 ; 305 ; 1022 62 ; 134 ; 304 ; 1127 63 ; 137 ; 329 ; 1278 72 ; 163 ; 437 ; 2229

tstep = 1 B 90 ; 212 ; 560 ; 1966 92 ; 233 ; 572 ; 3116 84 ; 212 ; 646 ; 3005 101 ; 242 ; 616 ; 2091

OBSERVATIONS: very long tail (significance based on Wilcoxon rank-sum test)

• Performance errors make grammars more difficult to learn: gramm < 0.1-sa < 1-sa.

• But reversed for HG and SA (either significant, or not significant tendency). Why?

•Magri’s update rule (M) quicker than Boersma’s (B) (extremely significant). Due to larger update steps?

•Grammar type (OT vs. q-HG): only minor influence (“hardly any” and “small, but very significant”).
OT much easier to learn than 1.5-HG (significant difference for sa cases). NB: also quicker to produce.

Does learning speed depend on initial grammar? On order of learning data?
New experiment: Run two learners learning the same target grammar:

•With same initial grammar: strong correlation in their nr. of learning steps.
Learning data not the same: slightly decreased correlation.

•With different initial grammars: correlation (almost) lost, large differences in learning time.

Cf. long tail: children must start with same initial grammar, but need not receive same (correct or erroneous)
data (if algorithm is correct). SLI is being born with initial grammar causing 10-20 times higher learning steps?
Stability of the algorithms: if learner reached target, will she stay there? Much improvement needed.
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