Efficient communication with a ponderous brain

Performance errors in Optimality Theory

Tamás Biró

birot@nytud.hu

Radboud University Nijmegen

January 22, 2008

Overview

- Competence and performance: errors, irregularities, learning and communication
- Optimality Theory (OT) as an optimization problem
- The Simulated Annealing for OT Algorithm (SA-OT)
- Example: string grammar
- Learning SA-OT
- Concluding remarks

Competence vs. performance

The Chomskyan dichotomy:

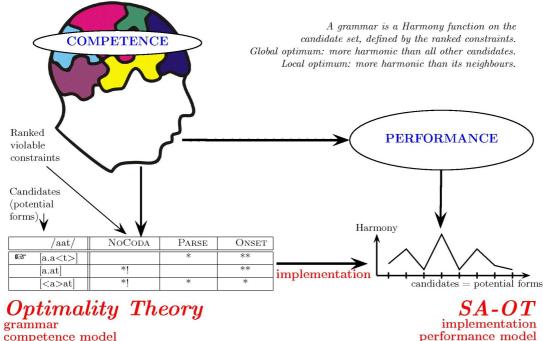
"Linguistic theory is concerned primarily with an ideal speakerlistener, in a completely homogeneous speech-community, who knows its language perfectly and is unaffected by such grammatically irrelevant conditions as memory limitations, distractions, shifts of attention and interest, and errors (random or characteristic) in applying his knowledge of the language in actual performance. ... We thus make a fundamental distinction between *competence* (the speaker-hearer's knowledge of his language) and *performance* (the actual use of language in concrete situations)." (Chomsky: *Aspects*, 1965, pp. 3-4)

The meta-scientific side

Whenever you do not know how to approach the phenomenon, you want to argue for it to be irrelevant.

But if you have a neat model for a phenomenon, you want to deal with that phenomenon.

The meta-scientific side


Given the grammar of a language, one can study the use of the language statistically in various ways; and the development of probabilistic models for the use of language [emphasis added – T. B.] (as distinct from the syntactic structure of language) can be quite rewarding ...

One might seek to develop a more elaborate relation between statistical and syntactic structure than the simple order of approximation model we have rejected. I would certainly not care to argue that any such relation is unthinkable, but I know of no suggestion to this effect that does not have some obvious flaws. (Chomsky: Syntactic structures, 1957, p. 17, n. 4)

Proposal: three levels

Level	its product	its model	the product
			in the model
Competence in narrow		standard	globally
sense: static knowledge	grammatical form	ОТ	optimal
of the language		grammar	candidate
Dynamic language	acceptable or	SA-OT	local
production process	attested forms	algorithm	optima
Performance in its	acoustic	(phonetics,	
outmost sense	signal, etc.	pragmatics)	??

Competence vs. performance

competence model grammatical form = \mathbb{I} (globally) optimal candidate

produced forms = globally or locally optimal candidates

Competence vs. performance

Paul Smolensky:

"... competence can be understood as an idealization of actual behavior—*performance*—in which we have removed the effects of limitations on computational resources: generally speaking, space, time, and precision." (Smolensky et al.: *The Harmonic Mind*, 2006, vol. 1, p. 228.)

Competence = grammar: is a *function* input → correct output/parse/struct. description

Performance: *algorithm* that finds it. Or doesn't. Competence: performance run infinitely slowly.

Errors and irregularities

Divergence between competence and performance:

- Grammatical forms = globally optimal
- *! Performance errors*: frequency diminishes at slow (careful) production (as in traditional simulated annealing).
- ~ Irregularities: frequency does not diminish at slow (careful) production (due to $strict \ domination$).

Not all forms in a language need be analysed as grammatical!

Adequacy of a performance model

Performance model: an algorithm that realizes (implements) the grammar (i.e., the model of competence), which

- usually finds the form grammatical w.r.t. grammar (\square),
- but also makes the same errors as humans do,
- with a similar frequency
- under various conditions (speech rate, style, etc.).

Moreover, *runtime* and *complexity* of algorithm is plausible.

Consequences for language acquisition

Child is exposed to teacher's *performance distribution* (derived from teacher's competence + production mechanism):

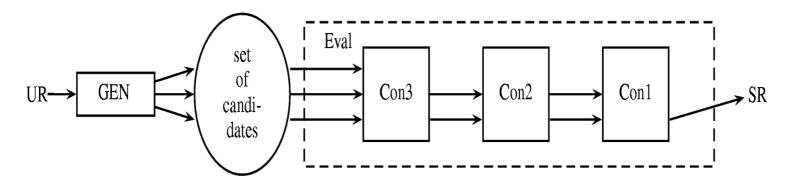
- Grammatical forms, performance errors and irregular forms
- produced with different frequencies
- under various circumstances (time pressure, stylistic and sociolinguistic variations, etc.—parameters of SA-OT)

Can she reproduce the teacher's underlying *competence*?

Consequences for communication

- Mind is willing to make errors in order to produce outputs faster.
- Do these errors lead to misunderstandings?
- Efficiency of communication: max. speed, min. misinterpretation.

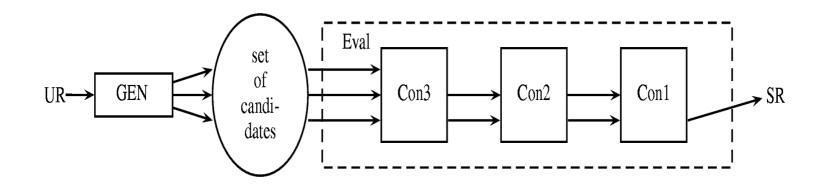
Consequences for language change


• Imperfect language aquisition (iterative learning)

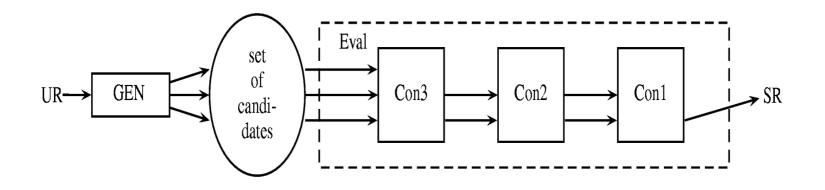
• Maximizing efficiency of communication (evolutionary approach: speed vs. misinterpretations)

Overview

- Competence and performance: errors, irregularities, learning and communication
- Optimality Theory (OT) as an optimization problem
- The Simulated Annealing for OT Algorithm (SA-OT)
- Example: string grammar
- Learning SA-OT
- Concluding remarks


Optimality Theory in a nutshell

OT tableau: search the best candidate w.r.t lexicographic ordering (cf. *abacus*, *abolish*,..., *apple*,..., *zebra*)


	c_n	c_{n-1}	 c_{k+1}	c_k	c_{k-1}	c_{k-2}	
W	2	0	1	2	3	0	
w'	2	0	1	3!	1	2	
w"	3!	0	1	3	1	2	

Optimality Theory in a nutshell

- Pipe-line *vs.* optimize the Eval-function
- Gen: $UR \mapsto \{w | w \text{ is a candidate corresponding to } UR\}$

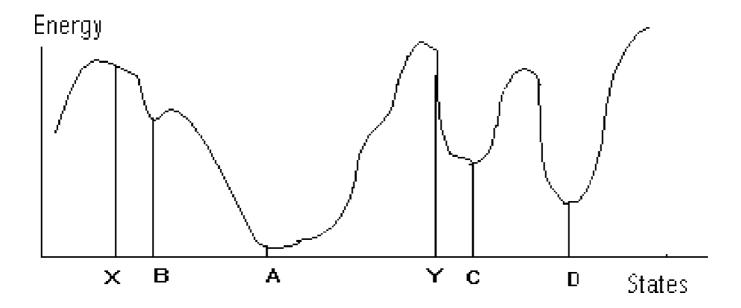
E.g. assigning Dutch metrical foot structure & stress: fototoestel \mapsto {fototoe(stél), (fotó)(toestel), (fó)to(toestel),...} Optimality Theory: an optimization problem

 $UR \mapsto \{w | w \text{ is a candidate corresponding to } UR \}$ $E(w) = \left(C_N(w), C_{N-1}(w), ..., C_0(w)\right) \in \mathbb{N}_0^{N+1}$ $SR(UR) = \operatorname{argopt}_{w \in Gen(UR)} E(w)$

Optimization: with respect to lexicographic ordering

OT is an optimization problem

The question is: How can the optimal candidate be found?


- Finite-State OT (Ellison, Eisner, Karttunen, Frank & Satta, Gerdemann & van Noord, Jäger...)
- chart parsing (dynamic programming) (Tesar & Smolensky; Kuhn)

These are perfect for language technology. But we would like a psychologically adequate model of linguistic performance (e.g. errors): Simulated Annealing.

Overview

- Competence and performance: errors, irregularities, learning and communication
- Optimality Theory (OT) as an optimization problem
- The Simulated Annealing for OT Algorithm (SA-OT)
- Example: string grammar
- Learning SA-OT
- Concluding remarks

Hill climbing: finding the global optimum

Global minimum: A *Local minima:* B, C, D

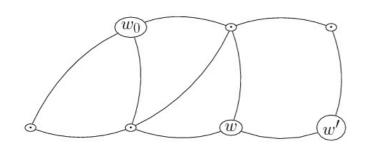
Gradient descent from X brings to B, from Y brings to C.

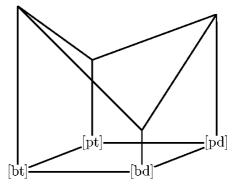
How to find optimum: Gradient Descent 1

```
w := w init ;
Repeat
       w':= best element of set Neighbours(w);
       Delta := E(w') - E(w);
        if Delta < 0 then w := w';
        else
              do nothing
        end-if
Until stopping condition = true
                 # w is an approximation to the optimal solution
Return w
```

How to find optimum: Gradient Descent 2

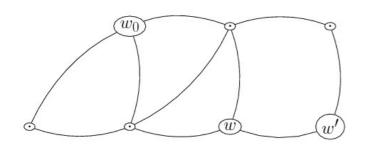
```
w := w init ;
Repeat
       Randomly select w' from the set Neighbours(w);
       Delta := E(w') - E(w);
        if Delta < 0 then w := w';
        else
              do nothing
        end-if
Until stopping condition = true
                 # w is an approximation to the optimal solution
Return w
```

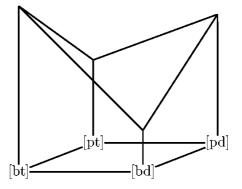

The Simulated Annealing Algorithm


```
w := w_init ; t := t_max ;
Repeat
       Randomly select w' from the set Neighbours(w);
       Delta := E(w') - E(w);
       if Delta < 0 then w := w';
       else
              generate random r uniformly in range (0,1);
              if r < exp(-Delta / t) then w := w';
       end-if
  t := alpha(t)
                                       # decrease t
Until stopping condition = true
Return w
                 # w is an approximation to the optimal solution
```

Deterministic Gradient Descent for OT

- McCarthy (2006): *persistent OT* (*harmonic serialism*, cf. Black 1993, McCarthy 2000, Norton 2003).
- Based on a remark by Prince and Smolensky (1993/2004) on a "restraint of analysis" as opposed to "freedom of analysis".
- Restricted Gen \rightarrow Eval \rightarrow Gen \rightarrow Eval \rightarrow ... (*n* times).
- Gradual progress toward (locally) max. harmony.
- Employed to simulate traditional derivations, opacity.


Simulated Annealing for OT – general idea



- Neighbourhood structure on the candidate set.
- Landscape's vertical dimension = harmony; random walk.
- If neighbour more optimal: move.
- If less optimal: move in the beginning, don't move later.

Simulated Annealing for OT – general idea

- Neighbourhood structure → local optima.
- System stuck in local optima: alternation forms, errors
- Precision of the algorithm depends on its speed (!!).
- Many different scenarios.

Sim. annealing with non-real valued target function

• Exponential weights if upper bound on $C_i(w)$ violation levels:

$$E(w) = C_N(w) \cdot q^N + C_{N-1}(w) \cdot q^{N-1} + \dots + C_1(w) \cdot q + C_0(w)$$

• Polynomials:

$$E(w)[q] = C_N(w) \cdot q^N + C_{N-1}(w) \cdot q^{N-1} + \dots + C_1(w) \cdot q + C_0(w)$$

• Ordinal weights:

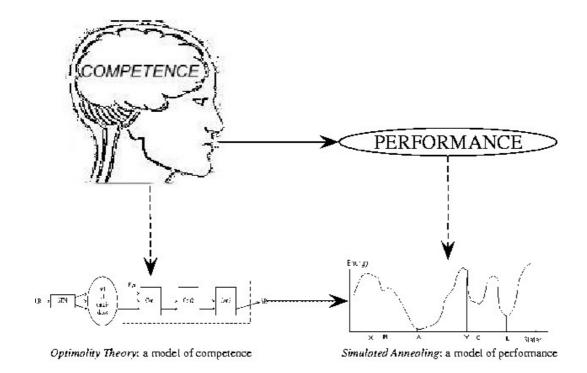
$$E(w) = \omega^{N} C_{N}(w) + ... + \omega C_{1}(w) + C_{0}(w)$$

Rules of moving

RULES OF MOVING from w to w'at temperature $T = \langle K_T, t \rangle$:

If w' is better than w: move! $P(w \rightarrow w'|T) = 1$

If w' loses due to fatal constraint C_k :

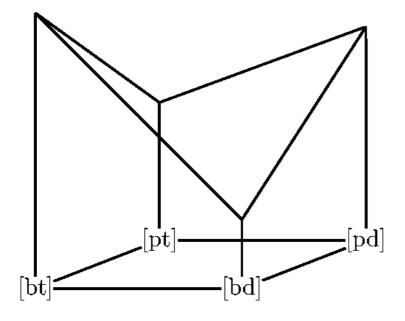

If $k > K_T$: don't move! $P(w \to w'|T) = 0$ If $k < K_T$: move! $P(w \to w'|T) = 1$ If $k = K_T$: move with probability $P = e^{-(C_k(w') - C_k(w))/t}$

The SA-OT algorithm

```
w := w_init ;
for K = K_max to K_min step K_step
     for t = t_max to t_min step t_step
            CHOOSE random w' in neighbourhood(w);
            COMPARE w' to w: C := fatal constraint
                              d := C(w') - C(w):
            if d \leq 0 then w := w';
            else
                           w := w' with probability
                        P(C,d;K,t) = 1 , if C < K
                                  = \exp(-d/t), if C = K
                                  = 0 , if C > K
     end-for
end-for
```

return w

SA-OT as a model of linguistic performance


Proposal: three levels

Level	its product	its model	the product
			in the model
Competence in narrow		standard	globally
sense: static knowledge	grammatical form	ОТ	optimal
of the language		grammar	candidate
Dynamic language	acceptable or	SA-OT	local
production process	attested forms	algorithm	optima
Performance in its	acoustic	(phonetics,	
outmost sense	signal, etc.	pragmatics)	??

The art of using Simulated Annealing Optimality Theory

- Take a traditional OT model
- Add *convincing* neighbourhood structure to candidate set
- Local (non-global) optima = alternation forms
- Run simulation (e.g., http://www.let.rug.nl/~birot/sa-ot):
 - Slowly: likely to return only the grammatical form
 - Quickly: likely to return local (non-global) optima

Irregularities

• Local optimum that is not avoidable (*op die*).

Parameters of the algorithm

- Constraint hierarchy
- t_{step} (and t_{max} , t_{min})
- K_{max} (and K_{min})
- K_{step}
- w_0 (inital candidate)
- Topology (neighbourhood structure)

How to make the topology convincing?

A connected (weighted) "graph"; universal;...

- Observation-driven strategies:
 - Many phenomena in many languages or even better: cross-linguistic typologies
 - Based on existing theories relying on cross-linguistic observations (cf. Hayes's *metrical stress theory*)
- Theory-driven strategies:
 - Principles (e.g. minimal set of basic transformations)
 - Psycholinguistically relevant notions of similarity, etc.

Example: Fast speech: Dutch metrical stress

fo.to.toe.stel	uit.ge.ve.rij	stu.die.toe.la.ge	per.fec.tio.nist
'camera'	'publisher'	'study grant'	'perfectionist'
susu	ssus	susuu	usus
fó.to.tòe.stel	ùit.gè.ve.ríj	$st \'u.die.t \`o e.la.ge$	per.fèc.tio.níst
fast: 0.82	fast: 0.65 / 0.67	fast: 0.55 / 0.38	fast: 0.49 / 0.13
slow: 1.00	slow: 0.97 / 0.96	slow: 0.96 / 0.81	slow: 0.91 / 0.20
fó.to.toe.stèl	ùit.ge.ve.ríj	$st \'u.die.toe.l \`a.ge$	pèr.fec.tio.níst
fast: 0.18	fast: 0.35 / 0.33	fast: 0.45 / 0.62	fast: 0.39 / 0.87
slow: 0.00	slow: 0.03 / 0.04	slow: 0.04 / 0.19	slow: 0.07 / 0.80

Simulated / observed (Schreuder) frequencies.

In the simulations, $T_{step} = 3$ used for fast speech and $T_{step} = 0.1$ for slow speech.

Overview

- Competence and performance: errors, irregularities, learning and communication
- Optimality Theory (OT) as an optimization problem
- The Simulated Annealing for OT Algorithm (SA-OT)
- Example: string grammar
- Learning SA-OT
- Concluding remarks

- Candidates: {0, 1, ..., P − 1}^L
 E.g., L = P = 4: 0000, 0001, 0120, 0123,... 3333.
- Neighbourhood structure: w and w' neighbours iff one basic step transforms w to w'.
- Basic step: change exactly one character ±1, mod P (cyclicity). Neighbours of 0022: 1022, 0012, 0322,...
- Each neighbour with equal probability.

Markedness Constraints ($w = w_0 w_1 \dots w_{L-1}$, $0 \le n < P$):

• No-n:
$$*n(w) := \sum_{i=0}^{L-1} (w_i = n)$$

- No-initial-n: *INITIAL $n(w) := (w_0 = n)$
- No-final-n: *FINAL $n(w) := (w_{L-1} = n)$
- Assimilation Assim $(w) := \sum_{i=0}^{L-2} (w_i \neq w_{i+1})$

• Dissimilation DISSIM
$$(w) := \sum_{i=0}^{L-2} (w_i = w_{i+1})$$

• Faithfulness to UR σ :

FAITH_{$$\sigma$$}(w) = $\sum_{i=0}^{L-1} d(\sigma_i, w_i)$

 $\begin{array}{l} \mathcal{H}: \ \mathsf{no0} \gg \mathsf{ass} \gg \mathsf{Faith}_{\sigma=0000} \gg \mathsf{ni1} \gg \mathsf{ni0} \gg \mathsf{ni2} \gg \mathsf{ni3} \gg \mathsf{nf0} \\ \gg \mathsf{nf1} \gg \mathsf{nf2} \gg \mathsf{nf3} \gg \mathsf{no3} \gg \mathsf{no2} \gg \mathsf{no1} \gg \mathsf{dis} \end{array}$

Globally optimal form: \blacksquare 3333. But 13 local optima: 2222, $\{1,3\}^4$.

Output frequencies for different t_{step} (=inverse speed) values:

output	$\texttt{t_step} = 1$	$\texttt{t_step} = 0.1$	$t_step = 0.01$	$t_step = 0.001$
ISF 3333	0.1174 ± 0.0016	0.2074 ± 0.0108	0.2715 ± 0.0077	0.3107 ± 0.0032
~ 1111	0.1163 ± 0.0021	0.2184 ± 0.0067	0.2821 ± 0.0058	0.3068 ± 0.0058
~ 2222	0.1153 ± 0.0024	0.2993 ± 0.0092	0.3787 ± 0.0045	0.3602 ± 0.0091
! 1133	0.0453 ± 0.0018	0.0485 ± 0.0038	0.0328 ± 0.0006	0.0105 ± 0.0014
! 3311	0.0436 ± 0.0035	0.0474 ± 0.0054	0.0344 ± 0.0021	0.0114 ± 0.0016
! others	0.5608	0.1776	< 0.0002	-

L = P = 4, $T_{max} = 3$, $T_{min} = 0$, $K_{step} = 1$. Each candidate 4 times as w_0 .

Overview

- Competence and performance: errors, irregularities, learning and communication
- Optimality Theory (OT) as an optimization problem
- The Simulated Annealing for OT Algorithm (SA-OT)
- Example: string grammar
- Learning SA-OT
- Concluding remarks

Learning

Learning algorithms in Optimality Theory:

- Off-line learning algorithms: Recursive Constraint Demotion
 - Initial grammar from observations in pre-linguistic infants?
 - Produces typical "children errors": extra local optima
- On-line learning algorithms: Error Driven Constraint Demotion, Gradual Learning Algorithm.
 - Grammar improving gradually in childhood?

Learning

Assumptions and heuristics behind learning algorithms:

- Traditional OT: observed form is optimal
- SA-OT: observed form is locally optimal

 Moreover: more frequent form is more harmonic Not always true in trad. OT; even less true in SA-OT.

Nevertheless, some success!

Same performance, different competence after RCD

target	after RCD	after GLA				
No0 15	No0 15	No0 15.000000		target	after RCD	after GLA
				315 2222	322 2222	298 2222
Ass 14	Ass 12	Ass 14.000004		210 1111	221 1111	238 1111
Fai 13	Fai 4	Fai 6.100000	R	196 3333	200 3333	225 3333
Ni1 12	Ni1 8	Ni1 10.400004	6.4			
Ni0 11	Ni0 13	Ni0 13.000000		55 3111	53 1133	54 3311
Ni2 10	Ni2 5	Ni2 7.100000		49 1133	50 3111	45 1133
Ni3 9	Ni3 3	Ni3 -1.500000		48 1333	45 1113	41 1333
				48 3331	45 3311	40 1113
Nf0 8	Nf0 14	Nf0 14.000000		46 1113	42 3331	37 3331
Nf1 7	Nf1 10	Nf1 6.300000		42 3311	32 1333	35 3111
Nf2 6	Nf2 6	Nf2 8.100000				
Nf3 5	Nf3 2	Nf3 3.600000		4 1331	4 1131	3 1331
No3 4	No3 7	No3 3.000000		4 3133	4 1331	3 3113
				3 3113	2 1311	2 3133
No2 3	No2 11	No2 13.100004		2 1311	2 3113	2 3313
No1 2	No1 9	No1 10.900006		2 3313	2 3133	1 1131
Dis 1	Dis 1	Dis -1.000000		2 3313	2 3133	

Constraint name + its rank.

Absolute frequency + output form.

GLA corrects children speech errors

target	after RCD	after GLA		target	after RCD	after GLA
No0 15	No0 2	No0 12.500014		302 2222	279 1111	292 2222
Ass 14	Ass 14	Ass 12.299995		235 1111	277 2222	230 1111
Fai 13	Fai 7	Fai -0.500000	RF	208 3333	277 3333	194 3333
Ni1 12	Ni1 9	Ni1 10.800001		49 1113	39 1133	73 3311
Ni0 11	Ni0 15	Ni0 15.000000		49 3311	39 3311	52 1133
Ni2 10	Ni2 13	Ni2 11.499998		45 1333	38 2200	47 1113
Ni3 9	Ni3 11	Ni3 10.699999		44 1133	37 3111	45 3111
Nf0 8	Nf0 8	Nf0 13.300017		40 3111	35 1333	38 1333
Nf1 7	Nf1 6	Nf1 7.900000		37 3331	2 1113	37 3331
Nf2 6	Nf2 1	Nf2 -12.200008		5 1331	1 1000	5 1331
Nf3 5	Nf3 3	Nf3 9.000000		4 3313		4 3133
No3 4	No3 4	No3 3.700000		2 3113		3 3313
No2 3	No2 12	No2 11.400000		2 3133		2 1311
No1 2	No1 5	No1 3.300000		1 1131		2 3113
Dis 1	Dis 10	Dis 11.700005		1 1311		

GLA decreases freq. of 1111 and 3333. "Child form" 2200: extra local optimum.

GLA does not converge towards target

target	after RCD	after GLA				
No0 15	No0 11	No0 20.200031		target	after RCD	after GLA
Ass 14 Fai 13 Ni1 12 Ni0 11 Ni2 10 Ni3 9 Nf0 8 Nf1 7 Nf2 6 Nf3 5 No3 4 No2 3	Ass 15 Fai 8 Ni1 7 Ni0 5 Ni2 4 Ni3 10 Nf0 14 Nf1 12 Nf2 3 Nf3 2 Nf3 2 No3 1 No2 13	Ass 21.200026 Fai 7.600000 Ni1 5.299999 Ni0 13.300017 Ni2 7.500000 Ni3 -0.100000 Nf0 19.300018 Nf1 0.599994 Nf2 9.500005 Nf3 1.600000 No3 -14.000012 No2 18.900017	I	300 2222 231 1111 214 3333 53 1133 51 3311 50 3331 46 1333 38 3111 33 1113 6 1331 1 1131	232 1111 216 2222 207 3333 201 0000 49 1133 34 3311 30 0022 29 2200 14 1113 11 3331 1 1333	250 1111 239 2222 226 3333 170 0000 36 2200 33 1133 31 0022 30 3311 3 1333 2 1113 2 3111
				1 1131 1 3113	1 1333	2 3111 2 3331

Constraint ranks diverge. 0000 is locally optimal.

Overview

- Competence and performance: errors, irregularities, learning and communication
- Optimality Theory (OT) as an optimization problem
- The Simulated Annealing for OT Algorithm (SA-OT)
- Example: string grammar
- Learning SA-OT
- Concluding remarks

Conclusions: language modelling

- Performance as the implementation of the grammar.
 E.g.: competence = OT, performance = SA-OT or ICS.
- Errors and irregularities are good for
 - asses the descriptive adequacy of the combined competence + performance model
 - language learning/acquisition, and evolution
 E.g.: some children language forms as extra local optima.
- *Errare humanum est*: heuristics in cognitive science. Nonetheless: efficient communication

What does SA-OT offer to standard OT?

- A new approach to account for variation / performance:
 - Non-optimal candidates also produced (cf. Coetzee);
 - As opposed to: more candidates with same violation profile; more hierarchies in a grammar.
- A topology (neighbourhood structure) on the candidate set.
- Additional ranking arguments \rightarrow learning.
- Godot-effect: role played by loser candidates.
- New implementation: cognitively plausible, lang. technology?

- Demo at http://www.let.rug.nl/~birot/sa-ot.
- (Plans to develop it further)

Language vs. Culture?

The tacit knowledge of a participant in a symbolic-cultural system is neither taught nor learned by rote. Rather each new participant [...] reconstructs the rules which govern the symbolic-cultural system in question. These reconstructions may differ considerably, depending upon such factors as the personal history of the individual in question. Consequently, the products of each individual's symbolic mechanism are idiosyncratic to some extent. (Lawson-McCauley, 1990, p. 68., italics original)

Said about culture, as a difference from language. I have now argued: it also holds for language!

The *dis*-harmonic mind?

ICS (Integrated Connectionist/Symbolic Cognitive Architecture):

"[T]here is no symbolic algorithm whose internal structure can predict the time and the accuracy of processing; this can only be done with connectionist algorithms" (Smolensky and Legendre (2006): *The Harmonic Mind*, vol. 1, p. 91).

SA-OT:

- symbolic computation only
- predicts tme and accuracy of processing

Thank you for your attention!

Tamás Bíró

birot@nytud.hu

Tamás Bíró