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The purpose of my paper is to present the first approaching steps between physicists and linguists. to show what possibilities

can be found to relate these seemingly very distant disciplines. The field they meet is the examination of statistical properties

of symbol seq\lences, such as written texts.

I shall present three "statistical games" that physicists and others have been "playing". all of them easily applicable on

computers. The first one is Zip! 's law from the 1930s. which has been generalized and reanalyzed in recent years. as It is

closely related to some fascinating statistical properties of written texts and D"i.-\ sequences. The second method. known as

random walk, proves the existence of long-range correlations in written texts, meaning that 'v[arkov models cannot give

an adequate description of written texts' statistical properties. The aim of the third "game" is to introduce a "distance" or a

"rneasufl' of slmilMity" betwee:l documents by using a c'eclor'·space technique, leading to a useful algocithm

In t.he second half of the 20th century both physics and linguist.ics have undergone remarkable changes.
0,[odern linguistics has st.arted to apply formal tools able to incorporate abst.ract mathematical models.
On the other hanel, physics, defined as the science of approaching the nature wit.h mathematical concepts.
has conquered "new Gelds". These "new fields", that can be now described with mathematical and physical
means, do not only refer to the classical points of interests of physicists, like the world of atoms and molecules
(q uantUl1l chem istry), the living organisms (biophysics) or our planet (geophysics) B IIt physical concepts
and methods have penetrated into biological modeling, as for instance the modeling of e\'ollltion, I and even
social and economic sciences, 2

When speaking about the possible cont.ribution of physics to linguistics. the first idea may be phonetics
But this is a very well-known and II'ell worked out field. It uses concepts of classical physics (acousticsL iwd
raises raelter tecltnical than physical problems, less interesting for a physicist of the very end of [he 20th
crnrur\·. So let me rather deal with the possible contribution of moden! phYSICS (0 mudern ling'Ulstics

\[OSI. of tlte above-mentioned modern interdisciplinary models use ideas taken from statistical phYSICS.

Tlte rnrtin ailn of Lhis new branch of physics is to describe not the properties of the indil'idllal p'anic es. but
raLlIer Ihe structures formed by the clements in a complex system. A central cCJncept in star.isr.ical physics is
1l'l1.ivcrSfLliSIll. This exprrssion refers to classes of vel'." differcIlt phenomena having in ~Ol!ll:'manner the saml'
bcflal'i(J!' Who would think for instance, tha.t similar chaotic behcl\'ior can be ()h~cl'\'('d ill financial. chemical.
plcCf.r(Jnical or porulation biological phenomena.? The iekas, concepcs. lllet.hods (if \'on II·ant. "st'llistie<d

.·\!lUIlI. I!II: I.llvd"lillg llf l~l'olutil){1 se': c g. Gel"itz e/. !JI. (1~)LJ7), all example (at' Clpll)'Sll:;tI 1I11ll"'l IIsl'd ill billc'i'l'lIli,{t'\· is

p1'1'selllt'd ill Den'!!Y'1 iltld Vicsek (19'JO). ~

'2 .\1>0111IIsill)!; 1.1"'I.·1.1I1lllillill.11ical concepts ill economics, sce i\[artinlis, f( 'nil CseA:ii .. '( (I'l'):"». about I1sin~ ,t;l1i,t;c;t!

pl'y,ic;t! lI\(·l.lIods ill fin,ulc", Sl:e e. g. Stanley, Af. H. 17.. et Ill. (IC)!)(;).
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games") mentioned in this article can be and have been applied in linguistic, genetic and programming
contexts, as well.

\\'hat is common in a written text, a genetic code or a computer program? Each of them is a linear
sequence of symbols taken from a finite alphabet. In the case of a text, \\'e have the usual alphabet incorpo-
rating space, comma, full stop, et.c. The genetic code is a "text" over an alphabet of four "letters", the four
bases of D\':\: adenine (A), cyt.osine (C), guanine (G) and timine (T), these encode the genetic information.
\\'hile a computer program is a binary sequence of Os and Is. In addition, each of the three types of symbol
sequences has a well-defined structure, and the very aim of linguistics and genetics is to better understand
and describe this structure.

So the question arises: why not joining the forces, and utilizing each other's results? In addition to that.
statistical physics can provide some techniques that might show us some of the similarities and differences of
these symbol sequences of very different origin. And also, modern comput.ers can easily perform some tasks
pre\'ious generations would not do.

These ne\dy discO\'ered "universal properties" may then affect traditional theories, as well, when bring-
ing additional proofs or counter-arguments to them. As a very trivial exemple \\'e shall see how statistical
properties of texts prO\'e Chomsky's old claim, based only on Don-quantitative arguments, that natural lan-
guages cannot be described b:' regular grammars. If \\'e could find a statistical property of texts that cannot
be explaned by context-free grammars, but only by context sensitive ones, that would have very serious
consequences in linguistics.

Physics, unlike abstract mathematics, is a very much quantitative science. This implies that when using
physical concepts in linguistics, probably (but not necessarily) the interest in the quantitative properties
of languages will dominate over the importance of qualitative features. Although quantitative phenomena
are only analyzed by few linguists, these are also legitime questions to ask, and have their traditions in the
linguistic literature.

In the follo\\'ing I will discuss three procedures: all of them easily applicable on computers. The first
twO of them reveal some fascinating phenomena in the world of written texts (and also genetic cocles). I am
convinced that the explanation of these findings gi\'en by a mathematician or a physicist cannot be complete
if not correct from a linguistic point of view, as well, consequently they may effect linguistic theories. The
third procedure may have less relation v,'ith theoretical issues, but might lead to some useful techniques in
different applications.

A last remark before going into details. One may ask, where is physics in the followings. !'vIyanswer
is that nowhere, if we understand "physics" in its traditional meaning. But these questions ha\'e interest.ed
physicists, who published articles about them in physical papers, and the consequence of this fact is t.hat
the method of approaching tne topic is rat.her the physical than the mathematical or linguistic (genetic) wa)'
of approaching it. This explains one of my favorit.es sayings: "Physics is what physicists deal wit.h", so this
topic can also be considered as physics.

The first "statistical game" I wish to present is the oldest one of the three, going back to G. K. Zipts
works in the 1930's (d. Zip! (1935, 1949)). The idea is very simple, but the result is surprising. and raises
questions leading physicists to publish articles about it eyen in the 199·0'5. The technique has been used to
analyze D!'\A sequences only in recent years. (C.f Czir6k et al (199-5) and (1996).)

Let us suppose we have a fairly long text, for instance a novel or an article in this collection, and let. us
calculate for each word occurring in the text the number of times it appears. This task can easil:' be done
by a computer. It is obvious that articles, prepositions, auxiliaries can be characterized by a much larger
jr'cquency, i. e. number of occurrences, than rare nou'1s. (Let me not deal with secondary questions like
whether inflected words count as one or as different words.)

In the next step let us order these words in decreasing rank order of frequenc\': k = 1 refers t.o the most
frequent wC(rd, k = 2 refers to the second most frequent one, etc. Let P(k) denote the frequency (number of
appearances) of the kth most frequent word. It is obvious that:



The question that arises now is what kind of function P(k); the so-called Zipj-junction is? A very
reasonable guess would be that P(k) decreases as an exponential junction (as a geometrical progression),
i, e. for instance the frequency of the second most frequent word is the half of the frequency of the most
frequent one. the frequency of the third most frequent word is the half of the second most frequent one, etc.

But it turned out very quickly that it is not the casel Rather it became obvious that P(k) can be much
better approximated by a power law junction:

4.
P(k) = -=--

kP'

where .4. is an uninteresting constant and p is estimated usually to be around 1.0. This relationship is refered
to as Zips's law. In modern statistical physics these power laws play an important role and are connected
1O mystical concepts such as "fractals", "chaos" or "critical behavior". \\'e will meet similar functions in
section 4. as well.

For linguists, the fascinating discovery is that this power law behal'ior with an exponent p ~ 1 is
characeeristic to many kinds of texts, independently of language, author or content. This amounts to saying
that Zipf's law seems to be an inherent quantitative (statistical) property of human languages.

One may ask if Zipf's law is an inherent property of all symbol sequences, in general. The answer is no:
easy stochastic models, like 1\ larkov-chains produce exponential Zipf-functions (c.f. Czirok et al. (1995)),
and el'en certain types of D:'\.-\-sequences do so. One the other hand, those types of symbol sequences that
obey Zipf's law seem to share other statistical propel·ties in common, too. (For a summary of these results
see Blro (1998).) One of these will be presented ill section 4. but before that we should understand some
mathematical (statistical, physical) concepts.

The term correlation is a basic notion in statistics, and refers to the relation that exists between tlVOevents:
the face we knol''; that one of them has happened influences the probability of the second to happen. In Other
II'orels: they are not independent.

Statistical physics often makes use of the correlation junctions. Suppose we have two series of data, X
and L for example the outcomes of twO - several times repeated - experiments. vVe say the two series of
data are correlated if the corresponding elements of the series are not independent. If the fact that Xi, the
i - th element of _\, is larger' than the a\wage value of X is typically accompanied by the fact that} '; is
also larger than the a\'erage of }', then the two sets of data are positively correlated, and the corresponding
con'elation coefficient C is a number larger than zero:

II'here (X . } '). C\') and (} ') means respectively the a\wage (expected value) of Xi . Yi, Xi and Yi. ol'er the
possible is. If C is a number smaller than zero, i. e. the two series of data are negatively correlated, it
means that the increasing of X leads usually to a decrease in Y, and a decrease in .x corresponds usually
to the raise of }'. The lack of correlation, i. e. the case when the two series are independent, results in a
coefficient equal to zero.

\Ve may also speak about correlations within a single sequence of data: how the value of an element
in the sequence effects the element in a given I distance. (Whether they are uncorrelatecl, as for instance
the outcomes of several coin tosses, or they are not independent at all, as for example when measuring the
temperature e\'ery day. It is improbable to have 30C, if on the pre\'ious day it was -se, but \wy likely, if
on the previous day it was 28e.) i\01V the second series to be compared is the same as the first one, but
shifted by I positions. We can define the auto-co.,.reiation junction C(I) as the correlation coefficient in the
function of the number I of positions we have shifted the data series:



where the averages are taken over all positions i.
Gov,' the same question raises as in section 2: what is the form of the auto-correlation function? In

some cases C(l) = 0 for I i: 0; this is the case of un correlated data sets. Typical examples are the outcomes
of serial coin tosses, dice casting or roulette playing. In Marko\'-models the probabilities for the outcomes
of the next experiment depend only on the outcome of the pre\'ious experiment, or on the outcomes of the
pre\'ious R experiments (?\Iarkov-model of order R). This is a typical example for sho7,t-range con'elations,
when the correlation function diminishes to zero pretty fast, as I - it.s argument - is increa.sing; in that case
C(I) has the form of an exponential function. It may also happen that the system "is remembering to its
entire past", and e\'en events "from very long time ago" have a small influence on t.he next. outcome. That
is called long-range correlation, and statistical physicists have special interest in phenomena producing such
beha\-ior (such words are used as critical behavior, scaling, etc.). This case leads us to a.n auto-correlation
function that is a power law Junction.

Summing up the three possible types of behavior:

• No correlation: C(l) = 0 if I > O.
• Short-range correlations: there is a characteristic range R for the correlations, so C(I) = A- e-I/R, where

A is an uninteresting constant (e. g. Markov-processes).
• Long-range correlations: no R exists, C(I) = A ·1-', where the exponent is 0 < I :s 1.

IA/ritten texts, as symbol sequences, can be rewritten as sequences of numbers. One idea may be to
replace every 'a's by '1 's, every 'b's by '2's, every 'c's by '3's, etc. Another try could be to rev,Tite every
vowel as '0', and every consonant as '1'. A third one would be to rewrite the text as a binary sequence by
replacing every letter \\-ith a five-bit code, or with its binary ASCII code, or with its I\10rse signal In any
wa\', we get a series of numbers, and its auto-correlation function can easily be computed. So we might be
interested in correlations to be found in a rewritten text.

If we can find any correlation, the question still remains: in what measure is it due to the rewritting
procedure, to the properties of the writting system (for instance to the orthographic traditions), or to the
language itself? But it seems likely that the first tv.;o factors can only introduce short-range correlations. So
the question, whether long-range correlations exist in written texts, is the most interesting to us.

To get the answer, let me present another procedure that is much easier to apply on computers than
the direct calculation of the auto-correlation function, and gives us clearly the answer.

This procedure is called the Random Walk Model, and is animating a little bit this lifeless, mathematical
article, since first we have to borrow a flea from the biological department of our university! Is it perhaps
for its "close" relation to biology that it had first been applied to DNA sequences by Peng et al. (1992)?

Let us suppose, we have got a flea intelligent enough to walk along a line according our orders. Then,
let us transcript our document with the use of a binary alphabeL as mentioned at the end of the previous
section. Usually the five-bit code transcription has been used in the case of written texts. Unless our flea
is deaf, we have to read him this sequence of Os and Is. When reading the i-th element of the sequence, he
is supposed to mO\-e one step to the right (up, Ui = 1) if this element has been 1, and one step to the left
(down, Ui = -11) if this element has been O. Supposing that the flea's initial position was the zero-point of
the axis, it is ob\-ious that it.s position y(l) after the I-th step is the sum of the u,s:

I

y(I):= LU;'
,=1

The y(l.) function characterizes the move of the flea in time. How can it be used for our purposes?
Obviously, the trend of y(l) shows in some way the distribution of Os and Is, i. -e. the distribution of letters



in our document. For instance. if we have a lot of' a's, and this 2haracter is represented in our transcription
code by a coding sequence consisting only of 'O's. this fact may lead to a decreasing tendency in y(l). But
this infol'D1ation docs not tell us much about deeper statistical properties of our original text. and is v('n'
dependent of the transcription code used.

That is the poine where statistical physics gives us a hint. Physicists han' made extensive use of the
mot mean square jlucl'uation function F(l), taken in our case about the average of the displacemene:

where 6y(l) := y(lo+ L) - y(lo), and the averages are taken over all possible positions 10. The idea behind
this complicated expression is that the function F(L) characterizes in same way the "crazyness" of the flea.
that is the fluctuations in his path around its above-mentioned average trend.

The most important fact to know about it is that it is closely related to our well-known auto-correlation
function, To cut the long story short, F(I) typically follows a power law:

where 0 < ex :S 1, and this exponent depends on what type of correlation can be found in our text.
Remember to the three cases mentioned in the previous section. If we ha\'(' a purely random sequence.
Q :=: 0.5. In the case of shon (local) correlations extending up to a characteristic length R (e. g. a \[i.uko\·-
chain), the asymptotic behavior (I » R) would be unchanged: Q :=: 0.5. But in the case of long-range
correlations (where no characteristic R exists), i, e. when the probability of 'l' at a position is affected
by what can be found at a very long distance, the alpha-exponent will differ from 0.5, usually in our cases
05 < Q < 1.

This "experiment" has been carried out with \'arious texes, such as the original version and different
translations of the Bible, Shakespeare's dramas, nO\'els, a dictionary, computer programs after compilation
( , exe files) ete. The outcomes are fascinating' let me list some of the more interesting results:

1. Texts have a constant a-exponent over decades in I, significantly different from 0.5 (in average about
0.6 - 0.7). Computer programs are even "more" correlated: they scale with an exponent abo\'e 0.9. (Cf.
Schenkel et al (1993).)

2. The size of the exponent is not characteristic of the author. While the alpha of Hamlet is 0,56, the one
of Romeo and Juliet is 060, (Cf. Schenkel et al (1993),)

3. Translations seem to "diminish" correlations, Although the Bible has a very high alpha value (~ 0.15).
its translations are less correlated, (Cf. Amit et al (1994).)

4. Cutting the text into pieces and reshuffling them randomly ceases the correlations: beyond the scale of
the pieces' length a = 0.5, This can be explained by supposing that the long-range correlations are due
in some way to the "big-scale structure" of the whole text, and this structure is lost when reshuffling
the pieces. (Cf. Schenkel et al. (1993).) The details of this supposition are not clear and should be
workecl OUl. from a linguistic: as well as from a mathematical point of \·iew.

o. The examined dictionary has sho\lin correlations much longer than entries. This contradicts our ex-
peCtations, if our explanation for the previous result is correct: entries should be uncorrelated among
themselves, because their "structure" - the alphabetic order - is bllilt up by a totally arbitrary system.
(Cf. Schenkel et al. (1993),) I do not know about any pausible explanation of this fact,

Let us go back for a moment to Zipf's law. The term n-tupple Zip/-analysis has been introduced in
recent years (Czirok et al. (199-5,1996)), and it refers to the procedure described in section 2, with the only
difference that instead of words, we cut the sequence into n-digit-Iong strings, and these are the units we
count the number of occurrences of.

It has been shown by Czirok et al, (199-5) that ;"'Iarkovian sequences and long-range correlated sequences
have significantly different Zipf-plots, Which one fits better the Zipf-plots of written texts? The answer is
self-evident: the one of long-range correlated sequences (e.f. ibid).

The bottom line is that long range correlations have been found in written texts, i, e, lvIarkov-models
cannot give an adequate description of the statistical properties of natural languages (at least: written



texts). In consequence, we will seek a full and correct explanation of this fact, maybe using other stochastic
models, as SCFGs. I am convinced that a full explanation cannot be found \\'ithout the use of linguistics.
Linguistic details. like what the "big-scale structure" proposed by the abO\'e mentioned supposition mean,
need to be worked out. Furthermore, as similar long range correlations ha\'e been found in some types of
D:\.-\-sequences, as well, the knowledge that linguistics can add to the "science of correlations" might then
be used to better understand the structure of DI\A-sequences, whose "language" is yet far less known for us.

Let me now present an idea how one can measure the similarity of two texts or any symbol sequences, leading
to a useful algorithm. Called gauging similarity with n-gmms by his inventor, Marc Damashek (1995), this
method consists of constructing a normalized vector from a given text. and the similarity of t\\·o texts can
be measured by their dot product.

In our case, a vector in a J -dimensional vector-space means nothing more than a series of J numbers,
and the i-th element of the series (1 ::::::i ::::::J) is called the i-th component of the given vector. M.any
operations can be done with these vectors, so we may speak about the sum of two vectors or the dot product
of two vectors. 1

How can we assign such a vector to a symbol sequence?
Let us move an n-character-Jong "window" (n is a given number, for instance n = 3,4, ... ) along our

document, mO\-ing it by one character at each step. So there ",,-illbe an overlap bet\\'een the pre\-ious and
the actual position of the window. Then we denote each possible n-character-long string \\'ith an index i
(i = 1. 2, ... , J). 2 Let now mi be the frequency, the number of occurrences of the string (n-gram) denoted
by i in the text, i. e. how many times we can "see it in our mO\'ing window". 3

Our document can be characterized by a vector x in the J-dimensional space, wbose i-tb component is:

The i-th component shows how often the string i occurs in our text. The denominator is nothing else,
but the total number of n-grams in our text, and its only role is to all0\\' the sum of the frequencies to be 1,
in order to make us able to compare frequencies in symbol sequences of different length.

In the next step, we would like to compare two documents, and give their "distance", or rather their
"measure of similarity".

If we have two texts characterized by vectors x and y, as it has JUSt been explained, their "similarity"
can be measured as easy as the dot product of their vectors (or, to be more precise, as the cosine of the
angle between the vectors):

s I=;=J XiYi
. := (,\,J 2,\,J 2)1/2'

0i=] Xi 0;=1 Yi

The maximum of this measure of similarity is 1, in the case of identical vectors, which occurs in practice
only if the. two documents are identical. The minimum of the dot product is zero, in the case of orthogonal

J The sum of two vectors is a vectOr, whose i-th component is the sum of the i-th components of the original \·ectOrs. The

dot product of two vectOrs is a number: firs;' we multiply the first component of the first vector with the first compollent of the

second one, the second component of the first vector with the second component of the second one, elC., then the dot product

gi\'en by the sum of all these multiplications.

2 For example, if n = 3, then i = 1 may refer to the string 'aaa', i = 2 ma\' refer to tilc string 'aab', etc. taking into

consideration all the letters in the English ,alphabet, space, comma, full stop, etc.

3 There is an important difference bet\~een this technique and the so-called n-tupple Zipf analysis mentioned at thc end of

the previous section: in our case the n-grams in consideration overlap, while in the generalized Zipf-analysis we cut the symbol

sequence into disjunct n-grams.



Phl Ph2 Ph3 Ph4 PhS £1 £2 £3 . Frl Fr2 Hl H2 H3
Phl 10 080 ' 0.82 078 0.79 059 0.69 0.71 0.28 0.28 026 029 026
Ph'1 10 080 0.79 0.80 070 072 070 0.25 0.26 025 028 025
Ph3 10 078 0.77 070 071 069 0.23 024 0.23 0'17 023
Ph-i 10 073 0.55 0.67 0.67 02-i 023 0.2-i 0.26 0.24
PhS 1.0 05-i 0.62 0.66

'.

0.27 0.26 026 0.30 026
£1

I

1.0 082 0.79 0.27 0.26 0.22 027 023

I
£2 1.0 0.80 0.24 0.25 0.22

I
0.26 023

IE3 1.0 0.27 0.28 0.22 0.27 0.22
fd 1.0 0.64 0.21 0.21 020
Fr2 10 0.22 0.26 0.23
Hi 1.0 0.7 -i 078
H2 1.0 0.80
H3 1.0

Table 1. The similarity of different documents, measured by the dot product of their vectors, as explained in the text.
The four types of documents are: texts about physics in English (Ph), other texts in English (E), two French letters (Fr) alld
e-mails in Hungarian (H). Vectors of frequencies of n = 3-grams have been used. It can easily tJe seen that the similarity of
texts in the same language (0,73 ± 0, 06) is significantly higher than the similarity of documents written in different languages
(0,25 ± 0,024). The influence of the topic on the dot product can also be shown in this chart. as he similarity of two
E-texts (0, SO ± 0,015) or two Ph-texts (0,79 ± 0,024) is higher by 15% than the similarity of all E-text and a Ph-text
(0,68 ± 0,03)

\'ectors, i. e. if there is no n-gram occurring in both documents. This measure is obviously symmetric, but
1 - 5 is not a distance in its mathematical sense, as it does not satisfy the triangle-inequality.

The question arises if this idea works? Let us take a set of any documents: then prepare their vectors
and calculate the dot products.

Damashek (1995) presents really fascinating results, Table 1 shows my results with n = 3, while table 2
shows the dot products of the \'ectors of the same documents: when n = 4. PhI - PhS are e-mail updates of
the American Institute of Physics' Bulletin of Physics i\ews, £1 - E3 are other e-mails in English. Fd and
Fr2 are short french letters, while HI - H3 are personal e-mails in Hungarian. Their lengths are between
3400 to 6000 characters, except of Frl and Fr2, Vi hose length are about 1000 - 1200 characters. rVlyalphabet
consisted of 26 letters, space, dot and comma. Sequences of spaces should be substituted by a single space
beforehand. In order to get good results, the texts should be long enough, with respect to n and the size of
the alphabet.

Texts of the same language and topic give noticeably higher dOt product than documents of different
languages. The product of a Ph- and an E-text (same language but different topics) is smaller than the one
of two Ph- or of t\\·o E-documents, but significantly higher than the product of two documents in different
languages. (for example. in the case of n = 3, the n-gram ·the· has far the highest m, value in English
texts: copnsider the articles. to "these", "those:', "there": ;·them": "they", etc.) The reason for the results
with Frl and Fr2 being "poorer:: is that they are much shoneI', statistically not representati\'e enough. To
sum up, the method seems to work, it can sort documents by language and maybe even by topic.

The procedure can be impro\'ed by introducing centroid vectors. Being the average of vectors taken
from a given set of document (e. g. the set of documents in a gi "en language). they are characteristic
to the common features of this set (e. g. the grammatical \\'ords in a language). If \\-e subtract the
centroid \'ector from the document vectors, we can refine our similarity measure. This method gi\'es an
effeeti\'e technique called Acquaintance for sorting and clustering documen s by language: topic and sub-
toplC. Another technique - based on our algorithm - can be introduced to distinguish among different
pans of a complex string of texts (d. BirD et al. (1998)).

\\"hat is the "lingllistic" background of the success of this algorithm? Three main factors can be
mentioned as possible ansv;ers, but an exact and correct discussion of the question is still missing.

The first factor is the frequent words in the tex·t. This is the only factor that explains \vhy documents
\vritten in the same language can be sorted by topic: the n-grams of the words, morphemes that are typical



I PhI Ph2 Ph3 PM Ph5 £1 E2 E3 Frl Fr2 I HI H2 H3
PhI 10 0.62 0.65 0.58 0.58 0.49 0.49 0.49 0.12 0.09 0.07 0.09 007 I
Ph2 10 0.64 060 0.62 0.50 0.52 0.50 010 0.08 0.07 008 006 I
Ph3 10 0.61 058 0.51 0.53 0.50 0.08 0.06 007 008 006

I

Ph4 10 0.53 0.45 0.48 0.46

I
0.09 0.06 0.07 0.07 0.06

Ph5 10 0.43 0.42 0.44 0.09 0.07 0.07 0.09 0.07
£1 10 0.68 0.65 0.12 0.08 0.07 010 0.07
E2 10 0.66 0.11 0.08 0.07 0.09 0.07
£3 10 a 12 0.09 0.07 010 0.07

I Frl

I I
10 0.44 0.04 0.04 0.06 I

I Fr2 10 0.04 0.04 006 I

I

HI

I
I

10 0.46 054

I
II2 1.0 060
II3 I 1.0 I

Table 2. In this case I used the same documents as in table 1, but I counted the n = 4-grams. The average of the

dot products is lower than in the case of n = 3, so the similarities and differences in the similarity measure are even more

striking than in the pre\'ious case. But n could not be further increased, as the length of the texts does not allow big ns, the

frequencies would not be accurate enough.

of the subject are overrepresented, leading to a higher value of the corresponding component of the vector.
On the other hand, grammatical words and elements of frequent syntactic structures lead to an increase in
the frequency of some strings, characteristic to the language of the document. Typical affixes, characterizing
the language or the style, should also be mentioned here.

The second factor is the phonotactics of the language. It is well known that some languages allow
some sequences of sounds, that other languages do not or only in a \'ery restricted number. I intentionally
have written "sounds" in the previous sentence, as it is not always clear in what manner do written texts
reproduce phonemes or phones, the underlying representation or the surface representation. It is noteworthy
that phonotactical constraints referring to the border of words are also playing a role in the success of our
method, as - among the different n-grams - we also consider those starting or finishing with a space.

The last factor is not linguistic but orthographic. I refer here to the fact that different strings are
characteristic of the different orthographic traditions of languages, even if they represent the same sound
!'vlaybe a striking example is the German string 'seh' compared to the English 'sh', or 'eh' according to the
French tradition. This factor could be nullified if we were using documents written in a uniform phonetic
transcri ption.

When I asked a Croatian speaker how different Serbian is from Croatian, and the answer was "different
enough", I understood that it is not always possible to measure some linguistic (or rather "polito-linguistic"?)
differences. !\evertheless, I hope that I have been able to present an exact technique providing a "linguistic
metric", whose success is transparent, and represents a big advantage compared to other methods, such as
ones using for instance neuron networks, Another advantage of this algorithm is it does not need any prior
"training" or prior knowledge about the properties of languages in question.

It seems that the algorithm has been successfully used in sorting DI\A sequences, as well (c.f BirD et
al. (1998); Table 3.), a result that may contribute to genetics. I do not think that this approach can have a
big contribution to the theory of language, but the idea might be used in practice (sorting documents, for
example in a database or a library) or even in philology.

In recent years many "statistical games" have been "played" by physicists and others in order to deeper
understand the statistical properties of symbol sequences, such as D\"A sequences or \vrittell texts. Some
results may' be very useful for sciences dealing with these sequences and their structure.



£1 E2 E3 £4 E5 11 12 13 14 15
El 1,00 0,92 0,92 0.95 0,93 I 0,83 0.77 0,/:.1 0,83 0,90 i
£2 1,00 0,97 0,93 0,95 0,73 0,66 0.62 0./3 0.S5
E3 1,00 0.94 0,9:.1 0,73 0,65 0,61 0,11 0,83
E-I 1,00 0,95 0,78 0,71 0,6/ 0,79 0.8/
E5 1,00 0,76 0,69 0,64 0,77 0,86
11 1,00 0,92 0,90 0,94 0,93
12 1,00 0,98 0,91 0,88
13 1,00 0,90 0,86
14 1,00 0,9.J
15 1,00

Table 3. Similarity among different parts of DNA. El·E5 denotes the concatenations of the exons of the five CDSs (coding

regions) of the human HUMHBB gene, while I I-IS denotes the concatenation of the corresponding non-coding sequences. The

similarity measure is significantly higher in the case of the product of twO coding or two non-coding sequences (0.94 ± 0.016
for exons, 0.92 ± 0.03 for non-coding "texts") than in the case of a coding and a non-coding sequence (0.75 ± 0.08). (For

more explanation, see Biro (1998), or Biro et al. (1998).)

The fact that !\larkov models cannot giw an adequate description of natural languages has been known
since Chomsky's Syntactic St7·uctur·es. In that case Markov models were not supposed to give stochastic
description of languages, the question was analyzed from another point of view. Results, such as the ones
presented in this article, the existence of long range correlations and the form of the Zipf-plot, ha\'e recently
proven that even statistical properties cannot really be described by Markov models, not even by higher
order \larkov models. (They are useful in many \vay, so most stochastic approaches in linguistics still use
them.) In consequence, new stochastic models have to be analyzed in depth, whether they can fit both to
the linguistic theories and to the statistical discoveries.

In the last part of my paper I introduced a vector-space algorithm, easy to understand. to apply and to
analyze, that have already produced some results in genetics, and have been used in practical applications.
I hope the knowledge of this technique might be useful to some applied linguists, too. or - at least - may
give them some further ideas.
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