

R*u*G

Finding the Right Words Implementing Optimality Theory with Simulated Annealing TAMÁS BÍRÓ

Simulated Annealing (SA), a standard heuristic algorithm for solving optimisation problems (Kirkpatrick et al., 1983), is employed to find the optimal candidate in the candidate set, as defined by Optimality Theory (OT; Prince & Smolensky, 1993/2004). This optimal candidate is predicted by OT to be the grammatical form. Simulated Annealing does not always find the correct solution, still returns some result within a constant time. Erroneous outputs correspond to performance errors. Accelerating the algorithm is possible by giving up on precision: a faster algorithm produces more speech errors. Thus, the algorithm developed, Simulated Annealing for Optimality Theory (SA-OT) models linguistic performance, built upon Optimality Theory as a competence model.

1. Competence: the static knowledge	grammatical	(explained by) grammar
2. Mental computation in the brain	produced	implementation of grammar
3. <i>Performance</i> in its outmost sense	produced	phonetics, pragmatics, etc.

Proposal: Performance errors – forms produced but not grammatical– are partially due to errors in the mental computation. It is the *implementation of the grammar* that has to account for them. Similar proposal, developed independently but left untested, in Smolensky et al.'s Harmonic Mind (2006).

Example:	Fast	speech:	Dutch	metrical	stress	

fo.to.toe.stel	uit.ge.ve.rij	stu.die.toe.la.ge	per.fec.tio.nist	
()	(11.1)		(

Case 1: fast speech

Variation in Optimality Theory

Variation in languages can be either free, or dependent upon factors such as register or speech rate. A traditional competence model simply predicts both forms to be grammatical. Yet, some phenomena, such as fast speech, only consist of shifts in the relative frequencies. Therefore, linguistic models should also account for these frequency changes.

Optimality Theory offers several ways to map one underlying form to more surface forms:

1. Alternating forms assigned the same violations ("the poor man's way of dealing with variation").

2. Several hierarchies within one grammar: e.g., ad hoc reranking, Anttila, Boersma, Reynolds. 3. Non-optimal forms also emerging: Coetzee, Simulated Annealing (SA-OT).

We argue that SA-OT gives better frequency predictions than most other approaches for fast speech. Moreover, by distinguishing between competence and performance, SA-OT needs not postulate a slightly different OT grammar, a different competence, for each speech rate. SA-OT makes directly interpretable predictions by leaving the competence model intact and by altering only the parameters of the performance model. Fast speech phenomena emerge from running the implementation faster.

Representations of the Harmony function

Simulated Annealing

Originating in physics, Simulated Annealing (Boltzmann Machines or stochastic gradient ascent; Kirkpatrick et al., 1983), is a widespread heuristic technique for combinatorial optimisation. A random walk is performed on the search space until being trapped in the global or in another local optimum. The slower the speed of the algorithm, the higher the chance of finding the global optimum.

Simulated Annealing for Optimality Theory (SA-OT) Algorithm

ALGORITHM: Simulated Annealing for Optimality Theory Paramters: w_init, K_max, K_min, K_step, t_max, t_min, t_step

t_step: number of iterations / speed of simulation w <-- w_init ;</pre>

for K = K_max to K_min step K_step

for t = t_max to t_min step t_step

choose random w' in neighbourhood(w) ;

calculate < C , d > = ||H(w')-H(w)||;

if $d \leq 0$ then $w \leq --w'$

w <-- w' with probability else

The Harmony function H(w) measures the "goodness" of candidate w in OT. Derived from the number of violation marks assigned by each constraint to w, H(w) can be represented as:

	NoCoda	PARSE	Onset
w	*		**

1. A multiset (in which multiplicity is significant) of violations: $H(w) = \{NOCODA, ONSET, ONSET\}$. 2. A vector (a row in an OT tableau): H(w) = (NOCODA(w), PARSE(w), ONSET(w)) = (1, 0, 2).3. A real number, using a set of weights s_i (higher ranked constraints have higher weights): H(w) = $NOCODA(w) \cdot s_{NOCODA} + PARSE(w) \cdot s_{PARSE} + ONSET(w) \cdot s_{ONSET} = 1 \cdot 16 + 0 \cdot 4 + 2 \cdot 1 = 18$ (with weights 16, 4 and 1) \rightarrow only if the number of violation marks has an upper bound!

4. A polynomial (a function of q, and q goes to infinity, to account for *strict domination*): $H(w)[q] = \operatorname{NOCODA}(w) \cdot q^3 + \operatorname{PARSE}(w) \cdot a^2 + \operatorname{ONSET}(w) \cdot q = 1 \cdot q^3 + 0 \cdot q^2 + 2 \cdot q.$

5. An ordinal number (a mathematically exact way of counting with infinite values): $H(w) = \omega^3 \cdot \text{NOCODA}(w) + \omega^2 \cdot \text{PARSE}(w) + \omega \cdot \text{ONSET}(w) = \omega^3 \cdot 1 + \omega^2 \cdot 0 + \omega \cdot 2.$

Simulated Annealing is adapted to Optimality Theory using more of these representations, and in each case we obtain the same algorithm: Simulated Annealing for Optimality Theory (SA-OT).

P(C,d;K,t) = 1 , if C < K $= \exp(-d/t)$, if C = K = () , if C > K

end-for end-for return w

The broader cognitive context

SA-OT explains why certain speech errors are made and why not others. In doing so, it belongs to the *heuristic* mental computation models, describing a wide range of cognitive tasks. Supposedly, the human mind is willing to make some errors in order to achieve a fast but reasonably good performance. That is why *errare humanum est* – To Err Is Human. And not only in finding the right words.

References

S. Kirkpatrick et al (1983): Optimization by Simulated Annealing, Science 220.

A. Prince and P. Smolensky (1993): Optimality Theory: Constraint Interaction in Generative Grammar, RuCCS-TR-2.

M. Schreuder and D. Gilbers (2004): The Influence of Speech Rate on Rhythm Patterns, in: On the Bounderies of Phonology and Phonetics, Groningen.