
Squeezing the Infinite into the Finite:

Handling the OT Candidate Set with Finite State
Technology

Tamás Bı́ró

Humanities Computing, University of Groningen
t.s.biro@rug.nl

Abstract. Finite State approaches to Optimality Theory have had two
goals. The earlier and less ambitious one was to compute the optimal
output by compiling a finite state automaton for each underlying repre-
sentation. Newer approaches aimed at realizing the OT-systems as FS
transducers mapping any underlying representation to the corresponding
surface form. After reviewing why the second one fails for most linguis-
tically interesting cases, we use its ideas to accomplish the first goal.
Finally, we present how this approach could be used in the future as
a—hopefully cognitively adequate—model of the mental lexicon.

1 Introduction

Although very popular in linguistics, Optimality Theory by Prince and Smolen-
sky (OT, [17], [18]) poses a serious problem for being computationally very
complex. This fact could question the relevance of much contemporary linguistic
work both for cognitive research, and language technology. Is our brain doing
such a hard computation? Could language technology make us of OT models?
Fortunately, things are not so bad.

Figure 1 presents the architecture of an Optimality Theoretical grammar,
which consists of two modules, Gen and Eval. The input—the underlying repre-
sentation (UR)—is mapped by the universal Gen onto a set of candidates. The
candidate set, or a subset of it, reflects language typology: for each language,
the language-specific Eval chooses the element (or elements) that appears as the
surface form SR. Eval is a function assigning a harmony value to each candidate,
and the most harmonic one will surface. Alternatively, Eval can also be seen as
a pipeline in which the constraints filter out the sub-harmonic candidates. This
second approach is most often used in practice, and the finite state realizations
presented in this paper are also based on this vision of an OT system.

In many models advanced by theoretical linguists, the set of candidates is infi-
nite, leading to serious questions. How could our brain process an infinite set? How
could language technology make use of a model involving an infinite set?

Different approaches have been, then, proposed in order to handle an infinite
candidate set. Chart parsing (dynamic programming) is probably the best known
among them (chapter 8 in [19] for syllabification; [16] for implementing it to OT

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 21–31, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

22 T. B́ıró

Tamás B́ıró

UR GEN

set
of

candi-
dates

Eval

Con1 Con2 Con3 SR

Fig. 1. The architecture of an OT grammar, which maps the underlying representation
onto the surface representation. Gen is followed by the Eval module: the latter is a series
of constraints, acting as filters.

LFG). It presupposes on the one hand that applying a recursive rule (usually
insertion) incurs some constraint violation; and on the other, that “all constraints
are structural descriptions denoting bounded structures”. The interplay of these
two assumptions guarantees that the algorithm may stop applying the recursive
rule after a finite number of steps, for no hope is left to find better candidates
by more insertions.

Alternatives include using heuristic optimization techniques. Genetic algo-
rithms were proposed by Turkel [20], whereas simulated annealing by Bı́ró [5].
Such approaches involve only relatively low computational cost; nonetheless,
they do not guarantee finding the optimal candidate. Simulated annealing, for
instance, returns a “near-optimal” form within constant time, but you cannot
know if the algorithm has found the good solution. Even though Bı́ró [4] argues
that this algorithm models language production, one may still wish to have a
perfectly working algorithm for language technology.

The present paper proposes an alternative: determining the optimal candidate
by using finite state technologies. We first present the previous approaches to
Finites State Optimality Theory (FS OT) in section 2, with an emphasis on
the matching approach. This is followed by a new proposal in section 3, further
developed into a model of the lexicon in section 4.

2 Finite State Optimality Theory

The idea of computing the optimal candidate of an OT system by building a
finite state (FS) automaton goes back to Ellison [10].1 He requires the set of
candidates for a given input be a regular expression, and realizes the constraints
as transducers (weighted automata) assigning violation marks. The number of
violation marks assigned by a constraint to a candidate is reflected by the sum of
the weights along the path representing the given candidate. Ellison subsequently
proposes a series of algorithms resulting in an automaton in which “the only
paths from the initial state to the final state will be optimal and define optimal
candidates.” This approach builds a new automaton for each input.
1 Eisner [9] summarizes existing work on FS OT, and proposes a framework very

similar to the one to be presented here.

Squeezing the Infinite into the Finite 23

Later work in FS OT aims at realizing the OT-system as a regular relation
mapping any correct UR to the corresponding surface form. By compiling such
a transducer, one would enjoy all advantages of finite state techniques, such
as robustness, speed and relatively low memory requirements in both directions
(production and parsing). This approach includes Frank and Satta [11] and Kart-
tunen [15], on the one hand (the counting approach), as well as Gerdemann and
van Noord [12], generalized by Jäger [13], on the other (the matching approach).
The hope for a regular mapping from the UR to the SR goes back to Douglas
Johnson [14].

In short, finite state approaches to OT require Gen, as well as each of the con-
straints be realizable—in some sense—as a regular expression or transduction.
In many linguistic theories, Gen produces a regular set, as exemplified by syllabi-
fication [12] or metrical stress assignment [3]. However, many further examples,
such as reduplicative morphology or numerous phenomena in syntax, are not
finite state-friendly.2 Concerning Eval, Eisner [7] [8] and Bı́ró [3] discuss what
constraints can be realized as finite transducers. Eisner’s Primitive Optimality
Theory (OTP) [7] launches a challenging research program the goal of which is
to model as many phonological phenomena as possible by restricting ourselves
to finite state-friendly constraints.

Nonetheless, the more ambitious program of FS OT to create a transducer
mapping any underlying representation to any surface representation cannot be
fully carried out. Even with a FS representation of Gen and of the constraints at
hand, filtering is not always possible. Frank and Satta [11] (following Smolensky
and Hiller) show a simple counter-example:

Example 1: Let Gen map string anbm to the candidate set {anbm, bnam}, and
let the only constraint penalize each occurrence of a. The resulting language is
{anbm|n ≤ m} ∪ {bnam|n ≥ m}, which is clearly not regular. And yet, Gen is
regular, similarly to the proposed constraint.3

Although Example 1 might look very artificial, its constraint, actually, is a pro-
totype form many constraints used in linguistics. In Syllable Structure Theory
[17], each segment may be parsed or underparsed, and constraint Parse punishes
underparsing. Metrical stress may be assigned to each syllable, and constraint
WSP (“Weight-to-Stress Principle”) requires each heavy syllable to be stressed
(cf. e.g. [19]). In fact, most constraints in phonology penalize each occurrence
of some local substructure a (underparsed, unstressed,...), and prefer its alter-
native, substructure b (parsed, stressed,...). The above example shows that all
these constraints could realize a non-regular language with some specific input
(output of Gen and the previous constraints) [8].

2 Albro [1] shows how to combine a non-finite state Gen with finite state constraints.
3 Authors differ in what is meant by a “regular constraint”. For Frank and Satta [11],

the set of strings incurring exactly k violation marks should form a regular set,
for all k. Gerdemann and van Noord [12] use transducers inserting violation mark
characters into the candidate strings. The given counter-example satisfies both of
these definitions, unlike that of Jäger [13].

24 T. B́ıró

The counting approach proposed by [11] and [15] requires an upper bound on
the number of violations a given candidate can incur. The matching approach is
closer to the model proposed by linguists: it can, in theory, distinguish between
any number of level of violations. Yet, in many cases, only an approximation
is possible, as we shall soon see. By supposing that the length of candidates is
bounded due to restrictions in the working memory, both approaches can be used
in applications. Nevertheless, not only do we lose here the linguistic “point”, but
the size of the automata also increases quickly.

2.1 The Matching Approach

Both the counting approach and the matching approach share the agenda com-
posed of the following three steps:

– first, formulate a finite state transducer Gen;
– then, formulate an optimality operator oo, which makes use of
– the finite state realizations Con-i of the constraints Con-i.

Once we have all these at hand, the grammar is realized by the finite state
transducer obtained after having compiled the following expression:

((
Gen oo Con-1

)
oo Con-2

)
...... oo Con-N (1)

From now on, we suppose that a FS transducer Gen is given. The task is to formu-
late the optimality operator oo; the latter will then determine what realization
Con-i of each constraint Con-i is required.

The key idea of the matching approach is to build a set Worse(Input,Con)
that includes all sub-harmonic candidates of the input Input with respect to
the constraint Con, as well as possibly other strings; but excludes all harmonic
candidates. This set will then serve as a filtering set in the definition of the
optimality operator oo:

Input oo Con := Input o Id
Worse(Input,Con)

(2)

Here, the identity transduction filters out the elements of Worse(Input,Con),
only the elements of its complement may become outputs. This approach is a
straightforward implementation of the idea behind OT—supposing that the set
Worse(Input,Con) can be constructed.

Without referring to violation marks, Jäger [13] proposes to realize a con-
straint Con with a transducer ConJ that directly will create the filtering set,
a superset of the sub-harmonic candidates. The candidate w is mapped onto a
set containing: (1) all candidates of Gen(Gen−1(w)) that are less harmonic than
w; and (2) possibly strings not belonging to Gen(Gen−1(w)). Now, the range
of Input o ConJ contains all sub-harmonic elements of Input but no harmonic
ones. Hence, it can serve as the filter in (2):

Input oo Con := Input o Id Ran(Input o ConJ) (3)

The draw-back of Jäger’s approach is the difficulty of defining the required
transducers corresponding to constraints in linguistics. Even worse, it is not

Squeezing the Infinite into the Finite 25

possible very often—otherwise a finite automaton could accept a non-regular
language in Example 1. A constraint that is finite-state in Jäger’s sense would
lead automatically to a finite-state realization of OT.

It is more fruitful to realize constraints with transducers assigning violation
marks to the strings, as done by Ellison [10], Gerdemann & v. Noord [12] and
Eisner [9]. One can simply construct a finite state transducer that inserts a spe-
cial violation mark symbol after each disfavored substructure—supposing that
the latter are simple enough to be recognized with an FSA, which is usually the
case. In this sense, most constraints are finite-state.4 Can we make any use of
these transducers?

Suppose that for constraint Con, a transducer Con exists that introduces
the required number of violation marks into any candidate string. Importantly,
we only know that the output of Con includes the correct number of violation
mark symbols, but we do not know how these symbols are dispersed in the
string. Furthermore, let remove viol denote the transducer removing all viola-
tion mark symbols from its input. The only task now is to define the transducer
make worse, and then we can rewrite definition (2) as follows:

Input oo Con := Input o Con o

o Id Ran(Input o Con o make worse)o remove viol (4)

Now, we have to define make worse. Imagine that the set of candidates Input enter-
ing the constraint filterCon includes only candidates that are assignedN violation
marks, or more. Let us add at least one violation mark to each of them: we thus ob-
tain a set of strings with not less than N + 1 violation marks. If we ignored the
characters other than the violation marks, this latter set could simply be used for
filtering, because only the candidates of the input set with the least (namely, N)
violation marks are not element of the filtering set thus constructed. Consequently,
the finite state transducer make worsewill have to add any positive number of ex-
tra violation marks to the input, using a finite state transducer add viol.

Nevertheless, we cannot ignore the characters in the candidate strings. The
filtering set will not yet include all the sub-harmonic candidates, because the
candidate strings vary not only in the number of violation marks. The different
elements of the candidate set have to diverge from each other, for instance, in
the position of parsing brackets. Most probably, the violation marks should also
be permuted around the segments of the strings.

Therefore, we redefine make worse: besides adding extra violation marks
(add viol), it will delete all characters that are not violation marks using the
simple transducer delete char, and then insert any new characters (transducer
insert char) (cf. (4) and (5) to the formalism in Eisner [9]):

make worse := delete char o add viol o insert char (5)

The range of Input o Con o make worse is now the set of all strings with more
violation marks than the minimal in the range of Input o Con: all candidates
4 Quadratic alignment constraints assigning a number of violation marks growing

faster than the length of the string, are not regular even in that sense [7] [8] [3].

26 T. B́ıró

to be filtered out, further uninteresting strings, but no candidates to be left in.
This fact guarantees that the harmonic candidates, and only they will survive
the filtering in definition (4). Or almost.

Yes, we still face a problem. Suppose that underlying representation W1 is
mapped by Inp o Con to candidates involving at least N1 violation marks, and
w1 is an optimal one. Further, suppose that UR W2 is mapped to candidates
containing N2 violation marks or more, with an optimal w2. Suppose also that
N1 < N2. Because W1 is in the domain of Inp o Con o make worse, the latter’s
range will include all strings with more than N1 violation marks, w2 among them.
Consequently, all candidates corresponding to W2 will be filtered out, and W2 is
predicted to be ineffable, without any corresponding output.

Gerdemann and van Noord [12], therefore, define make worse such a way
that it will keep the underlying material unchanged. Suppose that what Gen
does is nothing but to add some extra material, like parsing brackets. In such a
case, deleting and reintroducing only the brackets introduced originally by Gen
ensures that different underlying representations cannot interfere:

make worse = add viol o del brackets o ins brackets (6)

Nonetheless, a new problem arises! Let the underlying representation abab yield
two candidates, namely a[b]ab and [a]b[a]b. Let the constraint insert a vi-
olation mark @ after each closing bracket, so the set entering make worse is
{a[b]@ab, [a]@b[a]@b}. By applying the operation make worse as defined in (6),
we get among others the strings [a]b@a[b]@ or [a]@b@[a]b; but not [a]@b[a]@b,
the candidate to be filtered out. An extra operation is, therefore, required that will
permute the violation marks: in our case, we need to remove the @ between the
first b and the second a, and simultaneously insert a @ following one of the a’s; the
second violation mark will be inserted by add viol after the other a.

The real problem arises when one has to compare two candidates, such that
the first one may have an unbounded number of violation marks in its first
part, while the second one any number of violation marks in its last part. This
happens in Example 1, and in the many analogous linguistic applications. Then,
the transducer should have to keep track of the unbounded number of violation
marks deleted at the beginning of the string, before it reaches the end of the
string and re-inserts them. That is clearly a non-finite state task.

If the transducer permuting the marks perm is able to move one violation
at the same time, then the following definition of make worse yields an exact
OT-system only for the case where not more than n violation marks should be
moved at once:5

5 The same transducer can move a second violation mark after having accomplished its
task with the first one. Note that such a finite-state friendly case can theoretically
result from the interplay of Gen and the previously ranked constraints; and not
only from restricting the number of violation marks assigned, due, for instance, to
a bound in the length of the candidates. Further research should reveal whether the
linguistically relevant cases are indeed finite-state, or languages do produce extreme
candidate sets, such as the one in Example 1. See the research line launched by
Eisner’s OTP [8].

Squeezing the Infinite into the Finite 27

make worse := add viol o del brackets

o ins brackets o perm1 o perm2 o...o permn (7)

Thus, we have run into the “permute marker problem”: only an approximation is
offered by Gerdemann and van Noord for the general case. Besides, introducing
perm n times makes the automaton enormous.

3 Planting the Input into the FST

The matching approach, as proposed by Gerdemann and van Noord [12], has
two main advantages over its competitors. First, it does not require the number
of levels of violations to be finite, as opposed to the counting approach. Sec-
ond, it makes use of transducers assigning violation marks to the strings, which
is much easier to realize than the transducers in Jäger’s generalized matching
approach.

Example 1 has shown that there is no hope for solving the “permute marker
problem” in general. Can we still bring out the most of the the counting ap-
proach? Maybe by stepping back to the lesser goal of Ellison: compiling an
automaton to each word, instead of creating a general transducer mapping any
underlying representation to the corresponding surface form? This is bad news
for people believing in FS OT (despite Example 1), and yet, it opens the way to
a new model of the mental lexicon.

We have seen that the radical definition of make worse in (5) creates a prob-
lem: the candidates corresponding to some underlying representation may dis-
card all candidates of another underlying representation. The solution by [12],
that is, to modify make worse as (6) and (7), led to the “permute marker prob-
lem”. Another solution is to keep the more radical make worse transducer, as
defined in (5), for the definition (4) of the optimality operator; but, simulta-
neously, to introduce a filter at the beginning of the pipeline (or, into Gen,
as Ellison did). By restricting the domain of the transduction, this filter—an
identity transduction on a singleton—ensures that no other input disturbs the
computation. So, for hierarchy Con-1 � Con-2 � . . . � Con-N, and for each
underlying representation W we have to compile the following regular expression:

(((
Id{W} o Gen

)
oo Con-1

)
oo Con-2

)
... oo Con-N (8)

Let us prove the correctness of this approach:

Theorem: Let all constraints Con-i be represented by a transducer Con-i in-
serting violation marks, and let

make worse := delete char o add viol o insert char

Input oo Con := Input o Con o

o Id Ran(Input o Con o make worse) o remove viol

28 T. B́ıró

If for hierarchy H = 〈 Con-1 � Con-2 � . . . � Con-N 〉 and underlying
representation W ,

OT0 := Id{W} o Gen OTi := OTi−1 oo Con-i

then the range of OTN is the set of outputs with respect to underlying repre-
sentation W and ranking H .

Proof: By induction on the number of constraints N . For N = 0: by definition,
the range of OT0 is the candidate set corresponding to W .

For N = k > 0: We suppose that the range of OTk−1 is the set of candi-
dates returned by the part of the pipe-line before constraint Con-k. We have
to show that OTk is the optimal subset of OTk−1 with respect to constraint
Con-k.

Let m denote the number of violation marks assigned by constraint Con-
k to the most harmonic candidates in the range of OTk−1. By the definition
of make worse, the range of OTk−1o Con-k o make worse includes all strings
(words and non-words) with more than m violation marks, and only them. Thus,
the identity transduction in the definition of the optimality operator oo trans-
duces all strings with no more than m marks, and only them. Consequently, the
range of OTk will include exactly those elements of the range of OTk−1 that
violate Con-k m times. �

We have stepped back to the less ambitious proposal of Ellison [10]: we com-
pile a regular expression for each input. One first formulates a finite transducer
realizing Gen, as well as transducer adding each candidate string the same num-
ber of violation marks as the constraints of the linguistic model do. Then, the
range of the regular expression (8) has to be compiled and read. Compilation—
even if it is a computationally complex task, primarily due to the set comple-
ment operation—can be done automatically, with any package handling regular
expressions.

Is stepping back to a ten-year old result something worth writing a paper on?
The good news, however, is that the approach proposed opens new perspectives
about a finite-state model of the lexicon.

4 Modeling a Complex Lexicon

Many linguistic phenomena can be described by using “co-phonologies”, by re-
ferring to exceptions or to “minor rules”. The discussion about the interaction
between morphology and phonology (here we just refer to the well-known “past
tense debate”) has also affected OT [6]. On-going and further research shall
analyze whether a finite-state Optimality Theoretical approach has something
interesting to say about the issue. In the remaining space of the present paper,
we shall present the possible first steps of such a research line.

Equation (8) allows for generalization. If SL is a subset of the lexicon, the
following expression will define the surface representation of elements of SL:

Squeezing the Infinite into the Finite 29

(((
IdSL o Gen

)
oo Con-1

)
oo Con-2

)
... oo Con-N (9)

Note that elements of SL may “extinguish” each other: if a candidate w1 corre-
sponding to some element W1 ∈ SL incurs less violation marks than the optimal
candidate corresponding to another W2, then no output is returned for W2.
Therefore, SL should be the set of “analogous” words in the language.

The phonology of the language is then modeled thus:

⋃
i

(((
IdSLi

o Gen
)
oo Coni1

)
oo Coni2

)
... oo ConiN (10)

The lexicon is composed of subsets of words. Each subset SLi is associated
with a hierarchy Coni1 � Coni2 � ... � ConiN . Different subsets may be
associated with the same hierarchy, but cannot be unified, unless some words
are erased from the language, as explained. Yet, once we have this structure,
nothing prohibits us to associate different subsets with different hierarchies.6

Until now, if the sub-lexicons are finite, the complex expression in (10) is com-
piled into a simple finite set of UR-SR pairs. Yet, we claim that expression (10)
together with linguistically motivated constraints have a cognitive explanatory
value by restricting the possible lexicons: what UR-SR mappings are thinkable?

Additionally, our on-going research tries to introduce some sort of generaliza-
tion into the sub-lexicons. Let the hash a# of an element a of the alphabet be
the following concatenation:

a# := pc* | {a, pc} | pc*, (11)

where pc is a punished change: whatever character followed by a special punish-
ment symbol. Thus, the hash of a character is its generalization: you can replace
it, you can add anything before and after it, but whatever change introduced
is marked by a punishment symbol. In the next step, the generalization W#
of a memorized word W is the concatenation of the hash of its characters in
the corresponding order. Last, we propose that if a learned (memorized) word
W ∈ SLi, then also W# ∈ SLi.

With this generalization, the input of the grammar model (10) can also be
an unseen word—yet, not any unseen word. The punishment symbols mea-
sure the “distance” of the input from previously memorized, “similar” words,
in terms of letter changes. An input may match the hash of several learnt lexical
items, possibly in different sublexicons, in which case more outputs are generated

6 One can speculate about how co-phonologies have emerged in languages. Decom-
posing the lexicon into sub-lexicons is necessary, otherwise some words would be
ineffable, i.e., unpronounceable. Thus, an acquisition model should be able to open
new sub-lexicons. Then, as the constraint pipe-line is connected to each sub-lexicon
independently, nothing prohibits constraint re-ranking for certain sub-lexicons. A
prediction is that language varieties differ in the constraint ranking corresponding
exactly to these sub-lexicons, which reminds us the similar proposal of [2].

30 T. B́ıró

simultaneously in various pipe-lines.7 These symbols are preserved during the
transduction, and the output with the minimal number of punishment symbols
is the predicted form. We can use a FS OT-style filter on the punishment sym-
bols, and we obtain a sort of memory-based learning. The consequences of this
proposal, learnability issues and its possible cognitive relevance are subject to
future research.

5 Conclusion

In the introduction, we have raised the problem of how one can handle the in-
finite set of OT candidates appearing in contemporary linguistic work within
the framework of a plausible psycholinguistic model or a working language tech-
nology application. In this paper, we have proposed a new way of using finite
state technology in order to solve that problem. We have reviewed why it is
not possible to create a FS transducer realizing an OT-system in general, even
if Gen is a regular relation, and constraints are also regular (at least in some
sense). Subsequently, we have proposed to make the matching approach exact
by planting a filter before Gen.

This way we have obtained an alternative to Ellison’s algorithm [10]. By com-
piling (8) for each input separately, we can calculate the optimal element of
the possibly infinite candidate set. Finally, we have shown how this result can
be generalized into a model of the lexicon, yet further research has to prove
the cognitive adequateness of such a model. For instance, does it account for ob-
served morpho-phonological minor rules? Preliminary results show that different
hierarchies are compiled in significantly different time. If so, do less frequently
attested language typologies correspond to rankings more difficult to compile?

The present paper hope to have paved the way for such future research.

Acknowledgments

I wish to acknowledge the support of the University of Groningen’s Program
for High-Performance Computing. I also would like to thank Gosse Bouma and
Gertjan van Noord for valuable discussions.

References

1. D. M. Albro. Taking primitive Optimality Theory beyond the finite state. In
Eisner, J. L. Karttunen and A. Thériault (eds.): Finite-State Phonology: Proc. of
the 5th Workshop of SIGPHON, pages 57–67, Luxembourg, 2000.

7 The input may turn out to be ineffable in some—or all—of the pipe-lines. Importantly,
constraintsandthedefinitionofthehashoperationshouldbesuchthatW#maynotren-
der W ineffable in its own subset. Many, yet not all constraints assign an equal or higher
number of violationmarks to the best candidate of a longer input.This is also the reason
why a punished change does not include an empty string, allowing for shortening—at
any rate, it is quite rare that longer forms influence shorter forms by analogy.

Squeezing the Infinite into the Finite 31

2. A. Anttila and Y. Cho. Variation and change in optimality theory. Lingua, 104(1-
2):31–56, 1998.

3. T. B́ıró. Quadratic alignment constraints and finite state Optimality Theory. In
Proc. of the Workshop on FSMNLP, at EACL-03, Budapest, pages 119–126, also:
ROA-600,8 2003.

4. T. B́ıró. When the hothead speaks: Simulated Annealing Optimality Theory for
Dutch fast speech. presented at CLIN 2004, Leiden, 2004.

5. T. B́ıró. How to define simulated annealing for optimality theory? In Proc. of
the 10th Conference on Formal Grammar and the 9th Meeting on Mathematics of
Language, Edinburgh, August 2005.

6. L. Burzio. Missing players: Phonology and the past-tense debate. Lingua,
112:157–199, 2002.

7. J. Eisner. Efficient generation in primitive Optimality Theory. In Proc. of ACL
1997 and EACL-8, Madrid, pages 313–320, 1997.

8. J. Eisner. Directional constraint evaluation in Optimality Theory. In Proc. of
COLING 2000, Saarbrücken, 2000.

9. J. Eisner. Comprehension and compilation in Optimality Theory. In Proc. of ACL
2002, Philadelphia, 2002.

10. T. M. Ellison. Phonological derivation in Optimality Theory. In COLING-94,
Kyoto, pages 1007–1013, also: ROA-75, 1994.

11. R. Frank and G. Satta. Optimality Theory and the generative complexity of con-
straint violability. Computational Ling., 24(2):307–315, 1998.

12. D. Gerdemann and G. van Noord. Approximation and exactness in finite state
Optimality Theory. In J. Eisner, L. Karttunen, A. Thriault (eds): SIGPHON
2000, Finite State Phonology, 2000.

13. G. Jäger. Gradient constraints in finite state OT: The unidirectional and the
bidirectional case. ROA-479, 2002.

14. D. C. Johnson. Formal Aspects of Phonological Description. Mouton, The Hague
[etc.], 1972.

15. L. Karttunen. The proper treatment of Optimality Theory in computational
phonology. In Finite-state Methods in NLP, pages 1–12, Ankara, 1998.

16. J. Kuhn. Processing optimality-theoretic syntax by interleaved chart parsing and
generation. In Proc. of ACL-2000, Hongkong, pages 360–367, 2000.

17. A. Prince and P. Smolensky. Optimality Theory, constraint interaction in genera-
tive grammar. RuCCS-TR-2, ROA Version: 8/2002, 1993.

18. A. Prince and P. Smolensky. Optimality Theory: Constraint Interaction in Gener-
ative Grammar. Blackwell, Malden, MA, etc., 2004.

19. B. Tesar and P. Smolensky. Learnability in Optimality Theory. The MIT Press,
Cambridge, MA - London, England, 2000.

20. B. Turkel. The acquisition of optimality theoretic systems. m.s., ROA-11, 1994.

8 ROA stands for Rutgers Optimality Archive at http://roa.rutgers.edu/.

	Introduction
	Finite State Optimality Theory
	The Matching Approach

	Planting the Input into the FST
	Modeling a Complex Lexicon
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

