

From Harmonic Grammar to Optimality Theory The strict domination limit

Tamás Biró

ELTE Eötvös Loránd University

'K + K = 120' Workshop Dedicated to László Kálmán and András Kornai on the occasion of their 60th birthdays,

RIL HAS, Budapest, 18 December 2017

Optimality Theory in a broad sense

- Underlying representation \mapsto candidate set.
- Surface representation = optimal element of candidate set.
- Optimality: most harmonic. What is "harmony"?

Optimization as a linguistic architecture

The output/surface form optimizes an objective function:

 $SF(u) = \underset{x \in Gen(u)}{\operatorname{arg max}} H(x)$

• Harmony Grammar (HG): $H_{HG}(x) = -\sum_{k=1}^{n} w_k \cdot C_k(x)$.

arg max with respect to the arithmetic greater than relation \geq .

• Optimality Theory (OT): $H_{\text{OT}}(x) = \Big(-C_n(x), -C_{n-1}(x), \dots, -C_1(x) \Big).$

arg max with respect to the *lexicographic order* relation \succeq_{lex} .

Optimality Theory — strict domination

- The *filter series* view of OT **vs.** optimization.
- Strict domination: candidate once filtered out never comes back.
- Inherent in OT (lexicographic order), not necessary in HG.

• Optimality Theory maximizes a vector of violations:

	Cn	C_{n-1}	 C_i	 C_1
	r n	<i>r</i> _{n-1}	r _i	<i>r</i> ₁
H(x) =	$-C_{1}[x]$	$-C_{2}[x]$	 $-C_i[x]$	 $-C_n[x]$

• Harmonic Grammar maximizes a weighted sum of violations: $H(x) = -\sum_{i=1}^{n} w_i \cdot C_i[x].$

- "Standard" HG: weights w_i = ranks r_i .
- Exponential HG: weights are ranks exponentiated, fixed base (e.g., with e = 2.7182...) W_i = e^{r_i}.

• *q*-HG: weights are ranks exponentiated, with (variable) base q $w_i = q^{r_i}$.

• Optimality Theory maximizes a vector of violations:

	Cn	<i>C</i> _{<i>n</i>-1}	 C_i	 C_1
	r n	<i>r</i> _{n-1}	r _i	<i>r</i> ₁
H(x) =	$-C_{1}[x]$	$-C_{2}[x]$	 $-C_i[x]$	 $-C_n[x]$

- Harmonic Grammar maximizes a weighted sum of violations: $H(x) = -\sum_{i=1}^{n} w_i \cdot C_i[x].$
- "Standard" HG: weights w_i = ranks r_i .
- Exponential HG: weights are ranks exponentiated, fixed base (e.g., with e = 2.7182...) W_i = e^{r_i}.
- *q*-HG: weights are ranks exponentiated, with (variable) base q $w_i = q^{r_i}$.

• Optimality Theory maximizes a vector of violations:

	Cn	C_{n-1}	 C_i	 <i>C</i> ₁
	r n	<i>r</i> _{n-1}	r _i	<i>r</i> ₁
H(x) =	$-C_{1}[x]$	$-C_{2}[x]$	 $-C_i[x]$	 $-C_n[x]$

- Harmonic Grammar maximizes a weighted sum of violations: $H(x) = -\sum_{i=1}^{n} w_i \cdot C_i[x].$
- "Standard" HG: weights w_i = ranks r_i .
- **Exponential HG:** weights are ranks exponentiated, fixed base (e.g., with e = 2.7182...) $W_i = e^{r_i}$.

• *q*-HG: weights are ranks exponentiated, with (variable) base q $w_i = q^{r_i}$.

• Optimality Theory maximizes a vector of violations:

	Cn	C_{n-1}	 C_i	 C_1
	r n	<i>r</i> _{n-1}	r _i	<i>r</i> ₁
H(x) =	$-C_{1}[x]$	$-C_{2}[x]$	 $-C_i[x]$	 $-C_n[x]$

- Harmonic Grammar maximizes a weighted sum of violations: $H(x) = -\sum_{i=1}^{n} w_i \cdot C_i[x].$
- "Standard" HG: weights w_i = ranks r_i .
- **Exponential HG:** weights are ranks exponentiated, fixed base (e.g., with e = 2.7182...) $W_i = e^{r_i}$.
- *q*-HG: weights are ranks exponentiated, with (variable) base q $w_i = q^{r_i}$.

• In *q*-HG:

ot kīt

 $-H(x) = q^{r_n} \cdot C_n[x] + \ldots + q^{r_i} \cdot C_i[x] + \ldots + q^{r_1} \cdot C_1[x]$

• Or simply (if $r_i = i$):

$$\begin{array}{rll} -H(x) &= q^n \cdot C_n[x] + \dots &+ q^2 \cdot C_2[x] + q^1 \cdot C_1[x] \\ -H(x) &= 2^n \cdot C_n[x] + \dots &+ 4 \cdot C_2[x] + 2 \cdot C_1[x] \\ -H(x) &= 3^n \cdot C_n[x] + \dots &+ 9 \cdot C_2[x] + 3 \cdot C_1[x] \\ -H(x) &= 10^n \cdot C_n[x] + \dots &+ 100 \cdot C_2[x] + 10 \cdot C_1[x] \end{array}$$

Main difference between OT and HG is strict domination.

• If q grows large, q-HG turns into OT, because...

• In *q*-HG:

ot kīt

 $-H(x) = q^{r_n} \cdot C_n[x] + \ldots + q^{r_i} \cdot C_i[x] + \ldots + q^{r_1} \cdot C_1[x]$

• Or simply (if $r_i = i$):

$$\begin{array}{rcl} -H(x) &= q^n \cdot C_n[x] + \dots &+ q^2 \cdot C_2[x] + q^1 \cdot C_1[x] \\ -H(x) &= 2^n \cdot C_n[x] + \dots &+ 4 \cdot C_2[x] + 2 \cdot C_1[x] \\ -H(x) &= 3^n \cdot C_n[x] + \dots &+ 9 \cdot C_2[x] + 3 \cdot C_1[x] \\ -H(x) &= 10^n \cdot C_n[x] + \dots &+ 100 \cdot C_2[x] + 10 \cdot C_1[x] \end{array}$$

- Main difference between OT and HG is strict domination.
- If q grows large, q-HG turns into OT, because...

• 1.5-HG has *ganging-up cumulativity*:

		<i>C</i> ₃	C_2	C_1	H
	W =	2.25	1.5	1	
ß	<i>x</i> 1	-1			-2.25
	<i>x</i> 2		-1	-1	-2.5

• 1.5-HG also has *counting cumulativity*:

	$W_i =$	C ₃ 2.25	C ₂ 1.5	C ₁ 1	Н
ß	<i>x</i> 1	-1			-2.25
	<i>x</i> 3		-2		-3

(Cf. Jäger and Rosenbach 2006)

• But OT does not have ganging-up cumulativity:

• OT does not have *counting cumulativity* either:

		<i>C</i> ₃	<i>C</i> ₂	<i>C</i> ₁
	<i>x</i> 1	*		
ß	<i>x</i> 3		**	

(Regarding Stochastic OT, cf. Jäger and Rosenbach 2006)

• 3-HG does not have ganging-up cumulativity:

• 3-HG does not have *counting cumulativity*, either:

		<i>C</i> ₃ 9	C ₂ 3	C ₁ 1	Н
	<i>x</i> 1	-1			-9
RF	<i>x</i> 3		-2		-6

(Cf. Jäger and Rosenbach 2006)

As we have known it since Prince and Smolensky 1993,

strict domination in OT can be reproduced

using *q*-HG with sufficiently large *q*:

if $q \ge 1 + C_k[x]$ for all k and x.

New result: upper bound not needed!

As we have known it since Prince and Smolensky 1993,

strict domination in OT can be reproduced

using *q*-HG with sufficiently large *q*:

if $q \ge 1 + C_k[x]$ for all k and x.

New result: upper bound not needed!

$$C_{i}: \bigcup_{u \in \mathcal{U}} \operatorname{Gen}(u) \to \mathbb{N}_{0}$$

$$H_{q}(x) = -\sum_{k=1}^{n} q^{k} \cdot C_{k}(x) \qquad \qquad \underset{OT}{\operatorname{SF}(u)} = \underset{x \in \operatorname{Gen}(u)}{\operatorname{arg max}} H_{OT}(x)$$

$$H_{OT}(x) = \left(-C_{n}(x), \dots, -C_{1}(x)\right) \qquad \qquad \underset{q}{\operatorname{SF}(u)} = \underset{x \in \operatorname{Gen}(u)}{\operatorname{arg max}} H_{q}(x)$$

Theorem

Given are non-negative integer constraints $C_n \gg C_{n-1} \gg \ldots \gg C_1$ and a Generator function Gen. Then, for any underlying form $u \in \mathcal{U}$ \exists some threshold $q_0 \ge 1$ such that $\forall q > q_0$, $SF_{OT}(u) = SF_q(u)$.

Theorem

Given are non-negative integer constraints $C_n \gg C_{n-1} \gg \ldots \gg C_1$ and a Generator function Gen. Then, for any underlying form $u \in \mathcal{U}$ \exists some threshold $q_0 \ge 1$ such that $\forall q > q_0$, $SF_{OT}(u) = SF_q(u)$.

Proof.

```
(Sketch.) Fix u \in U. For s \in SF_{OT}(u), let
```

$$q_0 = 1 + \max \{C_k(s), C_{k-1}(s), \dots, C_1(s)\}$$

Then, for all $q > q_0$,

- if $s_1 \in SF_{OT}(u)$ and $s_2 \in SF_{OT}(u)$, then $H_q(s_1) = H_q(s_2)$, but
- ② if $s \in SF_{OT}(u)$ and $x \notin SF_{OT}(u)$, then $H_q(s) > H_q(x)$.

Theorem

Given are non-negative integer constraints $C_n \gg C_{n-1} \gg \ldots \gg C_1$ and a Generator function Gen. Then, for any underlying form $u \in \mathcal{U}$ \exists some threshold $q_0 \ge 1$ such that $\forall q > q_0$, $SF_{OT}(u) = SF_q(u)$.

Corrolary:

$$\lim_{q \to +\infty} SF_q = SF_{OT}$$
 pointwise.

As *q* grows, more and more $u \in U$ are mapped by *q*-HG onto $SF_{OT}(q)$.

The two languages converge: if q is large enough, then any u is expressed by the same SF(u).

Theorem

Given are non-negative integer constraints $C_n \gg C_{n-1} \gg \ldots \gg C_1$ and a Generator function Gen. Then, for any underlying form $u \in \mathcal{U}$ \exists some threshold $q_0 \ge 1$ such that $\forall q > q_0$, $SF_{OT}(u) = SF_q(u)$.

Corrolary:

$$\lim_{q \to +\infty} SF_q = SF_{OT}$$
 pointwise.

As *q* grows, more and more $u \in U$ are **mapped** by *q*-HG onto $SF_{OT}(q)$.

The two languages converge: if q is large enough, then any u is **expressed** by the same SF(u). Theory vs. implementation?

Implementation: how to find the global optimum?

$$\begin{array}{l} H(B) - H(A) = q^2 \\ H(B) - H(C) = q \end{array}$$

different magnitude

$$egin{aligned} \mathcal{H}(\mathcal{B}) &- \mathcal{H}(\mathcal{A}) = q^2 + q \ \mathcal{H}(\mathcal{B}) &- \mathcal{H}(\mathcal{C}) = q^2 \end{aligned}$$

same magnitude

Candidate [A] is most harmonic.

Implementation: how to find the global optimum?

Precision of simulated annealing with different cooling schedules, for two different grammars, as a function of q (Biró, in prep.).

Summary: q-HG in the strict domination limit

- *q*-HG converges to OT as $q \to +\infty$:
- more and more inputs are mapped to the same outputs,
- and no cumulativity effects.

• And implementation may be prone to errors, both *q*-HG in the strict domination limit, and OT.

Summary: q-HG in the strict domination limit

- *q*-HG converges to OT as $q \to +\infty$:
- more and more inputs are mapped to the same outputs,
- and no cumulativity effects.

• And implementation may be prone to errors, both *q*-HG in the strict domination limit, and OT.

Thank you for your attention!

$60 \cdot K_{\mathcal{L}} + 60 \cdot K_{\mathcal{A}} = 120$ Happy birthday!

Tamás Biró:

tamas[dot]biro[at]btk[dot]elte[dot]hu http://birot.web.elte.hu/

Acknowledgement: this research was supported by a Marie Curie FP7 Integration Grant (no. PCIG14-GA-2013-631599, "MeMoLI"), 7th EU Framework Programme.

